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Abstract: Catalytic ozonation is a potential alternative to address the dye wastewater effluent, and de-
veloping an effective catalyst for catalyzing ozone is desired. In this study, a novel Fe/Mn@γ−Al2O3

nanomaterial was prepared and successfully utilized for catalytic ozonation toward dye wastewater
effluent components (dimethyl phthalate and 1−naphthol). The synthesized Fe/Mn@γ−Al2O3

exhibited superior activity in catalytic ozonation of dimethyl phthalate and 1−naphthol in contrast
to Fe@γ−Al2O3 and Mn@γ−Al2O3. Quench and probe tests indicated that HO◦ contributed to
almost all removal of dimethyl phthalate, whereas O3, HO◦, and singlet oxygen participated in the
degradation of 1−naphthol in the Fe/Mn@γ−Al2O3/O3 system. The results of XPS, FT−IR, and EPR
suggested that HO◦ and singlet oxygen were generated from the valence variations of Fe(II/III)and
Mn(III/IV). Moreover, the Fe/Mn@γ−Al2O3/O3 system could also have excellent efficacy in actual
water samples, including dye wastewater effluent. This study presents an efficient ozone catalyst to
purify dye wastewater effluent and deepens the comprehension of the role and formation of reactive
species involved in the catalytic ozonation system.

Keywords: catalytic ozonation; reactive species; singlet oxygen; dye wastewater

1. Introduction

Advanced oxidation processes (AOPs) gained much attention as powerful techniques
to mineralize the pollutants in water treatments [1]. Catalytic ozonation is a promising
technology for efficiently removing refractory pollutants, especially in the advanced treat-
ment of wastewater. Heterogeneous catalytic ozonation can minimize the dissolving of
toxic metal cations in contrast to homogeneous catalyzing.

Many metal oxides have been utilized in the heterogeneous catalytic ozonation pro-
cess, including manganese oxides, iron oxides/oxyhydroxide, aluminum oxides, and
bimetallic/polymetallic oxides. MnOX supported by granular activated carbon or alumina
catalyzed ozone to generate hydroxyl radical (HO◦) and efficiently degrade benzenes [2,3].
The surface hydroxyl groups of hydroxylated synthetic A−FeOOH can promote catalyzing
ozone to yield HO◦ [4], and surface MeO−H weak bonds were the favorable sites for
accelerating HO◦ generation. The complex of oxalic acid and iron (Fe2O3/Al2O3) reacted
with ozone and accelerated the degradation of oxalic acid [5]. In addition to Mn and Fe,
TiO2 and MgO nanoparticles were also investigated and used to catalyze ozone [6,7].

Bimetallic nanostructured materials hold promise for improving catalyst activity and se-
lectivity [8]. Mesoporous bimetallic catalysts, such as Ru−Cu/SBA−15, Co−Mn−MCM−41
catalysts, accelerated catalytic ozonation to generate more HO◦ to degrade dye industry ef-
fluent or dimethyl phthalate (DMP) in contrast to single metal loading [9,10]. Fe−Ni/activated
carbon also exhibited high performance for degrading 2,4−dichlorophenoxyacetic acid
compared to single metal or activated carbon [11]. The micron−sized Fe0/Cu/O3 process
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enhanced p−nitrophenol mineralization more than twice the sum of ozone and Fe0/Cu
alone [12]. The ratios of surface defective oxygen/lattice oxygen and Mn(III)/Mn(IV)
of Mn−M bimetallic HZSM−5 (M: Fe, Cu, Ru, Ag) catalysts were higher than that of
Mn−only catalyst, of which Ru−Mn/HZSM−5 showed the highest efficiency in degrading
toluene [13,14].

Ozonation, radical oxidation, and nonradical reaction in the catalytic ozonation system
mainly contributed to contaminant degradation [15–17]. In addition to HO◦, reactive oxy-
gen species (ROS), including singlet oxygen (1O2) and superoxide radical (O2

◦−), were also
involved in contaminant degradation during catalytic ozonation [18]. Oxygen vacancies
and multi−valence Mn were the main Lewis acidic sites for Mn2O3/LaMnO3−δ perovskite
composites during catalytic ozonation, and the generated HO◦, 1O2, and O2

◦− were possi-
bly responsible for the degradation of 1H−benzotriazole [19]. As bimetallic nanoparticles
and Fe− and Mn−based materials exhibited excellent performance on catalytic ozonation,
however, Fe/Mn bimetallic material in catalytic ozonation has not been reported so far.
Consequently, the performance of Fe/Mn bimetallic nanoparticles on catalyzing ozone and
the corresponding reactive species in such systems needs further evaluation.

