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Abstract: In recent years, climate abnormalities have been observed globally. Consequently, the
scale and size of natural disasters, such as typhoons, wind wave, heavy snow, downpours, and
storms, have increased. However, compared to other disasters, predicting the timing, location and
severity of damages associated with typhoons and other extreme wind wave events is difficult.
Accurately predicting the damage extent can reduce the damage scale by facilitating a speedy
response. Therefore, in this study, a model to estimate the cost of damages associated with wind
waves and their impacts during coastal storms was developed for the Republic of Korea. The history
of wind wave and typhoon damages for coastal areas in Korea was collected from the disaster annual
report (1991–2020), and the damage cost was converted such that it reflected the inflation rate as in
2020. Furthermore, data on ocean meteorological factors were collected for the events of wind wave
and typhoon damages. Using logistic and linear regression, a wind wave damage prediction model
reflecting the coastal regional characteristics based on 74 regions nationwide was developed. This
prediction model enabled damage forecasting and can be utilized for improving the law and policy
in disaster management.

Keywords: wind wave damage; abnormal climate; prediction model; coast area; regression analysis

1. Introduction

In recent years, the incidence of major natural disasters and the resultant damage
costs have increased owing to accelerated global warming and frequent storms. These
disasters cause damage to various social assets, in severe cases, and often result in injury to
humans. In countries without social disaster prevention facilities or a preliminary system
for addressing disasters, human injury and considerable damage to assets will rise.

Furthermore, the destruction of the ecosystem affects the climate adversely, and coastal
areas are becoming increasingly fragile because of changing sea levels and the absence
of buffering [1]. A total of 23% of the world’s population lives in coastal areas, large
cities with a population of more than 10 million, and 66% of the residents live in coastal
areas [2–4]. Following the revision of the Natural Disaster Countermeasures Act in 2005,
storms caused by sea winds and waves were classified as natural disasters, along with
heavy rains, typhoons, and earthquakes. However, compared to other natural disasters,
there are very few studies on forecasting storm damage.

Existing studies on predicting the effects of storms and tsunamis focused on verify-
ing the efficiency and accuracy of predicting tsunami heights using numerical analysis
models. Kang Si hwan et al. (2004) predicted the tsunami invading Masan Bay of Ty-
phoon Maemi by calculating the effect of typhoon speed using the local tsunami model [5].
Lee Hye Woo et al. (2014) created a storm prediction model to predict dangerous weather
and measured its accuracy [6]. Lee Seung soo et al. (2014) demonstrated the usefulness
of the data measurement provided by the Ocean Research Institute by predicting storm
and tsunami using a meteorological-ocean-related numerical model [7]. Vanem et al. [8]
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studied some applications of extreme value analysis of ocean waves that are believed to
be of relevance for coastal and ocean engineering. Fazeres-Ferradosa et al. [9] presented
copula-based approach to obtain the joint cumulative distribution function of the significant
wave heights and the up-crossing mean period.

The Korea Adaptation Center for Climate Change (2013) analyzed foreign climate
change vulnerability and reclassified domestic climate change vulnerability to evaluate
the vulnerability of local government areas based on climate change [10]. Wamdi (1988)
developed a third-generation windfall prediction model, WAM, and studied windfall [11].
Soomere (2005) conducted a statistical study on the storm in the Gulf of Tallinn [12]. Re-
cently, Ardhuin et al. (2017) conducted a study on the effect of small currents on storm [13].
Oliveria et al. [14] found that all the European Union guidelines and frameworks are being
implemented in the Portuguese Governmental planning and are very well substantiated,
whereas the base of all land management instruments (IGT), have a questionable imple-
mentation, mainly due to the number of entities involved and the long implementation
process. Taveira-Pinto et al. [15] integrated management and planning of CPLP’s coastal
zones. Wu et al. [16] presented a series of large-scale wave flume experiments on the scour
protection damage around a monopile under combined waves and current conditions with
model scales of 1:16.67 and 1:8.33.

Although various technologies have been developed for predicting wind and waves,
research has been found to be insufficient to predict the extent of the damage based on
past damage history. Therefore, in order to predict the damage scale and take an initial
response to it, as mentioned in this study, we would like to propose a function to predict
the damage amount by reflecting weather factors and regional characteristics of the Korea
Meteorological Administration and the National Ocean Research Institute.

