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Abstract: We performed molecular dynamics (MD) simulations to study structure, stability, and
dynamics of the water adsorption layer on muscovite mica at several temperatures (from 298 K to
673 K) and pressures (0.1 MPa, 10 MPa, and 50 MPa). We studied the structure of the adsorption layers
with three characteristic peaks of density and orientation of H2O molecules in one-dimensional and
two-dimensional profiles. The results show that the water adsorption layers become less structured
and more mobile as the temperature increases. We also found the first and the second layers are
less diffusive than the third one, and the difference of diffusivity gets unclear as the temperature
increases. Finally, we discuss implications to hydration forces and wettability, which are significant
interfacial properties of the multiphase fluids system such as water/gas/mineral systems, from the
viewpoint of water adsorption film with nanometer thickness.

Keywords: water adsorption; muscovite; temperature effect; molecular dynamics

1. Introduction

In subsurface porous media with high specific surface area, water–mineral interfacial
property is a key factor for mass transport (e.g., [1–3]). Better understanding of this is
beneficial not only for revealing mechanisms of natural phenomena but also for improving
the effectiveness of subsurface engineering processes such as CO2 geological storage (CGS),
geothermal energy production, and oil/gas recovery.

For example, wettability, which is affected by fluid–mineral interactions, is significant
for the seal integrity of CGS (e.g., [4–6]), and the recovery ratio of oil production [7,8].
Permeability, which is also affected by water–mineral interaction (e.g., [9]), is a critical
factor for recovery of geothermal energy [10–12]. Moreover, the water–mineral interaction
reduces the amount of CH4 adsorption on shale, which largely affects the potential of shale
gas production [13,14]. Furthermore, the water adsorption film in water/gas unsaturated
system is an important media for mass transport [2,15,16].

Interfacial water on the mineral surface region, of which thickness is from micro- to
nanometer, shows different structure and properties from that in bulk phase (e.g., [17,18]).
These differences have been studied by using experimental, theoretical, and numerical
approaches. For example, X-ray reflectance measurements and surface force measurements
using atomic force microscopes have clarified nanometer-order structures [19–22]. It has
been reported that the distribution of water molecules above the muscovite surface exhibits
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three distinct peaks [19–22]. Results obtained from molecular dynamics (MD) simulation
are in good agreement with a measured water adsorption structure, and more and more
research using MD simulation has been conducted (e.g., [23–31]).

Water/muscovite interfacial properties have been studied by experiments and MD
simulations; however, results of the previous studies focused on the ambient condition.
Although the temperature change is considered to affect the properties of water adsorption
layer on the mineral surface [32,33], no quantitative investigation on its structure and dy-
namics has been conducted under high temperature conditions such as 673 K. Considering
the geothermal gradient, it is crucial to study the interfacial properties in a wide range of
temperature conditions. For example, 10 MPa/313 K is one of the typical reservoir condi-
tions for CGS [34]. A much higher pressure–temperature condition such as 50 MPa/673 K
needs to be considered for supercritical geothermal resources recovery [35].

Therefore, in this study, MD simulation of the water/muscovite interfacial system is
performed at several temperatures (from 298 K to 673 K) and pressures (0.1 MPa, 10 MPa,
and 50 MPa) focusing on the changes in the structure and the dynamical properties of the
water adsorption layer. This paper is organized as follows. In Section 2, calculation details
in this study are explained. In Section 3, we show the structural and dynamical properties
of the interfacial water on muscovite. We discuss implications of the results to hydration
forces and wettability in Section 4. Finally, the paper is summarized in Section 5.

2. Materials and Methods

We performed MD simulation of a water/muscovite system under several pressure
and temperature conditions shown in Table 1. Water becomes supercritical at 50 MPa/673 K,
while it is liquid state under the other conditions [36].

Table 1. Pressure and temperature conditions.

