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Abstract: The marine ecosystem, human health and social economy are always severely impacted
once an offshore oil spill event has occurred. Thus, the management of oil spills is of importance but
is difficult due to constraints from a number of dynamic and interactive processes under uncertain
conditions. An integrated decision support system is significantly helpful for offshore oil spill
management, but it is yet to be developed. Therefore, this study aims at developing an integrated
decision support system for supporting offshore oil spill management (DSS-OSM). The DSS-OSM was
developed with the integration of a Monte Carlo simulation, artificial neural network and simulation-
optimization coupling approach to provide timely and effective decision support to offshore oil spill
vulnerability analysis, response technology screening and response devices/equipment allocation. In
addition, the uncertainties and their interactions were also analyzed throughout the modeling of the
DSS-OSM. Finally, an offshore oil spill management case study was conducted on the south coast of
Newfoundland, Canada, demonstrating the feasibility of the developed DSS-OSM.

Keywords: offshore oil spill; oil spill management; decision support system; simulation-optimization
coupling

1. Introduction

Offshore oil spills can cause severe effects to the marine environment and ecosystem
and further cause direct/indirect hazards to human health. In 2020, although no large
oil spill was recorded, the total volume of oil lost to the marine environment from tanker
spills was approximately 1000 tonnes [1]. The Deepwater Horizon oil spill is the most
severe offshore oil spill to this day, which keeps causing severe damage to the marine
ecosystem [2–4]. The total liability of this spill was estimated as at least USD 100 billion, and
a penalty of up to USD 4.5 billion was made to the BP p.l.c., which owned the Deepwater
Horizon offshore drilling rig. The latter cost was estimated to be doubled when the
impacts to the environment and social economy were further considered [5]. Although the
capacities and practices of offshore oil spill management have been noticeably improved
since the Deepwater Horizon oil spill [6], they are still behind the progress of oil and
gas development.

Oil spill management, especially oil spill response, is always constrained and chal-
lenged by a series of dynamic and interactive processes under various degrees of un-
certainties. These uncertainties can be caused by the properties of oil spills, environ-
mental conditions and the efficiency of response devices or equipment, along with the
different weathering degrees of spills [7–11]. The optimization of management strategies
and resources allocation can be highly beneficial in improving oil spill management effi-
ciency [12]. So far, some decision support systems (DSSs) for oil spill management have
been reported [13,14]. Pourvakhshouri et al. [15] developed a DSS based on a geographical
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information system (GIS) to support oil spill management in the Strait of Malacca. Some
offshore oil spill diagnoses and/or alert models were also developed either with or without
geomatic analysis [16,17], including the oil spill risk analysis (OSRA) model, the oil spill in-
formation system (OSIS) [18], the general national oceanic and atmospheric administration
(NOAA) operational modeling environment (GNOME) [19,20], etc. Nevertheless, these
models specified response technologies only with consideration of experience, without
support from optimization, and nearly always involved approaches to handle uncertainties
which existed throughout oil spill management [21]. Although DSS-integrating oil spill
simulation, strategy optimization and uncertain information handling could significantly
increase the efficiency of offshore oil spill management, this kind of DSS was still not
reported in literature [22].

Thus, this research is to (1) develop an approach for the analysis of offshore oil spill vul-
nerability under uncertain environmental conditions; (2) develop an approach for response
technologies screening with consideration of uncertain and complicated environmental
conditions; (3) develop an offshore oil spill decision support system based on a simulation-
optimization coupling approach; and (4) develop an integrated DSS framework for offshore
oil spill management with integration of the above approaches/systems.

2. Methodology
2.1. Offshore Oil Spill Vulnerability Analysis

In offshore oil spill management, the analysis of spill vulnerability and mapping of
spill risk is of importance. It provides support to offshore oil spill preparedness and impacts
assessment, as well as efficiency improvement and cost saving for oil spill response [23,24].
As introduced by Gundlach and Hayes [25], the offshore oil spill vulnerability index
(OSVI) can provide a quantification of risk to a target area that will potentially be affected
by offshore oil spills. Such an index was adopted from the widely used environmental
sensitivity index (ESI). To better assist offshore oil spill diagnosis and alert, the OSVI needed
to be further classified into different groups, representing different risk levels in different
subareas of the target area [26–29].

