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Abstract: Raw hospital wastewater is a source of excessive heavy metals and pharmaceutical pol-
lutants. In water-stressed countries such as Pakistan, the practice of unsafe reuse by local farmers
for crop irrigation is of major concern. In our previous work, we developed a low-cost bacterial
consortium wastewater treatment method. Here, in a two-part study, we first aimed to find what
physico-chemical parameters were the most important for differentiating consortium-treated and
untreated wastewater for its safe reuse. This was achieved using a Kruskal–Wallis test on a suite
of physico-chemical measurements to find those parameters which were differentially abundant
between consortium-treated and untreated wastewater. The differentially abundant parameters
were then input to a Random Forest classifier. The classifier showed that ‘turbidity’ was the most
influential parameter for predicting biotreatment. In the second part of our study, we wanted to
know if the consortium-treated wastewater was safe for crop irrigation. We therefore carried out
a plant growth experiment using a range of popular crop plants in Pakistan (Radish, Cauliflower,
Hot pepper, Rice and Wheat), which were grown using irrigation from consortium-treated and
untreated hospital wastewater at a range of dilutions (turbidity levels) and performed a phytotoxicity
assessment. Our results showed an increasing trend in germination indices and a decreasing one in
phytotoxicity indices in plants after irrigation with consortium-treated hospital wastewater (at each
dilution/turbidity measure). The comparative study of growth between plants showed the following
trend: Cauliflower > Radish > Wheat > Rice > Hot pepper. Cauliflower was the most adaptive plant
(PI: −0.28, −0.13, −0.16, −0.06) for the treated hospital wastewater, while hot pepper was susceptible
for reuse; hence, we conclude that bacterial consortium-treated hospital wastewater is safe for reuse
for the irrigation of cauliflower, radish, wheat and rice. We further conclude that turbidity is the
most influential parameter for predicting bio-treatment efficiency prior to water reuse. This method,
therefore, could represent a low-cost, low-tech and safe means for farmers to grow crops in water
stressed areas.

Keywords: hospital wastewater; bacterial consortium treatment; machine learning; Random Forest
classifier; phytotoxicity; crop irrigation
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1. Introduction

Hospital wastewater production, unsafe disposal and management is a large-scale
problem across the globe. Developed countries generate from 0.4 to 1.2 m3/bed/day, while
developing countries produce from 0.2 to 0.4 m3/bed/day [1–6]. Pakistan is a developing
country, but its untreated hospital wastewater accounts for ~0.4–0.8 m3/bed/day [7,8],
which is the usual range for developed countries. Much of this wastewater is discharged
without treatment [9,10]. The Government of Pakistan (GoP) has set strict safety regulations
to ensure safe hospital waste management as an extension to the Pakistan Environmental
Protection Act, 1997 [11]. The GoP has also set specific ranges for the National Environment
Quality Standards (NEQs) for the physicochemical characteristics of wastewater before
discharge, i.e., pH (6.6–8.5), total suspended solids (TSS) (<500 mg/L), total dissolved solids
(TDS) (1000 mg/L), chemical oxygen demand (COD) (150–400 mg/L), biological oxygen
demand (BOD5) (80–250 mg/L), turbidity (5 NTU), As (0.05 mg/L), Cd (0.01 mg/L), Cr
(0.05 mg/L), Pb (0.05 mg/L) and Ni (0.02 mg/L) [12]. Nonetheless, the discharge of un-
treated hospital wastewater that shows physicochemical characteristics beyond the range
limits has been reported, due to poor enforcement of these laws [4,13–15]. Hospital wastew-
ater is particularly harmful if discharged untreated due to the spread of pharmaceutical
pollutants [16,17] and heavy metals [9,16] in the aquatic environment. These pharmaceuti-
cal pollutants and heavy metals are recalcitrant in nature [18–20]. Heavy metals, such as
Arsenic (As), Chromium (Cr), Lead (Pb), Nickel (Ni) and Cadmium (Cd) have the tendency
to accumulate in water bodies [15,19]. Due to acute freshwater shortage, local farmers are
utilising raw hospital wastewater for crop irrigation [20,21]. This results in the accumu-
lation of toxic pollutants in crop plants [4,15,18,19] that are comprised of pharmaceutic
compounds, heavy metals and other toxic contaminants [6,19,22–25]. Subsequently, all
these contaminants enter the food web [22–26] and harm aquatic [27,28] and land [26,27]
animals, as well as human beings [26,27]. These heavy metals and pharmaceutic pollutants
cause inexorable health problems [29–35]. They have been shown to impair the process of
reproduction [36] and nervous and immune systems in humans [26,29]. Reducing their
uptake is doable compared to overcoming their irrevocable hazards.