2. Wind Wave Financial Damage Prediction Model Methodology
2.1. Wind Wave Financial Damage Prediction Model Development Procedure

To develop a wind wave damage amount prediction model that can predict the extent
of storm damage, the study was conducted in five stages, as shown in Figure 1. First, we
collected the data used as independent and dependent variables. Second, we divided the
model into the evaluation and learning sections to assess its predictive capacity. Third,
we implemented a complex regression model and developed a financial damage predic-
tion model prototype. Fourth, we tested the verification accuracy using the evaluation
section. Finally, we developed the financial damage prediction model using the entire data
(1994–2020).

Figure 1. Precedure to Develop Wind Wave Damage Amount Prediction Model.
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2.1.1. Basic Data Building

This study was based on the annual disaster report of the Ministry of the Interior and
Safety and Ministry of the Interior and Safety’s website. The wind wave financial damage
was set as a dependent variable and the marine weather data (wind speed, wave height,
and tide on the date of damage) and social and economic factors (number of fisheries,
length of shoreline, and area of the coastal area) were set as the independent variables,
based on which the wind wave financial damage was predicted. In addition, a group
classification model was developed by classifying the total amount of damage into groups
with large damages and small damages. A prediction function for the amount of damage
was developed for each classified group.

2.1.2. Classification of Learning and Prediction Section

To evaluate the predictive ability of the windstorm-damage prediction function, the
model was divided into the study and prediction sections that were used to develop the
damage prediction function and verify the wind-damage prediction formula, respectively.

The classification was performed by analyzing the number of cases of wind damage
by year; 60% of the total number of damages was set as the base point, based on which
the learning and prediction sections were divided. The study section at the municipal and
provincial levels was composed of 252 cases of wind-damage history from 1998 to 2011,
and 126 cases of wind-damage history from 2012 to 2020 were set as the prediction sections.

2.1.3. Development of Wind Wave Prediction Model Prototype

A complex regression model (CRM) was implemented using the differentiated learn-
ing section data. The CRM prioritized the group classification of damages through the
sequential logistic return and multi-return analyses and complemented a separate group-
specific multiple return model to predict the amount of damage.

2.1.4. Predictive Performance Evaluation and Final Model Setup

As a result of the significance assessment between variables, we found that correlation
was meaningless, so it could be used as an independent variable.

In addition, the performance of each model was evaluated based on the actual damage,
and the model with the most accurate estimate of the amount of damage was selected as the
final model. The classification performance assessment metric was the receiver operating
characteristics (ROC) curve. The predictive power of the group damage amount classified
was assessed based on the root mean square error (RMSE) and normalized RMSE (NRMSE).

2.2. Theoretical Background
2.2.1. Logistic Regression Model

Logistic regression is a regression method that is used when the dependent variable
is binary (when there are two possible values such as failure/success and significant
damage/insignificant damage).

Odds, the framework of logistic regression, is a concept that refers to the ratio of the
probability of Event A occurring; it is summarized as shown in Equation (1) below:

odds =
P(A)

P(Ac)
=

P(A)

1 − P(A)
(1)

The closer P(A) is to 1, the higher the odds, and if P(A) is 0, the odds are zero. In
other words, the greater the odds, the greater the probability of Event A occurring. In this
study, a logistic return model was used to classify the amount of damage; based on the
ROC curve, the groups with significant and minimal damage were set to one and zero,
respectively, and the optimal group classification was determined.
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2.2.2. Multiple Regression Models

A multi-linear regression model is a linear model that predicts a response variable
using two or more independent variables. Assuming the response variable is y, the in-
dependent variable is X =

(
x0, x1, · · · , xp

)
, x0 = 1, and the regression coefficient is

β =
(

β0, β1, · · · , βp
)
, the response variable is then expressed by the linear combination

between the independent variable and the regression coefficient, as shown in Equation (2)
below, with β0 representing intercepts and β1, · · · , βp, the corresponding regression coeffi-
cients for each independent variable. ε is an error not explained by the model; it is assumed
to follow a normal distribution with a mean of zero and variance of σ2. The regression
coefficient

(
β0, β1, · · · , βp

)
is estimated to minimize the following error sums:

y = β0 + β1x1 + · · · βpxp + ε (2)

2.2.3. Composite Return Model

The combined regression model used in this study is a technique that combines the
logistic and multiple regression models. Due to the nature of storm damage, the range
of the damage varies according to the season. Therefore, the proposed method entails
developing the predictive function for the extent of damage by implementing multiple
regression models through the logistic regression model (group with significant damage
and group with minimal damage) and the classified learning data (classifying learning
data by the amount of damage).