The delineated risk zones representing certain levels of offshore oil spill vulnerability
are significantly helpful to offshore oil spill management. However, current approaches to
offshore OSVI classification in ocean and coastal management mainly focus on ecological
impact assessment and fishery/seabird protection. Offshore oil spill risk management
still lacks support from OSVI classification. One of the key reasons is the uncertainties in
complex features such as meteorological, oceanic and ecological conditions [27]. The other
reason is the lack of risk mapping (classification) models to delineate levels of vulnerability
for an area that will potentially be exposed to oil spills.

To address above concerns, the authors have previously developed an MC-TSAM
approach for OSVI determination and risk zone classification [30,31]. This approach was
an advance of the TSAM approach which was also previously developed by the authors
based on the adaptive resonance theory (ART) and the ART mapping (ARTMap) neural
network [32,33]. The framework of MC-TSAM is shown in Figure 1, where N is the total
number of the Monte Carlo simulation, and l is one of the Monte Carlo simulation steps.
The approach can process inputs with a mixture of deterministic and uncertain values. For
the uncertain inputs, such as current and wind speeds, distributions with best fitness were
first generated according to distribution regression on historical data. Accordingly, the
statistics of distributions were summarized and applied to the Monte Carlo simulation
for randomized number generation. In each step of Monte Carlo simulation (step l), one
set of randomized numbers, as well as the deterministic values, were interpolated to the
preset grids of the target area and then fed to the TSAM for OSVI analysis. With a number
(e.g., N) of Monte Carlo simulation steps, the MC-TSAM is able to provide reasonable OSVI
classification for a target area with consideration of complexity and uncertainty.
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Figure 1. Framework of the MC-TSAM approach (adopt from Li et al. (2014) [31]).

2.2. Offshore Oil Spill Response Technology Screening

Another challenge in offshore oil spill management is the selection of response tech-
nologies to achieve optimized response efficiency. The selection of offshore oil spill tech-
nology needs to consider a complex combination of features, including oil properties and
oceanic and environmental conditions, as well as the oil weathering processes. In addition,
the response technologies classification for a specific spill site also needs to consider the
interaction between the efficiency of technology and the conditions of the area where the
response is to be conducted. Although a number of offshore oil spill response technologies
have been developed, their efficiencies in treating different types of spills significantly vary.
In addition, response technology may also have uncertain feasibility and/or efficiency
under uncertain site conditions, such as seawater temperature and wind and current speed,
as well as the change of viscosity and density of spills. Nevertheless, current practices in
response technology selection are still based on experience, which may compromise the
efficiency of spill response. Only a few preliminary attempts have been made for the screen-
ing of offshore oil spill technologies on scientific basis [22,34]. Thus, classifying/ranking
numerous technologies for offshore oil spill response is still difficult and challenging.

As one type of artificial neural network, the ARTMap approach has high potential
for offshore oil spill technology screening. The ARTMap is a supervised classification
approach. Its main modules include ARTa, ARTb and the Fab, which are developed
to process patterns, criteria and their comparisons, respectively [35]. Accordingly, the
ARTMap can efficiently classify a set of data with a certain degree of complexity by a given
set of criteria. However, there are practical difficulties in directly applying the original
ARTMap for a classification with complex and uncertain features. The environmental
conditions (e.g., seawater temperature, wave energy, wind speed and direction), oil spill
properties (e.g., slick thickness and oil viscosity) and efficiency of technology are usually
uncertain. Furthermore, the uncertainty is significantly amplified when the interaction in
features is engaged. To reflect and handle these uncertainties and address the difficulty
from the original ARTMap model, the introduction of fuzzy set theory with membership or
fuzzy set generation becomes necessary [32,33].

To address the above challenge, the authors integrated the ART/ARTMap model and
fuzzy set theory to develop an integrated, rule-based fuzzy adaptive resonance theory
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mapping (IRFAM) approach (Figure 2) [32,33]. Such an approach can efficiently handle the
classification with the coexistence of complexity and uncertainty. In the IRFAM approach,
the original inputs with uncertain conditions are firstly fuzzified based on the fuzzy set
theory. The fuzzified inputs are then classified by unsupervised classification with ART1.
Based on the desired number of the final group by the method described in the TSAM
approach [33], as well as the centroid determination module, the criteria combinations
generated by the fuzzy set generation module are finally classified.

Figure 2. Framework of the IRFAM approach (adopt from Li et al. (2011) [32]).

