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Abstract: To improve knowledge of this matter, the potential application of two gridded meteoro-
logical products (GMPs), the China Meteorological Assimilation Driving Datasets for the SWAT
model (CMADS) and Climate Forecast System Reanalysis (CFSR), are compared for the first time
with data from ground-based meteorological stations over 6 years, from 2008 to 2013, over the Cau
River basin (CRB), northern Vietnam. Statistical indicators and the Soil and Water Assessment Tool
(SWAT) model are employed to investigate the hydrological performances of the GMPs against the
data of 17 rain gauges distributed across the CRB. The results show that there are strong correlations
between the temperature reanalysis products in both CMADS and CFSR and those obtained from
the ground-based observations (the correlation coefficients range from 0.92 to 0.97). The CFSR
data overestimate precipitation (percentage bias approximately 99%) at both daily and monthly
scales, whereas the CMADS product performs better, with obvious differences (compared to the
ground-based observations) in high-terrain areas. Regarding the simulated river flows, CFSR-SWAT
produced “unsatisfactory”, while CMADS-SWAT (R2 > 0.76 and NSE > 0.78) performs better than
CFSR-SWAT on the monthly scale. This assessment of the applicative potential of GMPs, espe-
cially CMADS, may further provide an additional rapid alternative for water resource research and
management in basins with similar hydro-meteorological conditions.

Keywords: Cau River basin; CFSR; CMADS; SWAT model; tropical monsoon; reanalysis data; GMP;
extreme weather event

1. Introduction

Accurate and complete weather information provides important inputs into hydro-
logical models, supporting flood forecasting and climate change impact assessments and
serving as scientific guidance for water resource management [1–3]. Normally, data col-
lected from meteorological stations are the most reliable and accurate data [4,5]; however,
these data are insufficient to represent the actual weather conditions occurring in river
basins due to their low spatial coverage [6,7], and as they are affected by signal distor-
tions [8–10]. Furthermore, the acquisition of reliable temperature and precipitation data
is a difficult task because of dynamic climatic conditions, altitudes, and surface proper-
ties [11–14]. These data are especially limited in developing countries due to technical and
financial limitations [3,11–13,15].
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Currently, satellite products with high spatiotemporal resolutions have become po-
tential additional data sources for hydrological research, especially in areas where the
number of surface observation stations is not adequate [13,16,17]. The use of these datasets
in different hydrological models has yielded positive results. Ankur Srivastava et al. used
the Variable Infiltration Capacity (VIC-3L) semi-distributive model to estimate evapotran-
spiration (ET) on a grid-scale with satisfactory results over a tropical river basin in eastern
India [18]. The author has, also on this river, successfully quantified its main hydrological
components using the VIC-3L semi-dispersion model and the Identification of unit Hy-
drograph and Component flows from the Rainfall, Evapotranspiration and Streamflow
(IHACRES) conceptual model [19]. Another conceptual model, the Satellite-based Hy-
drological Model (SHM), has been evaluated with positive results but the scope has not
been expanded as the product has not yet been developed outside India [20]. Currently,
GMPs products are commonly used in SWAT, which is a semi-hydrological model with
autocalibration and validation abilities [21–23].

In this study, the National Centers for Environmental Prediction-NCEP-CFSR and
CMADS datasets are used because they have higher spatial resolutions than other products
and are openly available for the study areas, covering both temperature and precipitation.
Furthermore, these data are developed based on satellite data sources and then calibrated
against ground-based observations to obtain better estimates [23–25]. Dile et al. [25]
simulated the composition of the water and rainfall balance in the upstream sub-basins
of the Blue Nile using CFSR data with satisfactory results, and found this dataset to be
feasible in a region where data are scarce. A case study conducted in Africa by Worqlul
et al. [26] reported that CFSR (and The Multi-Sensor Precipitation Estimate-Geostationary
(MPEG) data performed best compared to TRMM data at the point-to-grid ratio and
catchment scale over Lake Tana, Ethiopia. The authors also concluded that CFSR data
are suitable for predicting extreme events using the Parameter Efficient Distributed (PED)
and Hydrologiska Bryan Vattenbalansavdelning (HBV) models upstream of the Blue Nile
basin [27]. Fuka et al. [23] assessed the reliability of CFSR data for different climate and river
basin types in the U.S and Africa and recommended that these data be used as minimal
indications with acceptable performances in hydrological models. In contrast, Mou Tan
et al. [4,15] found that CFSR precipitation data had the lowest performance compared to
other precipitation estimates and could not be used in runoff simulations in Malaysia or
the humid tropics. Other studies by Zhu et al. [28] on two wet river basins in China and
by Vu et al. [13] on the Dak Bla River, Vietnam, showed that CFSR exhibits potential for
detecting rain events; however, caution should be noted when predicting runoff because of
the low performance of this product.

Recently, the CMADS dataset has been used more frequently in hydrological studies.
Cao et al. [29] used CMADS data to simulate the runoff and water balance at daily and
monthly scales over the Lijiang River basin, South China. Studies by Lu et al. [2,12] on the
Yangtze River basin and Poyang Lake and by X. Y. Meng and Zhang et al. [30] in Northeast
China evaluated the overall performances of the CFSR and CMADS datasets based on
ground observations. These authors determined that CMADS showed a better performance
compared to CFSR in terms of temperature, precipitation, and flow regeneration.