In our previous work, we have developed a simple, low-cost, biological method for
hospital wastewater treatment using a consortium of three bacterial species (an Alcaligenes
faecalis sp. and two Bacillus paramycoides spp.) isolated from hospital wastewater [37,38].
Our results highlighted that this biotreatment was effective for the degradation of heavy
metals and pharmaceutical compounds and other parameters in raw hospital wastewater.
For example, we demonstrated a biotreatment with this consortium that reduced heavy
metal concentrations (Cr, Pb and Ni (100–86%)) along with pharmaceutical pollutants
(caffeine, diazepam, naproxen, octadecene, phenol and salicylic acid (100–74%)) from
hospital wastewater after biotreatment. Moreover, we observed the reduction of a range of
wastewater quality indicators, i.e., turbidity, colour, BOD5, COD, biodegradability index
(BI), electrical conductivity (EC), salinity, TSS and TDS [90–26%] (Table 1). However,
testing a suite of wastewater parameters separately can be challenging and expensive in
low–middle income countries, and even more challenging in rural farm settings [39].

COD and BOD are the most conventional quality parameters used in predicting treat-
ment efficiencies [40]. However, these fail to consider emergent and toxic contaminants
(heavy metals, for example). Whilst one is disposed to acquiring an exhaustive set of
parameters to differentiate treatment groups, some parameters may not change at all. For
acquiring a low-tech solution, the use of artificial intelligence (AI) and Machine Learning
(ML) is convenient to predict what is the most important parameter for the biotreatment
efficiency. Recently, authors have predicted biological wastewater treatment efficiency prior
to irrigation using various ML models, e.g., Adaptive Neuro Fuzzy Inference System (AN-
FIS), Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Neuro-Fuzzy (NF) [40–42].
The Random Forest (RF) classifier method is an emerging ML method that has been used
previously for monitoring urban wastewater [43]. The method also successfully predicted
the performance of the adsorption of six heavy metals (As, Cd, Cu, Ni, Pb and Zi) in biochar
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within real waters and wastewaters [44]. To explore this further, RF classifier methods are
typically applied, and their accuracy is established either through quality of fit criteria or
through importance measures that delineate which parameters lead to better fit.

Table 1. Hospital Wastewater Quality Parameters.

Quality
Parameters

Units
Hospital Wastewater NEQS

[12]Untreated Treated

Temperature ◦C 25 4 =<3
Turbidity NTU 51 *** 5 *** 5

BOD mg/L 246 **** 78 **** 80–250
Colour PCU 188 55 -

TSS mg/L 2300 **** 483 **** <500
COD mg/L 396 **** 260 **** 150–400

BI - 0.62 0.3 -
EC µs/cm 444 **** 267 **** -

Salinity pg/L 0.2 ** 0.1 ** -
TDS mg/L 296 **** 220 **** 1000

Chromium mg/L 1.8 Nd 0.05
Nickel mg/L 1.8 Nd 0.02
Lead mg/L 0.17 Nd 0.05

Note: Nd = Not detected; Significance (Welch’s test) between treated and untreated hospital wastewater is
indicated by p < 0.01 **, p < 0.001 ***, p < 0.0001 ****.

The present study includes two interdependent analyses. First, we aim to predict
the quality parameters in hospital wastewater treated with a bacterial consortium (an
Alcaligenes faecalis sp. and two Bacillus paramycoides spp.) using a Kruskal–Wallis test to
identify the wastewater parameters that differentiate the treatment groups, and apply a
Random Forest classifier on these reduced parameters to provide feature-wise importance
measures for these parameters, thus highlighting the important parameter/s to consider in
differentiating treatment efficiency for treated hospital wastewater application. Second, we
aim to provide a phytotoxicity assessment for two purposes: to see whether our predicted
quality parameter/s align with the phytotoxicity results and to analyse the response of
plants (growth) on the reuse of treated hospital wastewater. We assess the seedling lengths
and biomass measurements, germination indices and phytotoxicity indices for five crop
species (radish, cauliflower, hot pepper, rice and wheat) grown in the treated wastewater
and compare their responses in terms of growth to see which crop plants are more adaptive
for wastewater reuse.