In order to address the uncertainties of data, the IRFAM approach was further ad-
vanced in this study, by coupling with a Monte Carlo simulation, yielding a Monte Carlo
simulation-based IRFAM (MC-IRFAM) approach (Figure 3). This approach can produce
random numbers based on the feasibility range of parameters with distribution regres-
sion. Accordingly, the availability and feasibility of response technologies can be screened
and ranked based on the spilled site conditions. With a certain number of Monte Carlo
simulation steps, the overall score reflecting the feasibility of the technologies can also
be generated.
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Figure 3. Framework of the MC-IRFAM approach.

2.3. Simulation-Optimization Coupling for Offshore Oil Spill Response

Since offshore oil spills always cause severe impacts to the marine environment and
ecosystem, an emergency response is usually initiated immediately to clean the spill and
protect sensitive areas nearby. The oil spill response is usually carried out with a com-
plicated combination of interactive processes such as dispersion by chemical dispersants,
containment and recovery by booms and skimmers and combustion by in-situ burning [36].
The effectiveness of response is significantly affected by various uncertain environmental
conditions and spill properties, including seawater temperature, wave energy, wind speed
and direction, oil density and viscosity, slick thickness, etc. These uncertain conditions lead
to difficulties in real-time decisions for response actions and resource allocation during an
offshore oil spill. The coupling of simulation and optimization for these processes under
varying circumstances can be significantly helpful to the oil spill response. However, it is a
challenging task, and few attempts have been reported [31,34].

To address the above concern, a Monte Carlo simulation-based, dynamic, mixed-
integer nonlinear programming (MC-DMINP) approach was previously developed by
the authors to effectively and dynamically support offshore oil spill response [37,38]. The
general framework of the MC-DMINP is shown in Figure 4. In each Monte Carlo simulation
step, a set of random values is generated based on the regressed distribution of uncertain
parameters, converting the uncertain problem to a deterministic one at this step. With the
completion of all Monte Carlo simulation steps, the distribution of solutions is generated
and further analyzed with a trade-off decision.
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Figure 4. Framework of the MC-DMINP approach (adopt from Li et al. (2014) [37]).

In each Monte Carlo simulation step, a general simulation-optimization coupling model
is generated with consideration of oil recovery (e.g., skimming) and weathering simulation:

Max Vrec =
N

∑
s=1

M

∑
j=1

SKj ×ORRnsj (1)

ORRnis = fORRni

(
V0 −∑s−1

h=1(Vh + FVh + DVh)

A

)
(2)

DEs = fFD(SOTs−1, µo
s) = fDE

(
V0 −∑s−1

h=1(Vh + FVh + DVh)

A
, µo

s−1

)
(3)

µo
s = fµ

(
µo

s−1, FEs−1, FWs−1
)

(4)

FVs = FEs−1 ×
(

V0 −
s−1

∑
h=1

(Vh + FVh + DVh)

)
(5)

DVs = DEs−1 ×
(

V0 −
s−1

∑
h=1

(Vh + FVh + DVh)

)
(6)

M

∑
j=1

SKj ≤ B (7)

SKj ≥ 0 (8)
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where Vrec is the recovered oil volume (m3); SKj is the number of response devices (e.g.,
skimmer); ORRni is the oil recovery rate (m3/h); N is the oil spill response window (h); s is
the step index of the response window; M is the types of response technologies; V0 is the
initial volume of spilled oil (m3); Vh, FVh and DVh are the volumes of remained, evaporated
and dispersed oil (m3) at step h; A is the spilled oil area (km2), h is the step index, µ is
the oil dynamic viscosity (cP); FE, FW and DE are the evaporation, emulsification and
dispersion rate of the oil (m3/(s·m3 of oil)); B is the capacity of the vessels carrying the
response technologies.

2.4. Integrated Decision Support System for Offshore Oil Spill Management

Based on the developed MC-TSAM, MC-IRFAM and MC-DMINP, an integrated deci-
sion support system was developed for offshore oil spill management, named DSS-OSM.
As shown in Figure 5, the integrated DSS utilized the Monte Carlo simulation to generate
random values for uncertain inputs in all the processes during offshore oil spill manage-
ment. Correspondingly, the randomized inputs were fed to the TSAM, IRFAM and DMINP
for offshore oil spill vulnerability analysis and spill alert, oil spill response technology
screening and ranking and devices and equipment allocation during offshore oil spill
actions. Eventually, the DSS-OSM can provide integrated decision support to offshore oil
spill management.