2.2.4. Classification Performance Evaluation

In this study, 1 and 0 indicated significant and minimal wind damage, respectively.
The classification accuracy was verified through the ROC curve, a graph drawn on a two-
dimensional plane with respect to the true value of the model. To draw an ROC curve, the
boundary conditions must be adjusted before calculation. In the ROC curves, the sum of
sensitivity and one-specificity is maximized as the curve gets closer to the left edge and the
probability boundary value is determined as the optimal value.

2.2.5. RMSE

The RMSE is a measure of the residual, which is the difference between the values
predicted by the model and actual observed values. The RMSE enables predictive power
to be integrated into a single unit of measurement. The RMSE of the model’s prediction
for the estimated variable Xest,i is defined as the square root of the mean square error
(Equation (3)):

RMSE =

√
∑n

i=1 (Xobs,i − Xest,i)
2

n
(3)

Here, Xobs,i indicates the actual observed value, and Xest,i is the predicted value
obtained from the model.

2.2.6. NRMSE

The NMRSE is a normalized representation of the RMSE; it represents the difference
between the values predicted by the model and actual observed values. The NMRSE has
two expressions; the RMSE is either normalized to the observed range of data, as shown in
Equation (4), or to the average of observed data, as shown in Equation (5):

NRMSE =
RMSE

Xobs,i − Xest,i
(4)

NRMSE =
RMSE
Xobs,i

(5)
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In this study, the predictive performance evaluations were performed on different
assessment data, with the entire data classified into learning and prediction data. The pre-
dictive performance of the data for evaluation corresponds to the predictive performance
of the future data; therefore, among the candidate models, the model with the least NMRSE
was chosen as the final model. The NRMSE quantitatively evaluated the predictive power
of the wind-damage predictive function developed using the approach in Equation (4).

3. Development of Wind-Damage Estimation Model
3.1. Selection of Research Areas

In this study, the damage history by Si, Gun, and Gu was collected based on the
disaster yearbook. Among them, 74 Si, Gun, and Gu corresponding to coastal areas were
selected and developed. Figure 2 shows the study area by sea area. Figure 2 shows the
study area by sea area.

Figure 2. Study Area.

3.2. Basic Data Building
3.2.1. Classification by Sea Area

Although there were a total of 816 storm damage cases in the disaster compensation
list, due to the delayed start date of observation by the Korea Meteorological Observatory,
only 378 cases were available for analysis. Therefore, there were 44 areas with a wind-
damage history, with less than five cases in 74 cities, counties, and districts in coastal
areas, and six areas with more than ten cases, which were not sufficient to develop damage
forecasting functions by region. Thus, this study sought to increase the reliability of the
wind-damage prediction function by securing the number of samples by clustering the
areas subject to research by sea area (the East Sea, Yellow Sea, Southern Ocean, and Jeju).
Next, 74 of the community by littoral waters, 78, 138 cases, and the East Sea as storm
damage by history are listed in Table 1, the Southern Ocean waters, Jeju-si, and Jeju-do,
clustering in 162 cases.
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Table 1. Number of Wind Wave Damage Events by Coast.

Coast Provinces Cities and Counties Number of Wind
Wave Damage

east

Gangwon-do Gangneung City, Goseong-gun, Gangwon-do, Sokcho City,
Samcheok, Sokcho, Yangyang County.