2. Materials and Methods
2.1. Wastewater Treatment and Quality Parameters

A bacterial consortium (an Alcaligenes faecalis sp. and two Bacillus paramycoides spp.)
was added to deionized water (10 mL) in a test tube (20 mL). A consortium suspension
was hence formed with a set value of optical density (OD) of 1. OD was kept the same to
ensure an equal amount of three bacterial species in suspension. Treatment consisted of
adding 10% of the consortium suspension to raw untreated autoclaved hospital wastewater
and incubation at 37 ◦C (optimal temperature for bacterial growth) in a shaking incubator
for 48 h. The control of this treatment was distilled water. After 48 h of incubation, this
sample was centrifuged for 15 min (speed = 8000 g/min). The supernatant was shifted to a
polypropylene falcon tube (15 mL). This supernatant was considered as treated hospital
wastewater. The quality parameters selected for untreated and treated hospital wastewater
were as follows: temperature, turbidity, BOD, colour, TSS, COD, BI, EC, salinity, TDS and
heavy metals (Table 1).
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2.2. Machine Learning Approach
2.2.1. Kruskal–Wallis Test

The non-parametric data was autoscaled in such a way that all the features were of
equal weights. The Kruskal–Wallis test was performed to see if these features discriminate
between treated and untreated categories of hospital wastewater. Because the test was
applied independently on all the acquired parameters, the Benjamini and Hochberg pro-
cedure was applied to adjust p-values for multiple comparisons [45]. Only those features
were retained where the adjusted p-value was <0.05.

2.2.2. Random Forest (RF) Classifier

The RF classification method is a machine learning algorithmic technique that helps
in classifying data with the help of decision trees [46]. The Random Forest classifier was
applied on the discriminating features (quality parameters selected) from the previous step.
After training the classifier, we utilized two measures: Mean Decrease in Accuracy gives
an estimate of classifier performance if each feature is removed from training, resulting
in reduced accuracy; whilst Mean Decrease in Gini looks at how pure class memberships
are in terms of probabilities. A higher mean decrease in Gini index indicates that the
classification is pure with the probability of achieving one category maximised.

2.3. Phytotoxicity Assessment

Phytotoxicity is a measure to assess any delay, hindrance or inhibition in plant growth
caused by chemical compounds (pharmaceutics, phytotoxins, etc.), heavy metals or envi-
ronmental factors (soil contamination, etc.) [47]. The phytotoxicity assessment comprised
germination experiments that yielded seedling germination and phytotoxicity indices
followed by statistical analyses.

2.3.1. Germination Experiments

Five different types of certified crop seeds were procured from the Seed Certification
Department, Lahore, Punjab. The crop seed varieties were Raphanus sativus L. (Radish)
var. Radish Minto Early, Brassica oleracea L. (Cauliflower) var. Cauliflower 2801, Capsicum
annuum L. (Hot pepper) var. Seminis Hybrid Hot pepper SKY LINE 3, Triticum aestivum
L. (Wheat) var. FSD-2008 and Oryza sativa L. (Rice) var. PS-2 (PK-112). The seeds were
germinated in sterilised petri plates watered with four different dilutions (25, 50, 75 and
100%) of untreated and treated hospital wastewater, as described in Rashid et al. [37]. The
controls for the experiment were distilled water and tap water.