Pressure (MPa) Temperature (K)

0.1 298, 323, 373, 423, 473, 523, 573
10 298, 323, 373, 423, 473, 523, 573, 623
50 298, 323, 373, 423, 473, 523, 573, 623, 673

In this study, we did not focus on the chemical reactions on the muscovite surface.
Although the melting point of muscovite is higher than 1500 K, which is much higher than
the temperatures considered here, dissolution of muscovite in water and its temperature
dependence has been reported (e.g., [37]). In this study, MD simulations were performed to
predict the structure and dynamics under high temperature and pressure conditions, validity
of which was confirmed by referring to the previous MD results under ambient conditions.

First, the calculation system was stabilized energetically. Then, physical properties, such as
density and energy, were evaluated as ensemble averages. In the preliminary run, the tempera-
ture and pressure of the system were maintained by the Berendsen thermostat and barostat [38].
After equilibration, NPT MD calculations were performed for 100 ns (1.0× 108 steps) using the
Nosé–Hoover chain thermostat [39,40] (the time constant τT = 0.1 ps) and Parrinello–Rahman
barostat [41] (the time constant τp = 5.0 ps). The physical properties were estimated using the
last 50 ns data (5.0 × 107 steps) of the NPT run in equilibrium. The interatomic interaction
Uij was calculated based on the Lennard Jones (LJ) potential and the Coulomb potential, as
shown below:

Uij = 4εij

(σij

rij

)12

−
(

σij

rij

)6
+

1
4πε0

qiqj

rij
(1)

where εij and σij are the energetic and size parameters for the LJ potential, respectively: qi
and qi are the charge of particle i and j: rij is the distance between particle i and j: ε0 is the
dielectric permittivity of vacuum (8.85419 × 10−12 F/m).
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The parameters of non-bonded interactions in the Equation (1) for H2O and muscovite
were determined after the SPC/E model [42] and the CLAYFF model [43], respectively.
Terms of bonded interactions are incorporated in these models for describing the energy
of stretch of the hydroxyl bond and angle bend of hydroxyl groups. Since parameters of
the CLAYFF are developed for reproducing observed physical properties of clay minerals
including interface with water, it has been widely used for MD simulations of water/clay
systems (e.g., [22–24,27–31]). Since its parameters were determined based on the SPC-
type water model, we chose the SPC/E models as the force field of H2O molecules for
consistency with the CLAYFF. The Lorentz–Berthelot rule was used for εij and σij of
unlike atoms. The cutoff radius was 1.1 nm for both the LJ potential and the short-range
Coulomb potential. The long-range Coulomb potential was calculated by the particle mesh
Ewald (PME) method. GROMACS 2019 [44] was used for MD simulations. VMD (version
1.9.3) [45] was used to visualize the snapshots.

Calculations were performed using the system shown in Figure 1. H2O phases are
in contact with (0 0 1) plane of the muscovite surface, which was set to be orthogonal
to the Z-axis of the simulation box. The area marked by the blue line in Figure 1 is the
original calculation system, and the area outside the frame is the image cell duplicated by
the periodic boundary conditions. This results in a system of slit pores in which the fluid
phase is sandwiched between the mineral phases. Muscovite is a 2:1 layered clay mineral,
and its chemical composition is represented by KAl2AlSi3O10(OH)2. The structure of the
muscovite model is based on the X-ray measurement [46]. Muscovite has a stable cleavage
surface on (0 0 1) plane (Figure 2a) and is commonly used for surface force measurement
experiments. The tetrahedral layer and the octahedral layer are included at a ratio of 2:1
(Figure 2b,c). The mineral surface is negatively charged by isomorphous substitution of
Si for Al at the tetrahedral layer at a ratio of 3:1 (red dotted line in Figure 2b,c). Cations
are adsorbed on the charged surface and a K+-muscovite model was adopted in this study.
Hereinafter, adsorption sites of K+ are called K+-site, and the other sites are called o-site
as seen in Figure 2d. The same arrangement as previous studies [24–28] was used for the
isomorphic substitution.
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Figure 1. A snapshot of the initial state of the calculation system (H2O/muscovite system). The area
outside the blue line is the area duplicated by the periodic boundary conditions. Each atom is colored
differently—oxygen: red; hydrogen: white; aluminum: cyan; silicon: yellow; potassium: orange.
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Figure 2. Schematic image of muscovite structure (a) XY view (b,c) XZ views of the surface
(d) K+-site (yellow: Si, blue: Al, red: O, white: H, orange: K).