Figure 5. Framework of the DSS-OSM.
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3. A Case Study of Offshore Oil Spill Management

A case study regarding decision support to offshore oil spill management was con-
ducted to demonstrate the feasibility and efficiency of the developed DSS-OSM. The region
in the case study was the south coast of Newfoundland (53◦ W to 60◦ W, 45.5◦ N to 47.5◦ N).
For modeling purposes, the region was pre-gridded with 0.1◦ by 0.1◦ cells.

3.1. Offshore OSVI Classification

The details of the OSVI classification can be found in the authors’ previous study [31].
The inputs included (1) meteorological information: seawater temperature (◦C), wind
speed (m/s), wind direction (degree) and pressure (mb); (2) oceanographical information:
current speed (m/s), current direction (degree) and wave energy/height (m); (3) ecological
information: density of spawning fish (/520 m2) and location of ecological reserves; and
(4) oil spill relative information: oil spill frequency in the past (/year), density of tanker
transport (/year) and density of other vessel transport (/year). Based on the MC-TSAM
module, the OSVI in the target area was classified into Zone 1 to 5 with increasing vulnera-
bility to offshore oil spill [31]. The distributions of each parameter in each zone are listed in
Figures S1–S10 in the Supplementary Materials.

The OSVI classification results were further analyzed to provide summaries of the
site conditions for response technology screening based on MC-IRFAM and response
devices/equipment allocation based on MC-DMINP.

3.2. Simulation of Oil Slick Movement

The spilled oil in this case study was the Statfjord crude which is one of the most
popular crude oils that is transported worldwide (Table 1). The spill location was set to
55.7◦ W and 46.3◦ N, where the highest density of marine-time traffic appeared in the
region [39]. The total spill volume was 5000 m3. It was assumed that a set of booms had
been applied to confine the spill area to 100,000 m2, yielding a slick thickness of 50 mm at
the initial stage.

Table 1. Oil properties of Statfjord crude [40].

Parameter Value Parameter Value

Vapor pressure 10.4 Pa Molecular weight 128.2 g/mol
Density 832 kg/m3 Gas constant 8.314 m3·Pa/mol·K

Viscosity 3.03 cP Interface tension 2000 dyne/m

To estimate the oil slick trajectory, the following model was firstly applied [41,42]:

→
V =

→
Vc +

→
V′ (9)

where
→
V is the velocity of oil slick advection (m/s) during each time step;

→
Vc is the

average velocity of oil slick advection (m/s) due to the combined effect from current

and wind; and
→
V′ is the velocity of oil slick advection affected by turbulent fluctuation

(m/s). For simplification, the effect of turbulent fluctuation was ignored in this case study.
Correspondingly, the velocity of oil slick advection was calculated as follows: [43–46]:

→
V =

→
Vc (10)

In addition, the longitude and latitude were approximated to the preset grids. For
example, x0 = −55.7 and y0 = 46.3 were set for the initial spill location. Accordingly, the
trajectory of the spill slick was simulated as follows:

xt = xt−1 −
cos(cdt−1)× cst−1 × 60

LX
(11)
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yt = yt−1 +
sin(cdt−1)× cst−1 × 60

LY
(12)

where cst−1 and cdt−1 are the speed (m/s) and direction (degree) of current at time step
t − 1, respectively; xt and yi are latitudinal and longitudinal moving direction (degree)
of the spill at time t, respectively; xt−1 and yi−1 are latitudinal and longitudinal location
(degree) of the spill from the previous simulation step (t−1), respectively; LX = 7724 m
and LY = 11,120 m represent the distance of 1º longitude and latitude in the study area,
respectively [47].

The wind and current field data were downloaded from the GOODS (GNOME Online
Oceanographic Data Server) of the National Oceanic and Atmospheric Administration
(NOAA). According to Equations (10)–(12), as well as the wind and current field data,
the trajectory of the spill slicks was simulated with a time step of 1 min and a simulation
window of 60 h. The result is shown in Figure 6, which indicates that if no response action
was applied, the spilled oil would contaminate the shoreline area of Newfoundland about
60 h after the release.

Figure 6. The movement of spilled oil in 60 h.

3.3. Offshore Oil Spill Response Technology Screening

Based on the 60 h simulation of oil slick trajectory, the spill would enter Zone 5 in
about 2 h and reach the shoreline area of Newfoundland about 60 h after the release. As
a result, the offshore oil spill response needed to be conducted in Zones 1 and 5, which
appear to have different site conditions. The feasibility parameters of response technologies
(e.g., skimmer) included seawater temperature, wind speed, wave energy/height and oil
properties (i.e., viscosity and slick thickness). Accordingly, the fuzzy membership functions
for these parameters were generated (Figure 7).
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Figure 7. The membership functions of (a) seawater temperature, (b) wave energy/height, (c) wind
speed, (d) oil viscosity and (e) slick thickness.