2.3.2. Germination Indices (GI)

The germination indices of three crops were calculated by multiplying the relative
seedling germination and root growth. Lower GI values indicate the presence of EC and
heavy metals within the seedlings [37,48], whereas higher GI values show safe removal of
these physicochemical parameters from the seedlings [37,48]. The values were calculated
using the following equation [37]:

Germination index =
(Germinated seeds × Average root length)for sample
(Germinated seeds × Average root length)for control

÷ 100 (1)

2.3.3. Phytotoxicity Indices (PI)

The most sensitive parameter to assess the biotreatment efficiency is phytotoxicity
index. A positive value indicates lower toxicity [49], whereas its negative value means the
seedlings are contaminant-free and non-lethal [50]. Values of PI indices cause toxicity in
four categories: low, medium, high, and very high [49,51]. These values range from 0 to
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−0.25, −0.25 to −0.5, −0.5 to −0.75 and −0.75 to −1, respectively [49,51]. The values were
calculated using the following equation [52]:

Phytotoxicity index = 1 − Root length of sample
Root length of control

(2)

2.4. Statistical Analysis

One-way ANOVA was used to analyse the data statistically using GraphPad Prism®

2020. The comparison of the obtained data was carried out by t-test using Welch’s correction
(with two-tailed p-values) [53]. The differences of comparisons were significant when
p-values were <0.05. Associated statistical calculations were carried out using Sidak’s
multiple comparison testing. These comparisons were assessed between control (distilled
water–DW) along with each treatment at varying concentration levels (Tap Water–TW
as control, Raw wastewater 25% (R25), Treated wastewater 25% (T25), Raw wastewater
50% (R50), Treated wastewater 50% (T50), Raw wastewater 75% (R75), Treated wastewater
75% (T75), Raw wastewater 100% (R100) and Treated wastewater 100% (T100)). Similarly,
the comparisons were made between raw wastewaters within each concentration level
and the corresponding treated wastewaters (e.g., Raw wastewater 25% (R25) and Treated
wastewater 25% (T25)).

3. Results and Discussions
3.1. Prediction of Quality Parameters

The results of the Kruskal–Wallis test (Figure 1) shows which wastewater quality
indicator parameters discriminate between Treated and Untreated hospital wastewater cate-
gories, highlighting adjusted p-values. All the parameters were discriminating significantly
(TSS padj = 1.3655 × 10−7, BOD padj = 1.3655 × 10−7, Turbidity padj = 1.3655 × 10−7,
Colour padj = 1.3655 × 10−7, BOD_COD padj = 9.3264 × 10−6, COD padj = 6.7712 × 10−5,
pH padj = 0.00014423, EC padj = 0.0016633, Salinity padj = 0.0049779, Chromium padj = 0.013416,
Nickel padj = 0.018595, Lead padj = 0.040042, TDS padj = 0.049674). The values for heavy
metals in treated wastewater were reduced to zero. Therefore, the upregulation for these
abundance values in Figure 1 relates to p-values of comparison of the untreated and treated
data. Next, using these parameters we applied a Random Forest classifier. A confusion
matrix aids in evaluating the correctness of our classification model. The confusion matrix
here showed that we have obtained nearly perfect results, i.e., where those that are labelled
as “Treated” are correctly classified as “Treated” and vice versa (Figure 2). Turbidity, BOD
and colour showed the highest mean decrease accuracy, with values close to 16, while TSS
had a value of 15 (Figure 3a). The mean decrease in Gini index was highest for turbidity (3),
colour (2.9), BOD (2.8) and TSS (2.5) parameters (Figure 3b).

In light of the standard methods for wastewater quality analysis, five wastewa-
ter quality predicting parameters have been used in machine learning, i.e., BOD [14],
COD [41,54–56], TSS [41,52,56], TDS [41] and turbidity [57,58]. The present RF classifica-
tion successfully used artificial intelligence to predict twelve quality parameters between
wastewater that was treated with the bacterial consortium versus untreated wastewater.
Up to an 88% accuracy has been obtained in predictive analysis for industrial wastewater
in the past [59]. The confusion matrix of our RF classifier showed nearly perfect results
based on decision trees, highlighting the clear differentiation between treated and untreated
wastewater. The results also suggested that turbidity was the most influential parameter
to predict the effective biotreatment. Our results agree well with previous ML analyses
using turbidity as a quality parameter for drinking water [57] and pharmaceutical wastew-
ater treatment [58]. Turbidity represents a low-cost and simple measure of water quality.
Thus, overall, this low-cost consortium method for wastewater treatment could easily be
implemented at a small-scale on individual farms using turbidity as a measure to assess
treatment efficiency prior to irrigation. Furthermore, turbidity in wastewater (due to the
presence of contaminants) directly harms plant growth [42,60]. These plants directly impact
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animal and human life through consumption [60]. Hence, the phytotoxicity assessment on
crop plants was carried out further to see the impact of treatment efficiency as predicted by
our RF classifier.
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3.2. Phytotoxicity Assessment of the Re-Use of Treated Hospital Wastewater for Crop Irrigation