The unit cell size of muscovite is (∆X, ∆Y, ∆Z) = (0.5199 nm, 0.903 nm, 2.011 nm), and
the unit cell was duplicated 6, 3, and 1 times in the X, Y, and Z directions, respectively.
Therefore, the dimension of the muscovite phase in the model was (3.119 nm, 2.709 nm,
2.011 nm). In a closed slit pore system, dynamic behaviors and hydration forces in confined
water can be different from those in an open system, as reported by Calero and Franzese
(2020) [47]. In this study, the water phase consisting of 1000 H2O molecules (for the systems
at 0.1 MPa/523 K and 0.1 MPa/573 K) or 1400 H2O molecules (for the rest of the systems) is
in contact with the muscovite surface. This resulted in a distance between the surfaces large
enough to evaluate density and diffusivity relative to the bulk phase, under the pressure
and temperature conditions in this study. The distance at each system is shown in Table S1
in Supplementary Materials.

3. Results and Discussion
3.1. Structural Properties
3.1.1. One-Dimensional (1D) Density Profile

1D profiles of water molecules as a function of distance from the muscovite surface are
shown in Figure 3. Graphs normalized by the bulk density for each water molecule, oxygen
atom, hydrogen atom, and K+ are shown in Figures S1–S5 in Supplementary Materials.
At 0.1 MPa and 298 K, the distribution has three characteristic peaks near the muscovite
surface. This is in good agreement with the result of measurement data [19–23] and
existing MD simulations [22–27]. As the temperature increases, density values decrease,
both near the muscovite surface and in the bulk region. The height of the first peak is not
significantly affected by increasing temperature. However, the height of the second peak
decreases with increasing temperature. Moreover, the third peak gradually becomes unclear
with temperature.

A similar trend is seen not only at 0.1 MPa but also at higher pressures of 10 MPa and
50 MPa. At 50 MPa and 673 K, at which water is in the supercritical state, the height of
the adsorption layer relative to the bulk density is higher than any other conditions, as
shown in Figures S1–S3 in Supplementary Materials. Moreover, the distinction of each
individual peak becomes unclear. It can be said that the adsorption region tends to lose its
characteristic structure as the temperature increases.
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Figure 3. Density profiles of H2O molecules vs. distance from the muscovite surface.

3.1.2. Two-Dimensional (2D) Density Map

Here, a detailed analysis was performed to gain more insights into the three characteristic
peaks seen in Figure 3. According to the distance from the muscovite surface d nm, the first,
second, and third layers are defined as the region having the width of 0.1 nm < d < 0.2 nm,
0.2 nm < d < 0.5 nm, and 0.5 nm < d < 0.7 nm, respectively. For these three regions, the
density maps on the XY plane were calculated as shown in Figure 4. To clearly show the
density of adsorbed water on the (0 0 1) surface of muscovite, the lattice is also overlaid
on the density maps. For comparison, the density values on the maps are normalized
by bulk density as in Figures S2 and S3 in Supplementary Materials. Two-dimensional
density profiles of (a) the first layer, (b) the second layer, and (c) the third layer at four
different conditions (0.1 MPa/298 K, 50 MPa/298 K, 50 MPa/473 K, and 50 MPa/673 K) are
shown in each panel of Figure 4, respectively. The detailed characteristics of each layer are
stated below.
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Figure 4. 2D normalized density maps of O and H atoms of H2O molecules at (a) the first layer, (b) the
second layer, and (c) the third layer; the lattice on the map is from Figure S6 in Supplementary Materials.