This study aims to investigate the performance of catalytic ozonation by synthesized
Fe/Mn@γ−Al2O3 nanoparticles. A modified evaporation−induced self−assembly method
was employed to fabricate Fe/Mn@γ−Al2O3 nanoparticles, and SEM, TEM, XRD, XPS,
FTIR, and BET were utilized to characterize the morphology, crystal form, element distribu-
tion, and composition. DMP and 1−naphthol (1−NP), dye precursors and intermediates,
were selected as model compounds. Their removal performance, reactive species, reac-
tion mechanism, degradation pathway, and matrix factors were investigated in catalytic
ozonation system in the presence of Fe/Mn@γ−Al2O3 nanoparticles.

2. Materials and Methods
2.1. Catalyst Preparation

Al2O3−based catalysts were prepared by a modified evaporation−induced self−assembly
process as described previously for pure γ−Al2O3 [20]. Aluminum isopropoxide [Al(OiPr)3],
Fe(NO3)3·9H2O, and Mn(NO3)2 were selected as the sources of Al, Fe, and Mn. [Al(OiPr)3]
(8.4 g), glucose (7.2 g), and a required dosage of Fe(NO3)3·9H2O and Mn(NO3)2 were dis-
solved thoroughly in ultrapure water at 35 ◦C. The pH value of the mixture was adjusted
to 5.5 using formic acid (10 wt.%), and the mixed solution was ultrasonicated for 4 h and
heated at 105 ◦C. The final solid after grinding was calcined at 600 ◦C for 6 h, and a series
of γ−Al2O3−based catalysts were obtained and termed as Fe@γ−Al2O3 Mn@γ−Al2O3
and Fe/Mn@γ−Al2O3.

2.2. Catalyst Characterization

The morphology and chemical composition of catalysts were characterized by transmis-
sion electron microscope (TEM, Talos L120C) and scanning electronic microscopy−energy
dispersion spectroscopy (SEM−EDS, Merlin, Carl Zeiss AG, GER). The powder X-ray
diffraction (XRD, Empyrean, NL) spectra of the obtained catalysts were collected with
Cu-Kα radiation (λ = 1.5418 Å) at 40 kV and 40 mA operating from the 2θ angle of 10−90.
The specific surface area and pore size distribution of the catalysts were calculated from
the N2 adsorption/desorption isotherms at 77 K (ASAP2020, Micromeritics, Norcross,
GA, USA). X-ray photoelectron spectroscopy (XPS, EscaLab Xi+, ThemoFisher Scientific,
Leicestershire, UK) spectra were recorded by using Al-Kα radiation at 15 kV and 51 W,
and the binding energies were calibrated with C1s at 284.8 eV. Fourier transform infrared
spectra (FT−IR) were recorded using a CCR−1 (Thermo−Nicolet, Waltham, MA, USA).

2.3. Catalytic Ozonation Procedure

The catalytic ozonation experiments of target contaminants were performed in a 1.2 L
column reactor at a temperature of 25 ◦C. Ozone was produced in situ from pure oxygen
by a ZA−1G laboratory ozone generator (Guangzhou Zeao Ozone Equipment Co., Ltd.,
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Guangzhou, China) and continuously bubbled into the reactor through the reactor’s porous
plate at a bottom 200 mL min−1 flow rate (6 mg L−1). Catalyst powder (200 mg L−1)
was mixed in the reactor under continuously magnetically stirring. Target compounds
(DMP/1−NP, 50 mM) with/without quenchers (p−benzoquinone (p−BQ), nitrobenzene
(NB), furfuryl alcohol (FFA)) or probes (NB, FFA) were added in the catalytic ozonation
system. The same procedures were carried out for the control experiments, including ozone
alone, catalyst without ozone, and catalyst with oxygen. All solutions were prepared with
ultrapure water (≥18.2 MΩ×cm). Samples were taken at regular intervals, filtered by a
Millipore filter (0.45 µm), and quenched by Na2S2O3, then DMP, 1−NP, NB, and FFA were
analyzed. All experiments were conducted in duplicate.