The lengths and biomass of seedling roots and shoots were measured on a daily basis
and compared to controls after seedling germination (Figure 4a–e).
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Figure 4. (a) Plant 1: R. sativus (Radish) seedlings grown in 100% concentration of (i) control (distilled
water), (ii) untreated and (iii) treated hospital wastewater after two weeks; (b) Plant 2: B. oleracea L.
(Cauliflower) seedlings grown in 100% concentration of (i) control (distilled water), (ii) untreated and
(iii) treated hospital wastewater after two weeks; (c) Plant 3: C. annuum L. (Hot pepper) seedlings
grown in 100% concentration (i) control (distilled water), (ii) untreated and (iii) treated hospital
wastewater after two weeks; (d) Plant 4: T. aestivum L. (Wheat) seedlings grown in 100% concentration
(i) control (distilled water), (ii) untreated and (iii) treated hospital wastewater after two weeks;
(e) Plant 5: O. sativa L. (Rice) seedlings grown in 100% concentration (i) control (distilled water),
(ii) untreated and (iii) treated hospital wastewater after two weeks.

3.2.1. Radish Crop

The seedling lengths and weights were compared between irrigation from untreated
and treated hospital wastewater concentrations (25, 50, 75 and 100%) tested separately. It
was found that the seedling length for both shoots and roots were elongated in treated
hospital wastewaters at all concentrations (shoots: 3.1–4.7 cm; roots: 2.9–4.4 cm). Similarly,
the seedling weights for both shoot and root (fresh and dry) were greater when grown
in treated hospital wastewater concentrations (shoot fresh weight: 0.055–0.158 g; shoot
dry weight: 0.02–0.089 g; root fresh weight: 0.011–0.043 g; root dry weight: 0.004–0.021 g)
(Table S1). Increased lengths and biomass values with treated wastewater (comparable
or greater to the control conditions) indicates that the radishes were not impacted by the
treated wastewater but were impacted by the untreated wastewater.

In the present work, the radish seeds grown in treated hospital wastewaters (25, 50, 75
and 100%) showed an increase in GI values from 75–86% to 102–108%. (Figure 5a). The
germination indices for all crop seedlings grown in four untreated hospital wastewater
concentrations showed low values that reflect the presence of six organic toxic pollutants
(caffeine, diazepam, naproxen, octadecene, phenol and salicylic acid) which were identified
in our previous study [38]. These values also reflect the presence of three heavy metals in
raw hospital wastewater (Cr, Pb and Ni) [38]. The reduced GI values hinder the relative
germination of seedlings and root growth, accordingly [61]. Higher GI values for seeds
grown in treated hospital wastewaters indicates the reduction or removal of heavy metals.
High GI values with treated wastewater indicates that the radishes are not impacted by
the treated wastewater in the same way as the untreated. This shows that the treated
wastewater may be safe for irrigating radishes. Likewise, the decrease in EC and turbidity
in hospital wastewater after biotreatment is an indication of treatment efficiency [37]. The
present GI values for seeds grown in treated hospital wastewater endorse decreased EC
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and turbidity value, the same as those predicted by the RF classifier, and hence proves the
treatment efficiency.
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Previously, the phytotoxicity assessment in plants has been carried out using one
growth predicting factor, i.e., GI [62]. The present study is significantly different as it chose
two growth predicting factors, GI and PI. PI is a very sensitive indicator for assessing the
toxicity level of heavy metals and pharmaceutic compounds among plants [50]. It shows
to what extent the pharmaceutic pollutants, chemical compounds or heavy metals have
either stunted or harmed plant growth. The PI values for radish seeds when grown in
treated hospital wastewater were proven significant statistically in comparison to those
grown in untreated hospital wastewater. The PI values of seeds grown in untreated
hospital wastewater concentrations (25, 50, 75 and 100%) were positive (0.1, 0, 0.16, 0.06,
respectively). This indicates a medium to large lethal effect on the growth of seedlings
(Figure 5b). The positive values of PI for seeds grown in specific untreated wastewater
concentrations may be ascribed to the occurrence of nitrogen (N), phosphorous (p) and
potassium (K) [52]. In contrast, the seeds grown in three treated hospital wastewaters (25, 50
and 100%) exhibited negative values of PI (−0.23, −0.42 and −0.06). This indicates strong
stimulatory effect on seedling growth. One treated hospital wastewater concentration (75%)
showed positive value of PI (0.06) (Figure 5b). However, this PI value was reduced from
0.16 to 0.06, which shows a reduction in toxicity level. Previously, reduction in positive
values of PI for the barley plant has been attributed to diluted concentrations of treated
wastewater, which indicated removal of phenol and heavy metals [52]. In our work, crop
irrigation with treated hospital wastewater leads to the reduction in PI value, which may
also be due to various reasons: heavy metal reduction [63,64], reduction in phenols and
supplementary organic complexes [65] and stress tolerances [66]. Radish roots are more
sensitive towards the uptake of heavy metals and contaminants from the soil [67]; hence, the
crop plant has more proximity towards inducing phytotoxicity. Therefore, lower (negative)
PI values with treated wastewater in our results indicate that the radishes are not harmed
by the treated wastewater in the same way as the untreated. Based on these findings, we
conclude that the treated wastewater may be safe for reuse to irrigate radish crops.
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3.2.2. Cauliflower Crop