• The first layer

At the center of the hexagonal lattice, high-density areas of oxygen are seen. This is
consistent with the 2D density map calculated by the previous MD study [29]. It is found
that O and H of H2O can reside only at o-site. Figures S4 and S5 in Supplementary Materials
show that the height of K+ adsorption is about 0.15 nm from the muscovite surface, which is
in good agreement with previous measurement results (0.167 nm–0.177 nm by Schlegel et al.
(2006) [48]). In addition, as shown in Figure S7 in Supplementary Materials, K+ resides
at the center of the hexagon, which is in good agreement with a previous study by Ricci
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et al. (2014) [49]. Since the adsorbed K+ on the surface is found in the first layer, H2O
molecules adsorb at different sites other than the K+-site. This is also seen in the snapshot in
Figure 5b. As the temperature increases, high-density areas of hydrogen atoms become
wider. This indicates that H2O molecules at the adsorption site vibrate more intensively
at high temperatures than at lower temperatures, although the height of the first peak in
Figure 3 is almost unchanged.
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• The second layer

On K+-site, the water density is lower than in the other regions. In order to understand
this, the density profiles of O and H on K+-site and o-site are shown in Figure 6. For
calculating these local density profiles, K+-site is defined as the region within 0.138 nm
(ionic radius of K+) from the position K+ is adsorbed on the muscovite surface (see Figure 2
and Figure S8 in Supplementary Materials), while the other sites are defined as o-site. In
Figure 6, the profiles on o-site are similar to those in Figure 3. In contrast, on K+-site, neither
O nor H exists around K+ (d < 0.3 nm; the first and second layers), which is quite different
from the profiles on o-site. The low-density areas on K+-site on the 2D map in the second
layer in Figure 4b can be interpreted from these local density profiles in Figure 6.
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• The third layer

High-density areas of O and H of H2O are seen even at K+-site, although the density
profiles become more homogeneous than those in the first and second layers. As the
temperature increases, the density is more homogeneously distributed. This is consistent
with the trend in Figure 3 that the third peak becomes less sharp as the temperature
is increased.

3.1.3. 1D Profile of the Orientation Angle

Figure 3 suggests that there exist three adsorption layers of water on the muscovite
surface. Previous studies reported that the formation of distinct water layers is related
to the polarity-based orientation of the water molecules [22]. To discuss the effect of the
temperature on the structural change, the orientation angle was calculated. The orientation
angle θ is defined as shown in Figure 7, and the averaged orientation angle is plotted as a
function of the distance from the muscovite surface in Figure 8. Cosine of the angle was
computed and averaged over time and molecules, which was then presented in terms
of the angle θ (◦), as calculated in previous studies [50–52]. If a water molecule rotates
randomly, the time-averaged angle becomes 90◦.
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As shown in the snapshot in Figure 5a, hydrogen atoms of H2O molecules adsorb
directly on the muscovite, which results in the high orientation angle (θ~150◦) in the first
layer (0.1 nm < d < 0.2 nm) in Figure 8.

In the second layer (0.2 nm < d < 0.5 nm), the profile of the orientation angle has two
extreme values (~75◦ and ~115◦). This indicates that the water molecules tend to exhibit a
specific orientational order in the second layer, although not so as in the first layer.
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(b) 10 MPa (c) 50 MPa; a snapshot of a H2O molecule at each of three extreme values of θ is shown.

In the third layer (0.5 nm < d < 0.7 nm), a smaller deviation from 90◦ is observed in
Figure 8. This means that the third layer is less structured than the first and second layers.
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Figure 9. 2D Maps of the orientation angle 𝜃 at 50 MPa; the lattice on the map is from Figure S6 

in Supplementary Materials. 
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Figure 9. 2D Maps of the orientation angle θ at 50 MPa; the lattice on the map is from Figure S6 in Supplementary Materials.