2.4. Analytic Methods

DMP, 1−NP, NB, and FFA concentrations were quantified using high−performance
liquid chromatography (UPLC, Agilent 1200) equipped with a PDA 2998 detector and a
C−18 column (Agilent Eclipse, 5 µm, 4.6 mm × 250 mm). The mobile phase was acetoni-
trile/0.02% phosphoric acid water (60:40, v/v) with a flow rate of 0.1 mL min−1. The analyt-
ical wavelengths of DMP, 1−NP, NB, and FFA were set at 228 nm, 210 nm, 265 nm, and 204
nm at 30◦C. The electron paramagnetic resonance (EPR) spectra were measured by Bruker
EMX plus instrument (Karlsruhe, Germany). The compound 2,2,6,6−Tetramethylpiperidine
(TEMP) was used to capture 1O2, and 5,5−dimethyl−1−pyrroline−N−oxide (DMPO) was
applied to capture HO◦ and O2

◦−. In detail, the samples for EPR tests were dispersed
in a 100 mM DMPO/TEMP solution (2 mL) with O3 purging, and the solvent was H2O
for trapping 1O2 and HO◦ and methanol for trapping O2

◦−. The concentration of leached
metals was determined by graphite furnace atomic absorption spectrometry (AAS, Pin AAcle
900T, Perkin Elmer, Waltham, MA, USA). The intermediates of DMP and 1−NP during
catalytic ozonation were identified by using LC−MS (Thermo Fisher Scientific, Q Exactive
Plus, Waltham, MA, USA).

3. Results
3.1. Characterization

A series of γ−Al2O3−based nanocatalysts were synthesized using the glucose tem-
plate method [20]. SEM images (Figure 1A−D) show amorphous particle structure for all
materials, and Fe/Mn@γ−Al2O3 was more compact compared to others. TEM images
(Figure S1) displayed the nanoscale structure of Fe/Mn@γ−Al2O3 with a thickness of
5−10 nm. The element mapping of Fe/Mn@γ−Al2O3 indicated that four elements were
distributed uniformly (Figure 1E,F), and the element composition of Fe/Mn was 1.3, which
corresponded to the nominal loading molar ratio (1.5). Figure 1G shows the XRD patterns
of γ−Al2O3−based nanomaterials, and five broad peaks (39.4◦, 45.9◦, 66.9◦, 80.5◦, 84.9◦ of
2θ) were observed and related to γ−Al2O3 phase [21]. The peaks of Fe/Mn oxide alloy (35◦

of 2θ), Fe2O3 (33◦ of 2θ), and MnO2 (21◦ of 2θ) were not observed, which might be affected
by γ−Al2O3 peaks [22]. FT−IR spectroscopy at approximately 575, 748, and 819 cm−1

derived from the Al−O vibrations confirmed the formation of γ−Al2O3 (Figure S2) [23].
Additionally, XPS full spectra of γ−Al2O3−based nanomaterials identified O, Al, Fe, and
Mn, indicating Fe and Mn oxides grew on the γ−Al2O3 (Figure S3).

The nitrogen sorption isotherm of Fe/Mn@γ−Al2O3 is shown in Figure 1H, exhibiting
a type IV N2 sorption isotherm with an H3 hysteresis loop, which is a typical characteristic
of a mesoporous material [24]. The BET surface area, total pore volume, and median
mesopore diameter of Fe/Mn@γ−Al2O3 were 304.2 m2 g−1, 0.416 cm3 g−1, and 3.830 nm
(Figure S4), which were similar to γ−Al2O3−based materials (Sasol product) [21]. This
result indicates that the Fe−Mn catalyst was impregnated well into the γ−Al2O3 without
pore blocking. Overall, the Fe/Mn@γ−Al2O3 catalyst was a mesoporous nanomaterial
with uniform iron−manganese oxide growing on the surface.
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Figure 1. The SEM of γ−Al2O3 (A), Fe@γ−Al2O3 (B), Mn@γ−Al2O3 (C), Fe/Mn@γ−Al2O3 (D); the
EDS spectra of the synthesized catalysts (E); the elemental mapping of the Fe/Mn@γ−Al2O3 (F); the
powder XRD patterns (G); the N2 adsorption−desorption isotherms (H).

3.2. Degradation of DMP and 1−NP

DMP and 1−NP, the precursor or intermediate of dyes, were selected as model
compounds (Figure S5), and Figure 2 illustrates their degradation in the catalytic ozona-
tion system. The observed first−order rate of 1−NP (4.13 × 10−3 s−1) under ozona-
tion alone was higher in contrast to DMP (6.64 × 10−4 s−1) (Figure 2A,B). This result
corresponds with the fact that the reactivity of DMP with O3 alone was relatively low
(0.2 M−1 s−1) compared with 1−NP (~102 M−1 s−1) (Table 1). Note that the second−order
rate of 1−NP with O3 was estimated roughly using the quench test (Figure S6), and the
value was in the range of ~102–3 × 103 M−1 s−1 for naphthalene, 2−methylnaphthalene,
and 1−chloronaphthalene [25–27]. Similarly, the observed first−order rate constants of
1−NP under each catalytic ozonation treatment (i.e., Fe@γ−Al2O3/O3, Mn@γ−Al2O3/O3,
Fe/Mn@γ−Al2O3/O3) were higher than those of DMP. Specifically, the Fe/Mn@γ−Al2O3
catalytic was the most effective to catalyze ozone for removing DMP or 1−NP (2.04 × 10−3 s−1