The distributions of the site conditions for Zones 1 and 5 are listed in Figures S1, S2
and S5 in the Supplementary Materials. Accordingly, the mean and 95% confidence interval
for the site conditions of these two zones, as well as the operational conditions of different
types of available skimmers, are summarized (Table 2). According to the fuzzy member
functions listed in Figure 7, these values were fuzzified and fed to the MC-IRFAM for
technology screening and ranking with 10,000 Monte Carlo simulation steps. The output
was a series of overall scores (ranged from 0 to 1), representing the feasibility of skimmers.
The lowest score was 0, representing an absolute unfeasibility. In contrast, the highest score
was 1, representing a perfect feasibility. The score of 0.5 indicated a reasonable feasibility.

Table 2. Information of site conditions and skimmer feasibilities.

Seawater
Temperature

◦C

Wave Height
m

Wind Speed
m/s

Oil Viscosity
cP

Slick
Thickness

mm

Zone 1 0–15 0.5–5 3–13 ≥3.03 ≤50
Zone 5 −5–20 0.2–4 0.5–15 ≥3.03 ≤0

SK 1 ≥−10 0–3 0–20 ≥10 5–50
SK 2 −10–20 0–2.5 0–15 ≥5 1–50
SK 3 −5–15 0–2 0–12 ≥2 0–50
SK 4 5–20 0–0.5 ≥20 10–200 0.01–1
SK 5 20–30 0.5–2 0–5 50–1000 1–5
SK 6 ≥30 0–0.2 ≥10 ≥1000 ≥4
SK 7 10–15 0–0.3 0–10 ≥50 0.1–0.5

Note: SK—Skimmer.

Tables 3 and 4 list the statistics of the overall scores for the feasibility of available
skimmers conducting offshore oil spills in Zones 1 and 5. These statistics include minimum
and maximum values, median, mean and 95% conference interval (CI). According to the
results, the overall score distributions, means, medians and 95% CIs for SK 1, SK 2 and
SK 3 operating in Zone 1 were similar, indicating a close feasibility of these skimmers. In
addition, the feasibility of these skimmers to Zone 1 was promising because most of their
scores were higher than 0.5. Further comparison in the overall score distribution indicated
that most of the scores of SK 3 tended to be high values, while the ones of SK 1 tended
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to be low values. In addition, the score tendency of SK 2 was insignificant. Although
SK 5 appeared to have lower feasibility than SKs 1 to 3, it could still achieve a reasonable
performance since its overall score was still higher than 0.5. SK 4 and SK 7 and had similar
distribution in overall scores of feasibilities. Comparatively, the feasibility of SK 7 was
slightly higher than SK 4 because the scores of SK 7 tended to be higher than the ones
of SK 4. Generally, SK 6 might not be feasible for the oil spill response in this case. As a
summary, the ranks of skimmer feasibility for offshore oil spill response in Zone 1 were SK
3 > SK 2 > SK 1 > SK 5 > SK 7 > SK 4 > SK 6.

Table 3. Statistics of skimmer feasibility for offshore oil spill response in Zone 1.

Skimmer Mean Median Minimum
Value

Maximum
Value

Lower
Bound of

95% CI

Upper
Bound of

95% CI

SK 1 0.674 0.660 0.414 0.881 0.533 0.867
SK 2 0.699 0.667 0.413 0.933 0.546 0.867
SK 3 0.669 0.653 0.356 1.000 0.535 0.853
SK 4 0.544 0.544 0.399 0.666 0.467 0.624
SK 5 0.616 0.624 0.528 0.667 0.540 0.667
SK 6 0.515 0.533 0.400 0.600 0.470 0.600
SK 7 0.588 0.593 0.428 0.824 0.486 0.680

Table 4. Statistics of skimmer feasibility for offshore oil spill response in Zone 5.