The profiles at the ambient condition are in good agreement with the result of MD
simulation by Van Lin et al. (2019) [22]. As the temperature increases, the deviation from
90◦ is gradually reduced (see an enlarged view in Figure S9 in Supplementary Materials).
This indicates that the water molecules at higher temperature are more likely to rotate
freely than those at lower temperature.

3.1.4. 2D Maps of the Orientation Angle

To gain more insights into the orientation angle θ, the 2D maps of the orientation angle
on the muscovite (0 0 1) surface are plotted in Figure 9. Additionally, in order to analyze
the difference of the 2D profiles on K+-site and o-site, the 1D profiles of θ on K+-site and
o-site are plotted in Figure 10. Moreover, the distributions of cosθ in each of the three layers
are plotted in Figure 11.
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Figure 10. Profiles of the orientation angle 𝜃 on K+-site (red) and o-site (green). 
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Figure 10. Profiles of the orientation angle θ on K+-site (red) and o-site (green).

• The first layer

High-angle areas are observed at o-site. This trend is also seen in the 2D density map of
oxygens and hydrogens in the first layer, as shown in Figure 4. Figure 10 shows that high θ
regions in the first layer come from the orientation on o-site. This is interpreted from the 1D
density profiles in Figure 6; adsorption peaks are seen in the order of hydrogen and oxygen.

Additionally, the distribution of cosθ exhibits a sharp peak at θ~180◦ in Figure 11a. By
comparing the distributions at 298 K, 473 K, and 673 K at 50 MPa, we see that the peak
height is reduced as the temperature increases. This shows that they can more easily rotate
at high temperatures, though the interaction from the muscovite surface constrains H2O
molecules to some extent.
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• The second layer

In the second layer, the distribution profiles on K+-site and o-site are clearly different.
The former is higher than 90◦, while the latter is lower than 90◦.

These different patterns can be explained by the 1D profile of θ on K+-site and o-site in
Figure 10. In the second layer, θ is higher than 90◦ while it is 40◦–50◦ on K+-site. This leads
to the different patterns in the 2D maps. Different orientations on K+-site and o-site can be
understood by looking into the 1D density profile in Figure 6. On o-site, the adsorption
peaks are seen in the order of hydrogen and oxygen from the muscovite surface. This
indicates that H2O molecules adsorb with high orientation angles. In contrast, on K+-site,
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the adsorption peaks are seen in the order of oxygen and hydrogen from the muscovite
surface. This indicates that H2O molecules adsorb with low orientation angles, directing the
oxygen atoms toward the muscovite surface. In Figure 10b,c some outliers are observed at
d~0.2 nm at high temperatures. This is probably because a small number of H2O molecules
can exist on K+-site due to the high kinetic energy of the H2O molecules.

Temperature effect on the orientation angle in the second layer is manifest in the oscil-
latory profile for o-site in Figure 10 and its enlarged view in Figure S10 in Supplementary
Materials. From these figures, the deviation from 90◦ around d = 0.35 nm is smaller as the
temperature increases from 298 K to 673 K while that around d = 0.45 nm is larger in the
order of 298 K > 473 K > 673 K. The large deviation is likely to be related to the peaks of
the cosθ distribution at cosθ > ~0.7 and cosθ < ~−1, as shown in Figure 11b and Figure S11
in Supplementary Materials. Further studies are required to interpret the changes in the
amplitude and the period of the fluctuation.

• The third layer

High- or low-angle areas are not clearly observed. This is consistent with the density
profile in Figure 3 that shows that the third peak is less distinct than the first and second
peaks. This indicates that water molecules are less structured in the third layer. As shown
in Figure 11c, the distribution is flatter than those for the first and the second layers. This
means that the distribution gets closer to that in bulk phase seen in Figure 11d, which is
almost a flat distribution.