The lengths and weights of cauliflower seedlings were compared statistically when
grown in the untreated and treated hospital wastewater concentrations (25, 50, 75 and
100%). The statistical measurements also specified that the mean lengths and weights
were significant. The lengths of seedlings (shoots and roots) were found to be longer in
treated hospital wastewater concentrations (shoots: 3.2–3.9 cm; roots: 3.4–4.1 cm). Similarly,
the seedling weights for both shoot and root (fresh and dry) were greater when grown in
treated hospital wastewater concentrations (shoot fresh weight: 0.04–0.029 g; shoot dry
weight: 0.006–0.031 g; root fresh weight: 0.006–0.029 g; root dry weight: 0.002–0.031 g)
(Table S2). The cauliflower seeds grown in treated hospital wastewater (25, 50, 75 and
100%) showed a rise in GI values from 55–80% to 62–142%. (Figure 6a). The values for PI
in seeds grown in untreated and treated hospital wastewater were significant statistically
in comparison. The PI values for seeds grown in untreated hospital wastewaters (25, 50,
75 and 100%) were positive (0.09, 0.16, 0.14, 0.06, respectively). This indicates a medium
lethal impact on the growth of seedlings (Figure 6b). Conversely, the seeds grown in three
treated wastewater concentrations (25, 50, 75 and 100%) exhibited negative values of PI
(−0.28, −0.13, −0.16, −0.06), which indicates a stimulatory effect on seedling growth.
Cauliflower crop has shown low sensitivity towards accessing environmental pollution in
the past [68]. Additionally, chromium has been proven to be the most harmful heavy metal
for the growth of cauliflower plants [69]. In the present study, the reduction of chromium in
treated hospital wastewater seems to contribute to the higher seedling length and biomass
and higher GI values. Similarly, lower PI values with treated wastewater indicate that
cauliflowers are not impacted by the treated wastewater in the same way as the untreated.
This highlights the treatment efficiency and indicates that wastewater may be safe for
irrigating cauliflowers.
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3.2.3. Hot Pepper Crop