78
Gyeongsangbuk-do Gyeongju City, Yeongdeok County, Ulleung County, Uljin

County, Pohang City

Ulsan Metropolitan City Nam-gu, Dong-gu, Buk-gu, Ulju-gun

west

Gyeonggi-do Gimpo City, Siheung City, Ansan City, Pyeongtaek City, and
Hwaseong City

138

Incheon Metropolitan City Ganghwa-gun, Dong-gu, Seo-gu, Yeonsu-gu, Ongjin-gun,
Jung-gu

Jeollanam-do
Mokpo City, Muan County, Sinan County, Yeonggwang

County, Yeongam County, Jindo County, Hampyeong County,
Haenam County

Jeollabuk-do Gochang-gun, Kunsan-si, Gimje-si, Buan-gun

Chungcheongnam-do Dangjin-gun, Boryeong-si, Seosan-si, Seocheon-gun, Asan-si,
Taean-gun, Hongseong-gun

south

Gyeongsangnam-do Geoje City, Goseong County, Namhae County, Sacheon City,
Changwon City, Tongyeong City and Hadong County

162

Busan Metropolitan City Geoje City, Goseong County, Namhae County, Sacheon City,
Changwon City, Tongyeong City and Hadong County

Jeollanam-do
Gangjin County, Goheung County, Gwangyang City, Boseong

County, Suncheon City, Yeosu City, Wando County, and
Jangheung County

Jeju Island Seogwipo City, Jeju City

Total data 378

3.2.2. Dependent Variable

In this study, the dependent variables were extracted from the disaster annual report
provided by the Ministry of Public Administration and Security (MOIS). This is a systematic
disaster-related statistical data, and following the enactment and amendment of the Natural
Disaster Countermeasures Act, the disaster report began to include information on storm
damage. To compensate for the short duration of the damage history, additional damage
history (historical storm damage history) that can be considered as storm damage was
collected from 1994 to 2020. Pseudo-flood damage history pertained to three types of
public facilities and three types of private facilities selected through a historical survey
of storm damage caused by typhoon according to the type of damaged facilities (fishery
growth food, fishing nets, fishing grounds, ships, harbors, and fishing ports) in the event
of a disaster compensation. Finally, the total amount of damage by damaged facilities was
utilized as a subordinate variable.

3.2.3. Independent Variable

The independent variables used in this study were divided into three categories, i.e.,
ocean weather data, social and economic factors, and the pre-investment factor.

The marine weather data were composed of collected average wave height, maximum
wave height, and average wind speed data from 11 domestic buoy locations managed by
the Korea Meteorological Administration’s weather data open portal and 9 domestic lights,
and dug, wind speed, and tide data from 16 marine observation sites managed by the
National Oceanographic Research Institute, 3 marine science bases, 3 marine observation
stations, and 47 tidal stations managed by the Korea Meteorological Administration. The
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optimal stations were selected for each coastal area based on the date of commencement
of observation and the distance from the affected area. The social and economic factors,
area and length of the coastal area and the number of fishery workers per year, were then
utilized by the National Oceanographic Research Institute’s Coastal Disaster Assessment
System (CDAS).

First, the CDAS evaluation system is a report published by the National Oceano-
graphic Research Institute, which aims to develop an objective and quantitative coastal
disaster vulnerability assessment index by disaster cause, establishes a geographic infor-
mation system (GIS)-based coastal disaster vulnerability assessment system, produces
the necessary basic data for national disaster response, and promotes the establishment
of coastal related policies; further, it makes it possible to obtain all the coastal disaster
vulnerability information from a single place. Among the coastal disaster vulnerability
assessment system, the coastal disaster exposure index, coastal potential impact index, and
coastal disaster sensitivity index were selected and utilized. The coastal area was selected
based on the GIS provided by the National Geographic Information Service; coastal length
is provided annually by the National Statistical Office. The number of fishery workers
per year was obtained by calculating the number of fishery workers on a city-level basis,
compared to the number of people in the relevant cities, counties, and districts per year.
Next, the existing investment component was the cost of restoration by city, county, and
district for each year of disaster compensation. As the restoration cost of the disaster
compensation was calculated for the total damage to the relevant city, county, and district,
the restoration work should be regarded as the recovery cost for the storm damage, and
the data from the previous year should be utilized at the time of prediction. Finally, the
dependent and independent variables used in this study are as shown in Table 2 below,
and the variable names were specified for modeling.

Table 2. Variable Selection.