3.1.5. Hydrogen Bonding

Hydrogen bonding is considered to play a key role in forming the hydrogen network
structure of water, not only in bulk water [53,54], ice [55], and hydrate [56], but also in
adsorbed water [24]. Here, we focus on the number of hydrogen bonds per H2O molecule
< nHB > to discuss the change in the structure of the adsorption layer due to the change
in temperature. We calculated < nHB > based on the existing criteria [57] (see Figure S12
in Supplementary Materials), which is commonly used with “gmx hbond” command in
GROMACS [44]. In Figure 12, < nHB > is plotted as a function of distance from muscovite
surface. Figure 12a–c shows < nHB > between H2O-H2O, H2O-muscovite, and their sum,
respectively. Compared to the result at 0.1 MPa/298 K with a previous MD simulation
study by Wang et al. 2005 [24] in which < nHB > is calculated for water/muscovite
interfacial system, all of < nHB > between H2O-H2O, H2O-muscovite, and summation
of them at the ambient condition are in good agreement with their result. Additionally,
we compared < nHB > of H2O-H2O in the bulk region for verification of the temperature
effect. A number of studies have measured and calculated < nHB > of H2O-H2O in a
wide range of pressure and temperature conditions, and our results are in good agreement
with them [58–60].

Where the distance from the surface is smaller than 0.5 nm, < nHB > of H2O-H2O
decreases as the distance gets smaller. This is consistent with previous studies using
water/hydrophilic surfaces [24,61,62] as well as using hydrophobic surfaces [63,64]. Zhang
et al. 2009 reported that the interactions between hydrophilic surface and water frustrate
the hydrogen bonding network of water, resulting in the reduction of < nHB > of H2O-
H2O [61]. Considering the strong hydrophilicity of muscovite, the decrease of < nHB >
near the surface in Figure 12a is probably caused by the same mechanism. There is a small
hump at around 0.2 nm from the surface. It gets smaller as the temperature increases,
and < nHB > of H2O-muscovite increases as the distance gets smaller up to around 2.
The temperature effect on < nHB > of H2O-muscovite is not visible as seen in Figure 12b.
As a result, total < nHB > is the highest at the first layer and it decreases at the second
layer, with the lowest value around 0.3 nm from the surface. Our analysis suggests that
the third layer is almost the same as the bulk region from the viewpoint of the hydrogen
bonding as well as the orientation of H2O molecules. These results clearly suggest that the
destructuralization of the water adsorption layer is affected by the decrease in the number
of hydrogen bonding.
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In this study, we chose the SPC/E model as the force field for H2O for consistency
with the CLAYFF for muscovite in the same way as in previous studies [22,23,27–31]. It is,
however, reported that the SPC/E model overestimates the energy of hydrogen bonding of
H2O molecules [65]. Therefore, further investigation into the effect of choice of the force
field on the number of hydrogen bonding is necessary in a future work, especially for more
precisely evaluating the contribution of hydrogen bonding to the water structure in the
adsorption layers.

3.2. Dynamic Properties

One-dimensional self-diffusion coefficient D f is calculated from the mean square
displacement as follows:

D f =
< ∑N

j=1
(
dj(t)− dj(t0)

)2
>

2N(t− t0)
(2)

where dj(t0) and dj(t) are the distance between a molecule j and the surface at timestep t0
and t. N is the number of H2O molecules, and < > indicates an average over t0.