Hot pepper plants have been investigated in the past for phytotoxicity assessment
of reusing treated industrial wastewaters, resulting in increased biomass [70–73]. The
plant is more sensitive to lead concentrations than any other plant [74]. With reduced
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concentrations of lead in the wastewater, root and shoot lengths and the biomass of hot
pepper plants were reported to be increased [74]. The present results endorse the previously
reported findings. In the present study, the lengths of seedling (shoots and roots) were
longer in treated wastewaters (shoots: 1.8–2.3 cm; roots: 2–5.2 cm). Additionally, the
seedling weights for both shoot and root (fresh and dry) increased when grown in treated
hospital wastewater concentrations (shoot fresh weight: 0.02–0.019 g; shoot dry weight:
0.006–0.05 g; root fresh weight: 0.011–0.019 g; root dry weight: 0.003–0.008 g) (Table S3).
The hot pepper seeds grown in treated hospital wastewater (25, 50, 75 and 100%) showed an
increase in GI values from 72–90% to 63–109%. (Figure 7a). The PI values for seeds grown
in untreated wastewaters (25, 50, 75 and 100%) were positive (0.27, 0.15, 0.12 and 0.09,
respectively). This indicates a medium lethal impact on the growth of seedling (Figure 7b).
Conversely, the seeds grown in two treated hospital wastewater concentrations (25 and
100%) showed negative PI values (−0.09 and −0.58). This also indicates a stimulatory effect
on seedling growth as the PI values were lower than the control. Another two treated
hospital wastewater concentration (50 and 75%) showed positive values of PI (0.21 and 0.39)
(Figure 7b). In light of the available literature, heavy metal reduction [63,64], reduction
of phenols and supplementary organic compounds [65] may be the possible reasons that
contributed to the positivity in phytotoxicity values.
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Figure 7. (a) Germination indices of Hot pepper seeds grown in untreated and treated hospital
wastewaters; (b) Phytotoxicity indices of Hot pepper seeds grown in untreated and treated hospital
wastewaters. Significance (Welch’s test) between treated and untreated hospital wastewater is
indicated by p < 0.0001 ****.

3.2.4. Wheat Crop

Wheat showed increased seedling length for both shoots and roots in treated hospi-
tal wastewater concentrations (shoots: 7.1–9.9 cm; roots: 8.6–10.2 cm). Additionally, the
seedling weights for both shoot and root (fresh and dry) were raised when grown in treated
hospital wastewaters (shoot fresh weight: 0.077–0.122 g; shoot dry weight: 0.019–0.053 g;
root fresh weight: 0.068–0.089 g; root dry weight: 0.019–0.032 g) (Table S4). The wheat
seeds grown in treated hospital wastewaters (25, 50, 75 and 100%) showed an increase in GI
values from 79–106% to 106–126%. (Figure 8a). The PI values for wheat seeds grown in un-
treated hospital wastewaters (25, 50, 75 and 100%) were 0.10, 0.10, −0.19, 0.21, respectively,
which indicates a medium to low toxic effect on seedling growth (Figure 8b). Conversely,
the seeds grown in three treated hospital wastewater concentrations (25, 50 and 100%)
showed negative PI values (−0.26, −0.10 and −0.12, respectively). Another treated hospital
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wastewater concentration (75%) showed a positive value of PI (0.06) (Figure 8b). Previously,
wheat has showed positive PI values in phenol-containing industrial wastewaters [75]. Our
work analyses a diverse range of pharmaceutical pollutants (caffeine, diazepam, naproxen,
octadecene, phenol and salicylic acid) and heavy metals (Ni, Cr, Pb) which are present in
untreated hospital wastewater. The positive growth of wheat plants after irrigation with
treated hospital wastewater indicates treatment efficiency.
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3.2.5. Rice Crop