for DMP, 2.25 × 10−2 s−1 for 1−NP), followed by Fe@γ−Al2O3, Mn@γ−Al2O3. Figure S7
shows that the catalytic activity decreased less than 10% after five cycles of use, and the con-
centration of leached−out Fe and Mn increased slightly during the cycling use (Table S1),
implying that Fe/Mn@γ−Al2O3 was relatively stable during the ozonation reactions. Over-
all, the catalytic ozonation by Fe/Mn@γ−Al2O3 catalytic was feasible and efficient in
removing O3−resistant compounds.

The quench and probe tests were conducted to investigate the reactive species involved
in catalytic ozonation. As noted in previous studies, HO◦ played the dominant role
in removing organic compounds [28–31]. Moreover, other ROS (e.g., 1O2, O2

◦−) also
participated in the chemical oxidation during catalytic ozonation [32]. Thus, two model
compounds with different reactivity toward HO◦ and ROS (Table 1) were selected to
distinguish their roles in the contaminant removal during catalytic ozonation.
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Figure 2. The degradation of DMP (A) and 1−NP (B) during the catalytic ozonation. The degradation
of DMP or 1−NP during the Fe/Mn@γ−Al2O3/O3 system in presence of different quenchers
(NB/FFA/p−BQ, 100 mM) (C) or different probes (NB/FFA, 5 µM) (D). Conditions: [O3] = 0.02 mM,
[catalyst] = 200 mg L−1, the molar ratio of Fe/Mn = 1.5, [DMP]/[1−NP] = 50 µM, pH = 7.0 ± 0.1
with 2 mM phosphate buffer. The probe test is detailed in Text S1.

Table 1. The estimated and experimental observed removal rate constants of DMP/1−NP.

Compound Rate Constant (M−1 s−1)
Exp. k (s−1) Est. k * (s−1)

O3 HO◦ 1O2

DMP 0.2 [33] 3.7 × 109 # <103 [34] 3.0 × 10−3 2.1 × 10−3

1−NP ~102 $ 1.3 × 1010 [35] 7.6 × 106 [36] 3.3 × 10−2 2.2 × 10−2

* The observed rate constant of DMP and 1−NP (Est. k) were estimated as described in Text S1. # The second−order
rate constant of HO◦ with DMP was determined using laser flash photolysis technology and competitive kinetics
detailed in Text S2 and Figure S10. $ The second−order rate constant of O3 and 1−NP was estimated roughly
based on the quench test and other naphthalenes.

NB, FFA, and p−BQ at a high level (100 mM) were chosen to selectively quench HO◦,
1O2, and O2

◦−, and their second−order rate constants are listed in Table S2. Figure 2C
shows that NB can inhibit most DMP removal (> 99%), and the removal efficiency of
DMP with the presence of FFA or p−BQ was almost the same as that with the presence
of NB. This result indicated that HO◦ was the main contributor to DMP degradation
under the Fe/Mn@γ−Al2O3/O3 system, whereas 1O2 or O2

◦− was not involved in DMP
degradation. Being different from DMP, the removal of 1−NP was not inhibited by NB
completely (Figure 2C), and the removal rate constant decreased by 50% in contrast to that
without NB. Both FFA and p−BQ almost inhibited the degradation of 1−NP completely.
This result indicated that in addition to HO◦, 1O2, or O2

◦− also played a significant role
in the degradation of 1−NP. EPR spectroscopy was employed to characterize ROS and
demonstrated that HO◦,1O2, and O2

◦− were yielded under the Fe/Mn@γ−Al2O3/O3
system, but the signal of O2

◦− was relatively low (detailed in Section 3.3).
The probe test was conducted to specify the contributions of diverse reactive species to

DMP and 1−NP degradation under the Fe/Mn@γ−Al2O3/O3 system. NB and FFA were
selected as the probes of HO◦ and 1O2, and the modeled steady−state concentrations of
HO◦ and 1O2 ([HO◦]SS, [1O2]SS) are listed in Table S3. The estimated observed first−order
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rate constants of DMP (3.0 × 10−3 s−1) or 1−NP (3.3 × 10−2 s−1) were calculated based on
Equations (1)–(3), which were nearly the same as the experimental ones (2.1 × 10−3 s−1 or
2.2 × 10−2 s−1) (Figure 2D).