D′f for a molecule j is calculated from:

D′f (j) =
<
(
dj(t)− dj(t0)

)2
>

2(t− t0)
(3)

where < > indicates an average over t0. D f as a function of d is then evaluated using ρ(j, d),
which is the probability to find molecule j at d [66]:

D f (d) =
∑N

j=1 D′f (j)ρ(j, d)

∑N
j=1 ρ(j, d)

(4)

D∗ f (d), which is the calculated self-diffusion coefficient of water molecules normal-
ized by the bulk value, is plotted in Figure 13. D f (d), without normalization, is plotted
in Figure S13 in Supplementary Materials. D f (d) at bulk regions is in good agreement
with the self-diffusion coefficient of water molecules obtained by the MD simulation in
the previous study [67–70]. D f (d) at high temperature conditions (e.g., 673 K) is more
than 10 times higher than that at ambient temperature. It is confirmed that diffusivity
increases as the temperature increases, and the diffusivity tends to decrease as approaching
the muscovite surface. The same trend was seen in a water/quartz interfacial system in a
previous MD simulation [66]. The D∗ f (d) profiles suggest that the interactions from the
interface have some influence up to d~2.0 nm, which is far beyond the range of three layers,
though the strength of influence depends on the pressure and temperature conditions. In
all cases, D∗ f (d) decreases as d decreases. Focusing on the range of three layers, D∗ f (d) at
d < 0.5 nm is less than 60% of that in the bulk region. D∗ f (d), however, slightly increases in
the very close vicinity of the surface because a repulsive force from the muscovite surface
acts on the water molecules when they approach the vicinity of the muscovite surface.
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Figure 13. The normalized self-diffusion coefficient of H2O molecules D∗ f (d) vs distance from the
muscovite surface.

At low temperature conditions such as 298 K and 323 K, D∗ f (d) decreases sharply in
the region closer to 0.5 nm from the muscovite surface. At 50 MPa/298 K, for example,
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the sharp peak of D∗ f (d) in the first layer is 75% lower than that in the bulk region.
Moreover, at these temperature conditions, a difference of D∗ f (d) between d < 0.2 nm and
0.2 nm < d < 0.5 nm is clear; therefore, this result shows that dynamic properties are fairly
different at each of the three layers. The first and second layers are much less diffusive
than the third layer. At higher temperatures such as 423 K and 473 K, D∗ f (d) decreases as
d decreases, though the decrease in the first and the second layer is less clear than that in
lower temperature conditions. At temperature conditions higher than 523 K, D∗ f (d) in the
first and the second layers is not clearly different.

4. Implication to Hydration Forces and Wettability

The layered ordering of the interfacial water is the origin of the hydration forces (also
called solvation forces or structural forces) between hydrophilic surfaces in aqueous solu-
tion, which are essential to interpret a variety of phenomena such as colloidal dispersion or
the swelling of clays [18,71]. For smooth surfaces such as the (0 0 1) plane of muscovite, the
hydration forces consist of monotonic repulsive forces and oscillatory forces [71]. Uhlig
et al. (2021) [23] confirmed that the oscillation is derived from the layered structure of water
on muscovite by the AFM measurement of hydration forces of water/muscovite interface
and MD simulation of the adsorption structure. Since hydration forces originate from the
structure of the water adsorption layer, they are affected by temperature change that alters
the structure of interfacial water as shown in our calculation. Structural forces derived from
hydrogen bonding, which cannot be interpreted by the DLVO theory, largely contribute
to hydration forces [18,72]; therefore, the decrease in the number of hydrogen bonding
shown in 3.1.5 implies the decrease of the hydration forces. In fact, raising temperature is
expected to decrease the structural repulsion [32,33], though this has not been measured
or calculated at high-temperature conditions such as 673 K. Although our results imply
that both magnitudes and periodicity of the fluctuation of the hydration forces are likely
to change due to the temperature change, in order to understand quantitative effect it
is necessary to interpret the changes in the density and the orientation profiles from the
energetic viewpoint.