Skimmer Mean Median Minimum
Value

Maximum
Value

Lower
Bound of

95% CI

Upper
Bound of

95% CI

SK 1 0.716 0.730 0.467 0.921 0.548 0.867
SK 2 0.698 0.667 0.467 0.933 0.569 0.867
SK 3 0.659 0.653 0.364 0.933 0.543 0.800
SK 4 0.542 0.543 0.414 0.661 0.475 0.607
SK 5 0.750 0.800 0.528 0.800 0.609 0.800
SK 6 0.549 0.567 0.433 0.667 0.500 0.637
SK 7 0.592 0.602 0.458 0.809 0.504 0.649

The feasibility ranking for the skimmers operating in Zone 5 was close to those in Zone
1, excluding the following differences: (1) SK 2 appeared to have the highest feasibility,
followed by SK 1, then SK 3; and (2) the feasibility of SKs 5 to 7 appeared to slightly increase.
In general, the ranks of skimmer feasibility for offshore oil spill response in Zone 5 were
SK 2 > SK 1 > SK 3 > SK 5 > SK 7 > SK 4 > SK 6.

3.4. Response Devices/Equipment Allocation

In decision support to the response devices/equipment allocation, three types of
skimmers (SK 1, SK 2 and SK 3) were selected based on their highest ranks from the
technology screening and ranking process. The oil recovery rates of these skimmers had
quadratic relationships with the oil slick thickness as follows:

ORRn = aST2 + bST (13)

where ORRn is the oil recovery rate for skimmer (m3/h), ST is the oil slick thickness (mm)
and a and b are coefficients based on experiments.

There were three warehouses nearby (Saint Lawrence, St Mary’s and St John’s) that
held eight sets of skimmers for each type. Due to the different distances from each ware-
house to the spill site, the times for deploying different types of skimmer were different. The
coefficients for skimmers and the time required for their deployment are listed in Table 5.
In addition, the total capacity of vessels for holding the devices was 20 sets of skimmers.
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Table 5. Time for device deployment and parameters for ORRn simulation.

Skimmer
Time for Device
Deployment (h)

Parameter for ORRn Simulation

a b

SK 1 3 0.01437 0.01602
SK 2 6 −0.00791 0.84975
SK 3 12 −0.01591 1.54975

Due to the previous simulation of oil slick trajectory, if no offshore oil spill response
was applied, the spill would contaminate the shoreline area of Newfoundland 60 h after
the release (Figure 6). Correspondingly, the target of the oil spill response was to perform a
fast and effective clean-up of the spilled oil within 60 h. Furthermore, no additional device
would be applied during this period due to the challenges in distance and transportation.

According to the wind speed and temperature distribution of Zone 1 and Zone 5
(Figures S2 and S5 in the Supplementary Materials), a Monte Carlo simulation model was
developed. In addition, a normal distribution with 100,000 m2 mean value and 8000 m2

standard deviation was assumed for the slick area. The Monte Carlo simulation steps
were set to 200. In each step, a simulation-optimization coupling approach based on the
MC-DMINP was developed for the combination and allocation of skimmers:

Max V =
60

∑
m=1

Vm

s.t.

V1 =
3
∑

j=1
SKj ×ORRnjm= bsk1m × SK1 ∀m = 1

×
(

0.01437
(

1, 000 V0
A

)2
+ 0.01602

(
1, 000 V0

A

))
+bsk2m × SK2

×
(
−0.00791

(
1, 000 V0

A

)2
+0.84975

(
1, 000 V0

A

))
+bsk3m × SK3

×
(
−0.01591

(
1, 000 V0

A

)2
+ 1.54975

(
1, 000 V0

A

))
(14)

FE1 =
2.67 + 0.06× (T − 273.15)× Ln(60)

100
∀m = 1 (15)

DE1 =
0.11(U + 1)2

1 + 50µo
0

0.5
(

V0
A

)
st

∀m = 1 (16)

VF1 = V0 × FE1 ∀m = 1 (17)

VD1 = V0 × DE1 × 3.600 ∀m = 1 (18)
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Vm =
3
∑

j=1
SKj ×ORRnjm ∀m = 2, · · · , 60

= bsk1m × SK1

×
(

0.01437
(

1,000(V0−∑m−1
h=1 Vh)

A

)2

+0.01602
(

1,000(V0−∑m−1
h=1 Vh)

A

))
+bsk2m × SK2

×
(
−0.00791

(
1,000(V0−∑m−1

h=1 Vh)
A

)2

+0.84975
(

1,000(V0−∑m−1
h=1 Vh)

A

))
+bsk3m × SK3

×
(
−0.01591

(
1,000(V0−∑m−1

h=1 Vh)
A

)2

+1.54975
(

1,000(V0−∑m−1
h=1 Vh)

A

))

(19)