k′= k′O3
+k′

HO
◦ +k′1O2

(1)

k′= kO3,DMP[O 3] + kHO
◦
,DMP[HO

◦
] + k1O2,DMP

[
1O2

]
(2)

k′= kO3,1−NP[O 3] + kHO
◦
,1−NP[HO

◦
] + k1O2,1−NP

[
1O2

]
(3)

Specifically, [HO◦]SS and [1O2]SS were 8.1 × 10−13 M and 1.8 × 10−9 M during the
degradation of DMP in catalytic ozonation system. The estimated first−order rate constant
of DMP with HO◦ was 3.0 × 10−3 s−1. Note that [1O2]SS was as high as [HO◦]SS but can
rarely contribute to the degradation of DMP (1.8 × 10−6 s−1) due to the relatively low
reactivity (k1O2,DMP< 103 M−1 s−1). The DMP degradation during catalytic ozonation was
consequent on the HO◦−mediated oxidation. As for the 1−NP−involved system, [HO◦]SS
and [1O2]SS were 1.2 × 10−12 M and 2.0 × 10−9 M (Table S3), which were comparable with
the DMP involved system. However, the degradation of 1−NP was not only contributed
to by HO◦, but 1O2 and O3 also participated in its removal. The estimated rate constant
of each reactive species (k′O3,1−NP, k′

HO
◦
,1−NP

, k′1O2,1−NP) accounted for 7.51%, 46.85%, and
45.65% of the total 1−NP removal rate constant, respectively.

The above results suggested that the Fe/Mn@γ−Al2O3/O3 system can provide com-
parable levels of HO◦ (10−12 − 10−13 M) and 1O2 (10−9 M) that were involved in removing
different pollutants. HO◦ (E0 = 2.7 V) is non−selective thus reacts with both DMP and
1−NP at considerably high second−order rate constants (109 − 1010 M−1 s−1) [37–40]. O3
and 1O2 are more selective to naphthalenes (e.g., naproxen and propranolol) than DMP.
Therefore, the inherent O3 and the yielded 1O2 in the Fe/Mn@γ−Al2O3/O3 system made
contributions to the degradation of 1−NP (> 40%).

3.3. Catalytic Ozonation Mechanism

HO◦ and 1O2 were identified and involved in degrading pollutants in the Fe/Mn@γ
−Al2O3/O3 system. XPS and EPR spectra were utilized to explore their formation and
catalytic mechanisms in such a system.

The XPS spectra of Fe 2p, Mn 2p, and O 1s for Fe/Mn@γ−Al2O3 before/after catalytic
ozonation are shown in Figure 3A−C. As described in previous studies, the Fe 2p3/2
and Fe 2p1/2 peaks could be deconvoluted into three peaks, including Fe(II) (711.7 eV
and 725.3 eV), Fe(III) (712.9 and 726. eV), and satellite (719.6 and 732.8 eV), respectively
(Figure 3A) [41,42]. The Mn 2p3/2 and Mn 2p1/2 peaks could be deconvoluted into two
peaks, including Mn(III) (642.2 eV and 653.9 eV) and Mn(IV) (643.8 eV and 654.8 eV)
(Figure 3B) [22,43]. The contents of the high valence of both Fe and Mn (i.e., Fe(III) and
Mn(IV)) increased slightly after ozonation (Table S4), indicating the conversion between
Fe(II))/Mn(III) and Fe(III)/Mn(IV) in the Fe/Mn@γ−Al2O3/O3 system. The previous
studies also found valence variation of doping metals during ozonation [44,45]. The
formation of high−valence metals resulted in the transformation of oxygen vacancy (VO)
to lattice oxygen (Olat) due to the strong storing/releasing oxygen nature of the metal redox
couple [46]. Moreover, oxygen mobility by electron transfer caused the valence variation of
doping metals [47–49].

Three characteristic peaks were identified in the O 1s spectrum of Fe/Mn@γ−Al2O3
and regarded as adsorbed oxygen (Oads, 530.3 eV), Olat, (532.4 eV), and oxygen of metal
oxide (OMO, 531.2 eV), respectively (Figure 3C) [42,50]. After ozonation, the relative
contents of Olat/Oads significantly increased from 1.32 to 1.64 (Table S4), whereas a subtle
increase in that of Mn(IV) or Fe(II) was observed, indicating the prominent role of Oads in
reacting with pollutants rather than high valence metal. Specifically, the increase in Olat
contributed to the metal valence change and the formation of Mn(IV) or Fe(III). However,
Oads declined slightly after ozonation, which might have resulted from the replenishment
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of VO [51,52]. Overall, the continuous catalytic activity of Fe/Mn@γ−Al2O3 originated
from the interaction among VO, Olat, and the transformation of Fe(II)/(III)and Mn(III)/(IV)
redox couple.