Hydration forces have a crucial role in determining wettability [72,73]. In previous
studies, in water/gas/hydrophilic mineral or water/oil/hydrophilic mineral systems,
adsorbed water film, the thickness of which is on the order of a nanometer, is formed
between the non-wetting phase (gas or oil) and the mineral surface as shown in Figure 14.
Mugele et al. (2015) [74] measured the thickness in decane/brine/muscovite systems, and
it was from less than 1 nm to 10 nm depending on the ion species and concentration. MD
simulation of decane/brine/muscovite systems shows that the thickness is from 0.5 nm
to 1.3 nm depending on the salinity [75,76]. Based on the interfacial thermodynamics, the
potential energy of the water film is known to be a crucial factor that determines the contact
angle based on the augmented Young Laplace equation [72,73,77–81]. Churaev (1988) [32]
pointed out the decrease in the structural repulsion as a cause of the worsening of the
hydrophilicity reported by previous study [82]; however, quantitative analysis focusing on
the changes in the water film due to the temperature change has not been conducted and it
is expected as a future work.
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Figure 14. Schematic image of the thin film with two different thicknesses (thinner: h1; thicker: h2) in the gas/water/mineral system.

The film thickness depends on a thermodynamic equilibrium condition, and there can
be multiple thicknesses [72,73,80]. A previous study based on the augmented Young Laplace
equation has shown that the two thicknesses h (thinner: h1 = 0.3 nm, thicker: h2 = 0.7 nm)
have different contact angles for the CO2/brine/muscovite system [80]. Hydration forces
largely affect the stability of the film in this system, and these two thicknesses correspond
to the second and third layers of the adsorbed water on the muscovite obtained in this
study. Although the dynamic properties of these films were not known, from Figure 13,
D∗ f (d) of the third layer is 25%–40% lower than that of the bulk, and that of the second
layer is 40%–75% lower than that of the bulk, which are highly temperature-dependent.
Due to the difference in fluidity at the boundary between the second and third layers, the
third layer will disappear easily depending on flow and thermodynamic conditions, while
the second layer, that is, a thinner film, will remain on the surface. Although the second
layer is more structured than the third layer, it is not perfectly immobile but has diffusivity.
Therefore, transport of ions or some other molecules through the film can occur differently,
depending on the film thickness and its property. This can be a key to understanding the
time dependence of interfacial phenomena such as wettability alteration.

Future work is expected to study the property of the water adsorption layer under the
existence of gas phases. We are going to work on the free energy calculation by following
Morishita et al. [83,84] to study the stability of the adsorption layer. Moreover, calculation
of the diffusivity at each adsorption layer in parallel to the mineral surface following the
survival probability of molecules [85] at each layer is another future outlook for quantitative
analysis of the mass transport in the thin water film.

5. Conclusions

We performed molecular dynamics (MD) simulations to study the structure and
dynamics of water adsorption layers on muscovite mica at several pressures (0.1 MPa,
10 MPa, and 50 MPa) and temperatures (298 K, 323 K, 373 K, 423 K, 473 K, 523 K,
573 K, 623 K, and 673 K). We revealed structural changes of the adsorption layer based on
analyses on the 1D and 2D profiles of density and orientation of H2O. Additionally, we
calculated self-diffusion coefficients of H2O molecules in the adsorption region and the
bulk region. The results show that the difference between these dynamical properties near
the interface and in the bulk region is reduced as the temperature increases. Finally, we
discussed implications to hydration forces of muscovite surface and wettability, which are
significant interfacial properties in multiphase systems such as gas/brine/mineral systems,
focusing on the structure and dynamics of the water adsorption film.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13091320/s1, Table S1: Distance between two muscovite surfaces, Figure S1: Normalized
density profiles of H2O, Figure S2: Normalized density profiles of oxygen of H2O, Figure S3: Nor-
malized density profiles of hydrogen of H2O, Figure S4: Normalized density profiles of K+ on the
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of K+ on the muscovite surface, Figure S8: Schematic image of one K+-site for calculating profiles of
density and the orientation angle, Figure S9: Enlarged view of Figure 8c, Figure S10: Enlarged view
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50 MPa, Figure S12: Schematic image of the definition of hydrogen bond, Figure S13: Self-diffusion
coefficient of H2O molecules vs distance from the muscovite surface.
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