FEm =
2.67 + 0.06× (T − 273.15)× Ln(60)

100
∀m = 2, · · · , 60 (20)

DEm =
0.11(U + 1)2

1 + 50µo
m

0.5
(

V0−∑m−1
h=1 (Vh+VFh+VDh)

A

)
st

∀m = 2, · · · , 60 (21)

FWm = Kb

(
1− exp

(
−Ka

Kb

)
(U + 1)2 × 3.600

)
∀m = 2, · · · , 60 (22)

ρo
m = FWm−1ρw + (1− FWm−1)

(
ρo

m−1 + KbFEm−1
)
∀m = 2, · · · , 60 (23)

µo
m = µo

m−1exp(KcFEm−1)exp
(

2.5FWm−1

1− KbFWm−1

)
∀m = 2, · · · , 60 (24)

VFm = V0 × FEm ∀m = 2, · · · , 60 (25)

VDm = V0 × DEm × 3.600 ∀m = 2, · · · , 60 (26)

3

∑
j=1

SKj ≤ 20 (27)

0 ≤ SKj ≤ 8 ∀j = 1, 2, 3 (28)

bsk jm = 0 ∀j = 1, 2, 3; ∀ttj > m (29)

bsk jm = 1 ∀j = 1, 2, 3; ∀ttj ≤ m (30)

SKj ∈ integer ∀ j = 1, 2, 3 (31)

where V is the total volume of collected oil (m3); Vm and Vh are the collected volume of oil
in each 1 h time step (m3); m and h are the time step indices (m > h); j is the skimmer type
index; ORRn is the net oil recovery rate (m3/h); bskjm is the binary indicator which indicates
whether SKj is applied in the oil spill response at stage m; V0 is the release volume of spilled
oil at the beginning (m3); T is the seawater temperature (K); St is the oil–water interfacial
tension (dyne/m); U is the wind speed (m/s); Ka is a cure fitting constant (2 × 10−6); Kb is
the constant for mousse viscosity (0.7) [47]; ρw is the seawater density (kg/m3); ρo is the
initial density of oil (kg/m3); Kc is a constant between 1 and 10 (1 for light refined oil and
10 for crudes); and ttj is the time for SKj allocation and deployment.



Water 2022, 14, 20 14 of 21

The MC-DMINP modeling results are illustrated in Figures 8–16. The distributions
of skimmer numbers indicated the highest probability of deployed SK1 and SK2 were
eight sets and the number of SK3 heavily depended on the vacancy of the vessel capacity
(Figure 8). Since there were only eight sets of SK1 and SK2 in total, and the capacity of
vessels was 20 sets of skimmers, the optimal combination would be SK1: eight sets, SK2:
eight sets and SK4: eight sets. Based on this combination and the simulation-optimization
coupling approach, the transport and behavior of the spilled oil were simulated. The results
indicated that most of the oil was removed from sea surface about 45 h after the release
and would not reach the shoreline area of Newfoundland (Figure 9).

Figure 8. Skimmer combinations from MC-DMINP results.

Figure 9. Spill trajectory and volume change based on optimal skimmer combination.
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Figure 10. Simulation results of skimmer ORRn.

Figure 11. Simulation results of oil viscosity and density, as well as slick thickness.
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Figure 13. Changes of skimmer combination regarding the uncertainty of slick area.

Figure 14. Changes of skimmer combination regarding the uncertainty of wind speed.

Figure 15. Changes of skimmer combination regarding the uncertainty of seawater temperature.
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Figure 16. Correlations between oil budgets (collection, evaporation and dispersion) and uncertain
parameters (slick area, seawater temperature and wind speed).

The final oil budget was 82% collection (4096 m3), 14.4% evaporation (724 m3) and 3.6%
dispersion (180 m3). Figures 10–15 show the simulation results regarding ORRn changes,
oil collection, evaporation and dispersion, as well as the changes in slick thickness, oil
density and viscosity. The number of SK1 and SK2 appeared to have significantly positive
correlations with the initial slick area. The number of SK3 appeared to have a negative
correlation with the initial slick area but was not significant (Figure 13). Furthermore, the
wind speed had a positive correlation with the number of SK2 and a negative one with
the number of SK3. Its correlation with the number of SK1 was not observed (Figure 14).
Since the oil dispersion process was enhanced by strong wind 1 day (24 h) after the release
(Figure 12), the skimming efficiency was significantly affected (Figure 16). As a result, SK1
and SK2 that required a shorter time of deployment were preferred compared to SK3 which
required a much longer time for deployment. Strong negative correlations were observed
between SK3/SK2 and the uncertainty of seawater temperature, while the correlation
between SK1 and seawater temperature was insignificant. The possible reason might be the
positive effects of seawater temperature on the oil evaporation processes. In addition, the
SK2 and SK3 were more influenced by this effect because their ORRs were more sensitive to
uncertainty when compare to SK1.