Figure 3. XPS spectra of Fe 2p (A), Mn 2s (B), and O 1s (C) for Fe/Mn@γ−Al2O3 before/after
catalytic ozonation; oxygen vacancy of γ−Al2O3 and Fe/Mn@γ−Al2O3 (D); the EPR spectra of
HO◦ and O2

◦− using DMPO in water and methanol respectively, and the EPR spectra of 1O2 using
TEMP from single ozonation and catalytic ozonation processes (E); the proposed catalytic ozonation
mechanism of Fe/Mn@γ−Al2O3 (F).

Solid EPR was applied to directly and accurately detect the unpaired electron in-
formation of Fe/Mn@γ−Al2O3 for identifying VO (Figure 3D). Note that the EPR signal
of Fe/Mn@γ−Al2O3 at g = 2.095 was more intensive than others, demonstrating that
the introduction of Fe and Mn led to more formation of VO on the Fe/Mn@γ−Al2O3
surface [45]. VO contained many unpaired electrons and preferred to serve as active sites
for the adsorption of oxygen (e.g., molecule O2, molecule O3), thereby facilitating the
formation of ROS (HO◦, 1O2, O2

◦−, etc.) [53].
The reactive species in the Fe/Mn@γ−Al2O3/O3 system was identified by EPR tests, as

illustrated in Figure 3D. Generally, DMPO and TEMP are typical trapping chemicals for HO◦,
O2
◦−, and 1O2. The characteristic signal of DMPO−HO◦ (AH = AN = 14.9 G), with a peak in-

tensity ratio of 1:2:2:1, was obtained in both ozonation alone and Fe/Mn@γ−Al2O3/O3 sys-
tems, but no signal was observed in pure water. Moreover, the intensity of DMPO−HO◦ adduct
elevated significantly under the Fe/Mn@γ−Al2O3/O3 system, implying Fe/Mn@γ−Al2O3
dramatically enhanced ozone decomposition to generate more HO◦. TEMP was applied
as the capture agent for 1O2. The typical signal of TEMP−1O2 (AN = 16.9 G) in the
Fe/Mn@γ−Al2O3/O3 catalytic ozonation system was more intensive than that in the
ozonation alone system. The results implied that 1O2 was generated in the ozone−based
systems and enhanced in the Fe/Mn@γ−Al2O3 catalytic ozonation process. O2

◦− in the
ozonation alone and Fe/Mn@γ−Al2O3/O3 systems were also captured using DMPO to
form DMPO−O2

◦− (AH = 10.2 G, AN = 12.9 G), but the intensity was very weak and not
promoted in the catalytic system, indicating the neglectable role of 1O2 in the catalytic
ozonation system.

As illustrated in Figure S2, FT−IR spectroscopy of Fe/Mn@γ−Al2O3 at ~3460 cm−1

and ~1634 cm−1 corresponded to the surface hydroxyl group and the chemisorbed water, re-
spectively [24,54]. Metal oxides adsorbed water molecules further dissociated to hydroxyls,
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generating the surface hydroxyl groups at Lewis acid sites of metal oxide surfaces [55–59].
The surface hydroxyl group functioned as Brønsted acid for catalytic ozone decomposition
and promoted HO◦ generation [55–59].

The catalytic ozonation mechanism of Fe/Mn@γ−Al2O3 was proposed and illustrated
in Figure 3F. First, O3 was adsorbed at the surface hydroxyl group of metal oxide and
interacted with Vo. The VO was replenished with O donated by O3 and produced an O2
molecule releasing into the environment and active oxygen (O2−) to form adsorbed oxygen
(Oads) [60,61]. The O2− further reacted with O3 to generate O2

2− (peroxide) [50]. The
yielded O2−/O2

2− (i.e., Oads) then reacted with water molecules to generate ROS, includ-
ing HO◦, 1O2, and O2

◦− via charge−transfer interactions. Thereinto, O2
◦− underwent

self−quenching to form 1O2 or react with O3 to yield HO◦ (k = 1.6 × 109 M−1 s−1) [62]. VO
also converted to Olat, leading to the metal valence increase. The interaction among VO,
Fe(II/III)/Mn(III/IV), and Olat of Fe/Mn@γ−Al2O3 resulted in the circulation of metal
valence, thus constantly catalyzing O3 [63].

3.4. Proposed Degradation Pathways of DMP and 1−NP

The intermediates of DMP and 1−NP during Fe/Mn@γ−Al2O3 catalytic ozona-
tion were analyzed using LC−MS, and their identified intermediates are detailed in
Figures S8 and S9. As previously noted, the degradation of DMP was dominated by
HO◦−induced reaction, and that of 1−NP resulted from O3, HO◦, and 1O2 oxidation.
Their degradation pathways are proposed and illustrated in Figure 4.