Index Variable Name Category

Wind Wave Damage Amount (1000 Won) Y Subordination Variable

Wind Wave Damage Recovery Amount (1000 Won) Z

Independent Variable

Average Wind (m/s) W

Maximum Wave Height (m) P1

Average Wave Height (m) P2

Maximum Tidal Height (m) T1

Average Tidal Height (m) T2

Coastal Disaster Exposure Index CODI

Coastal Sensitivity Index COSI

Coastal Potential Impact Index CPII

Coast Area (km2) area

Coastline (km2) length_coast

Number of Fishers (1000 People) fishery_pop

3.3. Development of Wind-Damage Estimation Model
3.3.1. Development of Group Classification Model for Wind Damage

In this study, the group classification of the extent of damage was conducted using
the wind-damage prediction function developed using the logistic regression model. The
group classification model of the amount of damage was implemented first because the
analysis of the data on the amount of damage caused by wind and wind damage revealed
a difference of approximately 88 billion won between the minimum and maximum amount
of damage, resulting in an overestimation of the amount of damage when regression
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analysis was conducted without classifying the amount of damage. Thus, damages were
classified according to the scale in the learning section using the logistic regression model;
the classification accuracy was evaluated based on the optimal probability boundary
obtained using the area under the curve. To collectively classify the extent of damage, it
was necessary to perform k-fold cross-validation (k-fold cross-validation, k-fold CV) for
each parameter and derive the optimal probability boundary (pcut). The k-split cross-
validation is a method to increase the statistical reliability of a classifier’s performance
measurement when there is insufficient data. k is the number of partitions. Cross-validation
was conducted to measure the performance of the model, as shown in Figure 3. In this
study, a ten-division cross-validation was performed.

Figure 3. k-fold Cross-validation.

The ROC curve values of the adopted logistic regression model are shown in Figure 4.
The area under the ROC (AUROC) curve with the highest accuracy was 0.9639, probability
boundary value was 0.3834, and probability boundary value was 555,381.2.

Figure 4. Evaluating Group Classification Model with ROC-Curve.

3.3.2. Development of Damage Estimation Model by Group

Based on the probability boundary values determined through the logistic regression
and ROC curve verification, the learning data were classified into groups with major and
minor damage, following which a separate group-by-group multiple regression analysis
was conducted. The accuracy of the group damage prediction model prototypes developed
in the learning section was evaluated using the RMSE and NMRSE. RMSE: 1,260,167 and
NMRSE: 6.95% of the results of the verification through the prediction section showed
excellent accuracy and finally developed a predictive function using the entire section.
The group classification function of the damage cost is shown in Table 3, which shows the
regression coefficient and the intercept value of the group damage prediction function.
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Table 3. Regression coefficient and the intercept value of the group damage prediction function.

Variable
Name

Cost

Group Classification Function Large Amount of Damage Less Amount of Damage

East West South East West South East West South

Y −0.257 −0.131 0.127 9.646 9.143 7.923 13.704 15.231 9.964

Z −0.009 −0.009 −0.009 0.034 0.034 0.034 0.066 0.066 0.066

W 0.031 0.028 0.032 −0.033 −0.033 −0.033 0.209 −0.007 −0.077

P1 −0.091 −0.091 −0.091 −0.075 0.050 0.802 −1.093 −0.004 0.704

P2 0.756 −0.206 0.087 −0.200 −0.200 −0.200 0.463 0.463 0.463

T1 0.265 0.254 −0.030 0.223 0.223 0.223 −0.191 −0.191 −0.191

T2 4.6 × 10−9 8.2 × 10−9 4.0 × 10−8 2.1 × 10−6 3.8 × 10−6 1.1 × 10−6 4.4 × 10−8 5.7 × 10−8 1.7 × 10−7

CODI −0.088 −0.088 −0.088 0.548 0.548 0.548 0.254 1.509 0.854

COSI −0.043 −0.043 −0.043 0.659 0.659 0.659 0.318 0.318 0.318

CPII 0.169 0.169 0.169 −1.141 −1.141 −1.141 −0.679 −2.235 −0.431

area 1.6 × 10−4 1.6 × 10−4 1.6 × 10−4 5.4 × 10−4 5.4 × 10−4 5.4 × 10−4 4.8 × 10−6 −1.9 × 10−3 6.4 × 10−4

length_coast −4.2 × 10−5 −4.2 × 10−5 −4.2 × 10−5 3.9 × 10−4 3.9 × 10−4 3.9 × 10−4 −4.2 × 10−6 −4.2 × 10−6 −4.2 × 10−6

fishery_pop 5.4 × 10−7 5.4 × 10−7 5.4 × 10−7 −4.5 × 10−5 −4.5 × 10−5 −4.5 × 10−5 3.8 × 10−5 3.8 × 10−5 3.8 × 10−5