The results showed that the lengths of seedlings (shoots and roots) were increased
in treated hospital wastewaters (shoots: 3.1–5.1 cm; roots: 3.4–10.2 cm). Additionally, the
seedling biomass for both shoot and root (fresh and dry) increased when grown in treated
hospital wastewater concentrations (shoot fresh weight: 0.008–0.015 g; shoot dry weight:
0.001–0.006 g; root fresh weight: 0.052–0.05 g; root dry weight: 0.023–0.032 g) (Table S5).
The rice seeds grown in treated wastewaters (25, 50, 75 and 100%) showed an increase
in GI values from 36–90% to 90–144%. (Figure 9a). The PI values for seeds grown in
untreated hospital wastewaters (25, 50, 75 and 100%) were positive (0.60, 0.27, 0.42, 0.42),
which indicates a medium to high lethal effect on the growth of seedlings (Figure 9b).
The seeds grown in three treated hospital wastewater concentrations (25, 50 and 100%)
showed PI values of 0.07, 0.35 and 0.59, which were lower than the values of untreated
hospital wastewater concentrations. Another treated hospital wastewater concentration
(75%) showed negative values of PI (−0.23) (Figure 9b). Recently, researchers found rice to
be a sensitive crop plant for reusing treated wastewaters [76,77]. They observed inhibitory
effects on seed germination and plant growth. Our work agrees with the existing work,
with stimulatory growth of rice seedlings in the presence of treated wastewater where there
is no turbidity.
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Many researchers have stated that higher phytotoxicity indices in plants grown in
untreated industrial wastewaters indicate toxicity induction in plants due to polluted
water [32,78–81]. The present study has shown a significant reduction in phytotoxic-
ity for these five crop plants grown in consortium-treated wastewater, which in turn
confirms the efficiency of biotreatment. The comparatively increased germination and
reduced phytotoxic analysis of the five crops for the treated wastewater is as follows:
Cauliflower > Radish > Wheat > Rice > Hot pepper. The capacity to accumulate heavy
metals is different in various types of plants, both on land as well as in aquatic plants [82,83].
Leafy and root vegetable crops absorb these metals more frequently than other vegeta-
bles [82]. Cauliflower crop showed the highest adaptability towards treated wastewater;
although it has sensitivity towards chromium [68,69], because chromium was absent in
our treated wastewater, its GI was highest and PI values were lowest. Another contribut-
ing factor is the physiognomy of cauliflower as a flowering vegetable. Radish has more
proximity towards inducing phytotoxicity [67], but as the treated wastewater neither had
heavy metals nor pharmaceutic components beyond the acceptable NEQS range, it showed
high GI values and low PI values. Wheat and rice showed improved growth and heavy
metal tolerance with the application of reused wastewater [75,84,85]. Our work agrees
with the previous study because our GI values were high and PI values were low, which
are indicators of stimulatory plant growth. Hot pepper plants are vulnerable/sensitive to
stress or pollutants [70–74]. A similar observation came to light in our work, where the
plant showed sensitivity towards PI values even after the treatment. Because the other
crops were fine, we can say that irrigation with treated wastewater in fact had a stimulatory
effect on Cauliflower, Radish, Wheat and Rice. The phytotoxicity results highlight two key
points: that the consortium-treated wastewater is safe for reuse for crop irrigation and that
hot pepper plants are the most susceptible to growth under these conditions.

Our work shows the feasibility of the safe re-use of treated hospital wastewater
for crop irrigation in water-stressed areas. Future work should include the following:
a detailed assessment of any potential spread of antimicrobial resistance, translation of
growth experiments to agricultural field sites, and research into how this consortium-
treatment method could be implemented in practice. The environmental sustainability of
the consortium treatment may be assessed via. comparing it with other methods such as



Water 2022, 14, 116 14 of 18

electrochemical and advanced oxidation for advanced hospital wastewater treatment to
remove the toxic pollutants and to see which of the method is more sustainable/low-cost
or low-tech. Furthermore, a life-cycle analysis could be performed [86–89].

4. Conclusions

The present study supports the successful prediction of quality parameters in bacterial
consortium-treated hospital wastewater using a Random Forest classifier. The confusion
matrix of the RF classifier showed nearly perfect results based on decision trees, high-
lighting the clear differentiation between treated and untreated wastewater. The results
also suggested that turbidity was the most influential parameter to predict the most effec-
tive biotreatment. Turbidity represents a low-cost and simple measure of water quality.
Thus, overall, this low-cost consortium method for wastewater treatment could easily be
implemented at a small-scale on individual farms using turbidity as a measure to assess
treatment efficiency prior to irrigation.

Turbidity indicates the presence of heavy metals and pharmaceutic pollutants in the
wastewater which are potentially harmful for plant growth. Unstable plant growth directly
impacts human life. Therefore, the phytotoxicity assessment on five widely grown crop
plants was carried out to see the impact. The crop plants showed increased seedling lengths
and biomass, high GI values and low PI values when grown in the treated wastewater. The
PI values were either similar to the control or lower, which indeed shows a stimulatory
effect, and therefore, treated wastewater with this bacterium consortium may be a safe
option for irrigation of these crop plants. The comparative analysis of the five crops
for germination and phytotoxicity is as follows: Cauliflower > Radish > Wheat > Rice
> Hot pepper. Our work recommends the reuse of quality-predicted biotreated hospital
wastewater; however, there is a further need to analyse the products of these crop plants to
ensure their safe consumption. Moreover, environmentally sustainable advanced hospital
wastewater treatment would be a gateway to achieve Sustainable Development Goals 6, 14
and 15.
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