Figure 4. Degradation pathways of DMP (A) and 1−NP (B) during Fe/Mn@γ−Al2O3 catalytic ozonation.
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The degradation of DMP during Fe/Mn@γ−Al2O3 catalytic ozonation (Figure 4A)
was initiated by HO◦ to attack the ester group to form P180 and further oxidized to gen-
erate 1,2−benzenedicarboxylicacid [64], or to undergo addition on the benzene ring to
yield HO−adducts (P210, P226, P242) [65]. The formed 1,2−benzenedicarboxylicacid reacted
with HO◦ to yield HO−adducts (P182) or transform to phthalic anhydride via dehydra-
tion. The adducts P210, P226, and P242 were oxidized by HO◦ to form P196, P182, and
P198. 1,2−benzenedicarboxylicacid and its HO−adducts (P182 and P198) underwent a
ring−opening reaction to generate maleic acid and phenols. Phthalic anhydride and maleic
acid were decomposed to yield low molecular weight organic acids (e.g., acetic acid, oxalic
acid) via ring−opening reactions, which were finally mineralized to CO2 and H2O [66].

Figure 4B shows the degradation pathway of 1−NP under the Fe/Mn@γ−Al2O3/O3
system. Ozone quickly reacted with the naphthalene group as electron−rich moieties to pro-
duce hydroxy−1,4−naphthoquinone (P174) that was oxidized to yield 1,4−naphthoquinone
(P158) [67]. The initial attack of HO◦ on 1−naphthol generated transient naphthyloxy radi-
cal (1−NP◦(−H)) via H−abstraction and transformed to 1,4−naphthoquinone (P158) [68].
1O2 readily added to 1−NP to form P176, and P176 rearranged and dehydrated to yield
1,4−naphthoquinone (P158) [69]. The generated 1,4−naphthoquinone was further oxidized
to 1,2−benzenedicarboxylicacid and phthalic anhydride by ozone and HO◦, which were
finally mineralized to CO2 and H2O [67].

3.5. Effects of Water Matrix

The performance of the synthesized catalyst in the complex water matrix was eval-
uated to investigate its potential application, especially for dyeing wastewater effluent.
Thus, the effects of ions, pH, and actual water samples on the degradation efficacy of DMP
and 1−NP were investigated (Figure 5).

Carbonate, sulfate, chloride, and nitrate were widely detected in dyeing wastewater.
Figure 5A,D show their effects on the performance of catalytic ozonation in the ultra-
pure water system. As seen, sulfate, chloride, and nitrate cannot distinctly inhibit the
degradation of DMP and 1−NP (< 5%) because sulfate and nitrate barely consumed the
reactive species (<10 M−1 s−1) involved in the Fe/Mn@γ−Al2O3/O3 system. Chloride
reacts with HO◦ but cannot accelerate forward reaction at a low concentration (2 mM)
(k+/− = 3.0 × 109 M−1 s−1/6.10 × 109 M−1 s−1) [70,71]. Being different from chloride, car-
bonate as HO◦ scavenger (k = 1.0 × 107 M−1 s−1) intensively scavenged [HO◦], thus
impeding their removal (> 50%). The formed CO3

◦− (E0 = 1.63 V) was much less reactive
than HO◦ (E0 = 2.7 V) [37,72].

The pH value affects the concentration and speciation of reactive species during
catalytic ozonation and thus leads to the variation in pollutant removal efficiency. The
removal rate increased from 1.83 × 10−3 s−1 to 2.46 × 10−3 s−1 for DMP and from
1.90 × 10−2 to 2.72 × 10−2 s−1 for 1−NP within pH 5−8 (Figure 5B,E). Their removal
efficiencies exceeded 90% within 30 min, indicating that the synthesized Fe/Mn@γ−Al2O3
catalyst had a good ozone−catalyzing performance at a wide pH variation. Specifi-
cally, the alkali condition was more suitable for the contaminant degradation in the
Fe/Mn@γ−Al2O3/O3 system as OH− is mainly hydroxyl radical initiator in ozonation [73],
corresponding with previous studies [74,75].