3.3.3. Verification of Predicted Amount by Wind-Damage Model

Through the prediction model of the wind-damage amount calculated through the
above procedure, the accuracy of the forecast model was verified for four areas with
recovery costs in 2020 out of the wind-damage history in 2018. First, the independent
variable data and amount of damage amount data in the area were collected (Table 4),
and the separation of the estimated amount of damage by group through the previously
developed group damage prediction model was performed to compare and analyze the
actual amount of damage. The analysis showed that the RMSE and NMRSE were 301,269
and 30.7%, respectively.

Table 4. Independent Variable Data Collection.

Variable Name
Area Name

Seogwipo, Jeju-do Jeju, Jeju-do Seo-Gu, Busan-si Sanchuck, Gangwon-do

W (m/s) 9.2 9.6 9.9 7.6

P1 (m) 9.3 8.7 4.1 5.5

P2 (m) 3.5 3.1 1.7 2

T1 (m) 1.9 2 0.9 0.3

T2 (m) 3.2 2.9 1.7 0.8

Z (1000 Won) 181,042 16,318 304,274 5000

CODI 5 5 4.8 2.9

COSI 3.7 4.2 4.6 3.4

CPII 4.5 4.7 4.8 3

Area (km2) 871 979 14 1187

length_coast
(km2) 225.1 326.7 17.2 104.5

fishery_pop
(1000 People) 2511 6740 295 654

The biggest error occurred in Jeju City, which was attributed to the fact that the
Geomundo Observatory, an observation site for the use of tidal data in Jeju City, was
approximately 100 km away from Jeju City, which is not sufficiently close to representing
the marine climate of Jeju Island.



Water 2021, 13, 1322 10 of 11

Although there is a domestic observation post on Chujado Island, whose reports are
closer to the occurrence time of the damage, it was not suitable for use in Jeju Island’s
damage history (three cases from 1999 to 2013). In addition, because Jeju City was clustered
and analyzed under Namhae and Jeju, it was believed that the amount of damage was
overestimated, as it was leveled in other areas where there was significant storm damage
(Table 5).

Table 5. Simulation result of Model (unit: KRW1000).

Area Name Actual Amount of Damage Predict Amount of Damage

Seogwipo-si, Jeju-do 41,834 49,837

Jeju-si, Jeju-do 3957 425,524

Seo-Gu, Busan-si 90,000 57,998

Sanchuck-si, Gangwon-do 455,140 434,021

RMSE: 211,691/N-RMSE: 46.9%

4. Conclusions

In this study, a storm damage prediction function was developed based on the CDAS
index, number of local households per year, and local square measures to reflect the local
characteristics after collecting wind-damage history and similar wind-damage history data
from 1991 to 2020.

A total of 378 cases of storm damage were collected, with an average of 5.1 cases per
74 cities and counties in coastal areas, which was deemed insufficient to predict individual
damage history in cities and counties. Therefore, the data shortage was addressed by
clustering by the sea area, and the damage prediction function was developed through
the representative factors of each city and county. According to the accuracy analysis of
the developed wind damage prediction function, RMSE is 1,260,167 and N-RMSE is 6.9%,
which is considered to be highly accurate. Consequently, the predictive power evaluation
facilitated contributing to the establishment of policies that reflect regional characteristics,
as it solved the problem of lack of disaster statistics data through reverse clustering of
natural disasters, and reflected regional characteristics. The proposed model can effectively
aggregate and calculate the actual storm damage; it can improve the laws and systems
related to disaster management and, consequently, the recovery guidelines.

Specifically, by highlighting areas vulnerable areas that require proactive steps to pre-
vent storm damage, the proposed model can enable the MOIS to establish a comprehensive
plan to reduce natural disasters.

However, because of the necessary statistical analysis based on disaster history, imple-
menting the proposed method necessitates building a database of continuously collected
damage history data; it is believed that more accurate results will be obtained if additional
data on storm damage alone are collected. In addition, further studies are required to
improve the accuracy of observations for areas that are far from the damage location and
ocean observation stations.
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