The overall ORRn of skimmers was decreasing with time, mainly due to the decrease
in slick thickness. The decrease of efficiencies was significant in the early 24 h and became
insignificant thereafter (Figure 10). Generally, the uncertainties of all the skimmers’ efficien-
cies appeared to have positive correlations with the uncertainties in seawater temperature,
wind speed and slick thickness. In addition, the seawater temperature and wind speed in
Zone 1 and Zone 5 posed a significant influence on the oil weathering and, subsequently,
the oil recovery process because their values in these zones followed the generalized ex-
treme value (GEV) distribution. Also, Figure 16 indicates significantly positive correlations
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between the oil evaporation and the parameters, including seawater temperature, wind
speed and slick area. Very significant correlations were observed between the wind speed,
the processes of oil recovery (negative), evaporation (positive) and dispersion (positive). In
addition, the correlations between seawater temperature and the processes of oil recovery,
dispersion and evaporation were none, significantly negative and significantly positive,
respectively. The uncertainty of slick area appeared to be positively correlated with oil
evaporation and dispersion and negatively correlated with oil recovery.

The performance of the optimal skimmer combination {SK1: eight sets, SK2: eight
sets and SK3: four sets} was also compared with the combinations of {SK1: four sets,
SK2: eight sets and SK3: eight sets} (Combination 1) and {SK1: eight sets, SK2: four sets
and SK3: eight sets} (Combination 2). Figure 17 shows the comparisons in oil recovery.
Although the oil collection based on the optimal combination (41.0%) was close to the
other two combinations’ (40.9%), it appeared to have a significant advantage in the early
stage (e.g., the first 15 h). This was of great importance to ecosystem protection because
the oil slick was approaching the islands of Saint-Pierre, France and Burin Peninsula,
Newfoundland, Canada, about 15 h after the release. The elimination of spilled oil before
this time point was urgently needed and the optimal combination was the best one in
this case.

Figure 17. Performance of skimmer combination in oil collection.

4. Conclusions

This study proposed and developed a framework of an integrated decision support
system for offshore oil spill management (DSS-OSM). Such a DSS system was developed
based on the integration of a Monte Carlo simulation module, a two-stage adaptive reso-
nance theory mapping (TSAM) module, an integrated, rule-based fuzzy adaptive resonance
theory mapping (IRFAM) approach and a dynamic, mixed-integer nonlinear programming
(DMINP) approach. Accordingly, the DSS-OSM was able to provide effective decision sup-
port to offshore oil spill vulnerability index classification, response technology screening
and ranking and devices/equipment allocation during response actions.

To demonstrate the feasibility and efficiency of the developed DSS-OSM, a case study
regarding decision support to offshore oil spill management was conducted targeting the
south coast of Newfoundland, Canada. With the DSS-OSM, a series of decision supports
were generated, such as the classified OSVI zones based on different site conditions, a list of
ranking scores representing the feasibility of response technologies and the optimal settings
of devices/equipment during oil response actions. The modeling result indicated that over
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50% of the spill was collected in 12 h, and more than 90% of the oil was removed from sea
surface in 1 day. It demonstrated that the proposed DSS was able to provide timely and
effective decision support to offshore oil spill management under different environmental
and spill conditions. This DSS is also capable of providing decision support to other types
of pollution management in offshore and coastal areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14010020/s1, Figure S1: Wave height distributions for zones based on MC-TSAM,
Figure S2: Wind speed distributions for zones based on MC-TSAM, Figure S3: Wind direction
distributions for zones based on MC-TSAM, Figure S4: Pressure distributions for zones based
on MC-TSAM, Figure S5: Seawater temperature distributions for zones based on MC-TSAM,
Figure S6: Current direction distributions for zones based on MC-TSAM, Figure S7: Current speed
distributions for zones based on MC-TSAM, Figure S8: Tanker traffic density distributions for
zones based on MC-TSAM, Figure S9: Other vessels traffic density distributions for zones based on
MC-TSAM, Figure S10: Oil spill frequency distributions for zones based on MC-TSAM.
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