To further investigate the effect of the water matrix on the removal of 1−NP and
DMP with the Fe/Mn@γ−Al2O3/O3 system, DMP/1−NP (50 µM) was spiked in printing
and dyeing industrial park (PDIP) effluent, wastewater treatment plant (WWTP) effluent,
and river water (RW). The water quality parameters of three water samples are listed
in Table S5. The removal rate constants of 1−NP and DMP in all actual water samples
decreased by 50–60% in contrast to ultrapure water (Figure 5C,F). This decrease resulted
from the competition of reactive species by dissolved organic matter (DOM) in the actual
water samples. In contrast, the Fe/Mn@γ−Al2O3/O3 system accelerated the DOC and
UV254 decrease in the actual water samples compared with ozonation alone (Figure S11).
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Overall, the synthesized Fe/Mn@γ−Al2O3 can be potentially applied in the catalytic
ozonation of actual water.

Figure 5. The degradation of DMP and 1−NP in presence of different ions (CO3
2−, SO4

2−, Cl−,
NO3

−, 2 mM) (A,D), at pH of 6−9 (B,E), in different real water samples (ultrapure water, PDIP
effluent, WWTP effluent, RW) (C,F). Conditions: [O3] = 0.04 mM, [catalyst] = 200 mg L−1, the molar
ratio of Fe/Mn = 1.5, [DMP]/[1−NP] = 50 µM, 2 mM phosphate buffer. Details are described in
Text S3.

4. Conclusions

A novel Fe/Mn@γ−Al2O3 nanocatalyst was successfully synthesized and utilized for
catalytic ozonation of DMP and 1−NP. Their removal rate constants could elevate 3−5 times
with Fe/Mn@γ−Al2O3/O3 system compared to ozonation alone due to more yield of HO◦

and 1O2 involved in their degradation. The characterization of Fe/Mn@γ−Al2O3 suggested
that the formation of HO◦ and 1O2 possibly resulted from the transformation of O3 from VO
to Oads with the circulation of Mn(III)/(IV) and Fe(II)/(III). The degradation pathways of
DMP and 1−NP were proposed based on the mechanisms and the identified intermediates.
Additionally, the Fe/Mn@γ−Al2O3/O3 system could be applied in removing pollutants at
pH 6−9, in the presence of different ions, and dealing with actual dye wastewater effluent
samples. The performance and practicability of the Fe/Mn@γ−Al2O3/O3 system on the treat-
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ment of dye wastewater effluent should be further evaluated in a pilot-/full-scale experiment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/w14010019/s1, Text S1: Steady−state concentrations of different reactive species, Text S2: Determination
of the rate constant of DMP with HO◦, Text S3: Factors influencing catalytic performance, Figure S1: TEM
images of Fe/Mn@γ−Al2O3 (A) and a partial enlargement (B), Figure S2: FT−IR spectra of γ−Al2O3,
Fe@γ−Al2O3, Mn@γ−Al2O3, and Fe/Mn@γ−Al2O3, Figure S3: The survey spectrum of XPS spec-
tra of NiCo2O4 before catalytic ozonation, Figure S4: The corresponding pore size distribution in
nitrogen adsorption and desorption isotherms, Figure S5: Influence of (A,C) Fe/Mn@γ−Al2O3
dose and (B,D) the ratio of iron to manganese in the catalyst on DMP and 1−NP decomposi-
tion. Conditions: [O3] = 0.04 mM, [catalyst] = 50−300 mg L−1, the molar ratio of Fe/Mn = 0.3−1.5,
[DMP]/[1−NP] = 50 µM, 2 mM phosphate buffer, Figure S6: The degradation of 1−NP under
ozonation in presence of FFA. Conditions: [O3] = 0.02 mM, [FFA] = 100 mM, [1−NP] = 50 µM,
pH = 7.0 ± 0.1 with 2 mM phosphate buffer, Figure S7: DMP and 1−NP removal rate constants
during the reuse of Fe/Mn@γ−Al2O3 in catalytic ozonation system, Figure S8: LC−MS total ion chro-
matograms for DMP degradation products, Figure S9: LC−MS total ion chromatograms for 1−NP
degradation products, Figure S10: Growth kinetics of DMP−OH adducts at 320 nm with different
concentrations of DMP (0.02−0.3 mM) determined by using a laser flash photolysis system. The inset
is the plot of the first−order formation rate constants of DMP−OH adducts vs. DMP concentrations,
Figure S11: The removal of UV254 and DOC during the catalytic ozonation in the real water samples.
Conditions: [O3] = 0.02 mM, [catalyst] = 200 mg L−1, the molar ratio of Fe/Mn = 1.5, Table S1 Dissolu-
tion of metal ions in Fe/Mn@γ−Al2O3 catalytic ozonation, Table S2: The steady−state concentrations
of different reactive species, Table S3: The reactivity of different probes/quenchers with reactive
species, Table S4: XPS parameters of high−resolution Mn 2p3/2, Fe 2p3/2, and O 1s regions, Table S5:
Parameters of different real water samples.
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