The gridded meteorological products used in hydrological models need to be carefully
assessed because of their variable performances among different areas (e.g., microclimates,
storm, surface conditions, elevations, and topographic directions) and because of the
uncertainty inherent in forecasting models [12,14,31,32]. In addition, in-depth studies on
hydrology and the need to improve water resource management require a full awareness of
the advantages and disadvantages of the GMPs that are popularly studied across different
regions [8]. In general, CFSR and CMADS can be used as inputs in hydrological studies
because of their uniform datasets, and these products can be used immediately in flow
simulations. This is the great advantage of these two reanalysis datasets when comparing
them to satellite precipitation products, which lack accompanying temperature data and
heterogeneous timescales. To the best of our knowledge, the applicability of CMADS
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and CSFR data for hydro-meteorological studies has not yet been adequately investigated
outside of China, including in Southeast Asia.

The Cau River basin (CRB) in the Thai Binh River network is located in northern
Vietnam and plays an important social and economic role. The Cau River flows through six
administrative provinces, including Hanoi city. Bui et al. [33] integrated the SWAT model
with QUAL2K to simulate the water quality (mainly the organic and nutrient contaminant
contents) in the CRB using limited data. Tran et al. [34] used the SWAT model to estimate
the nitrogen (N) load with multiple polluting sources along the CRB, one of the three
most polluted river basins in Vietnam. To date, assessments of the potential of CFSR data
and especially CMADS data in hydrological applications have not been given sufficient
attention. Furthermore, global climate change associated with extreme weather events
adds complexity to water resource management issues in the CRB.

In this paper, CFSR and CMADS data are used for the first time in hydro-meteorological
research over a specific river basin in Vietnam. For the aim of assessing the reliabilities
and capabilities of these datasets in the hydrological model, in this study we have carried
out the following specific tasks: (i) to use data from ground-based meteorological stations
(GMS) to validate the CFSR and CMADS precipitation/temperature products on temporal
and spatial scales using various statistical indicators; (ii) to assess the abilities of these
datasets in hydrological simulations from 2008 to 2013 using the SWAT model; and (iii) to
investigate the abilities of these GMPs to capture extreme weather (including rain events,
extreme heat events, cold events, etc.) and streamflow events occurring in the CRB.

2. Materials and Methods
2.1. Study Area

The CRB (21.07◦–22.18◦ N and 105.28◦–106.08◦ E) contains the Cau River, the main
tributary of the Thai Binh River, which is the second-largest river system in northern
Vietnam. The river flows in a north-south direction, originating from the high mountains
in northwest Bac Kan province. It flows through six administrative provinces and cities
(including northern Hanoi city in the downstream reach). The river basin covers an area of
nearly 6300 km2 with a total length of ~1603 km; the mainstream length is 290 km [34].

The topography in the basin changes from an altitude of approximately 1000 m in
the surrounding mountains in the west, north, and northeast regions to the plains in the
central and south regions with elevations below 10 m, alternating with hills with elevations
ranging between 200 and 400 m above sea level. The CRB is characterized by a tropical
monsoon climate with an annual mean temperature of approximately 23 ◦C. However,
due to the influence of the northeast monsoon, from December to February, the monthly
average temperature declines below 18 ◦C. The annual mean precipitation is ~1600 mm, of
which approximately 80% occurs in the wet season (May to October) and the rest occurs in
the dry season (November to April). Land use in the region (Figure 1b) is divided into 9
major categories; approximately 49% of the region is natural forestland (the main upstream
area has a complex mountainous topography), grassland, and shrubland (distributed in the
midland areas of Bac Kan and Thai Nguyen provinces). Moreover, agricultural land (36%)
and built-up regions (8%) are located in the downstream region of the river, where there
are a crowded population and dynamic economic development. Notably, the irrigation
canal system serving agricultural activities in the basin is quite complete. The Gia Bay
hydrological station (Thai Nguyen province) measures the discharge in the center of the
river basin.
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2.2. Model Input Data

The spatial data required as inputs for the SWAT model include the digital elevation
model (DEM), soil type map, and land use map. DEM data with a 30 m resolution were
extracted from the United States Geological Survey (USGS). The land use data representing
2005 were collected from the Ministry of Natural Resources and Environment (MONRE)
and were classified based on the SWAT format. Soil maps were obtained from the Food
and Agriculture Organization of the United Nations (FAO), and the soil properties were
determined based on the soil characteristic data of Vietnam.

2.2.1. NCEP-CFSR

CFSR is a reanalysis product developed by the US National Center for Environmental
Prediction. This system was collected by NCEP from 1979 to July 2014 with a resolution of
0.31◦ (~38 km) based on the assimilation of atmosphere-ocean-land surface-sea ice system
data at a global, coupled scale [23,25,35]. In the CRB, the daily meteorological data of 15
grid points were downloaded from the official website (https://globalweather.tamu.edu/
(accessed on 31 March 2021)).

2.2.2. CMADS Data

The CMADS dataset was developed by the Agricultural University of China based
on the integration of the Local Analysis and Prediction System/Space-Time Multiscale
Analysis System (LAPS/STMAS), the Climate Prediction Center Morphing (CMROPH)
global precipitation data, and China’s National Meteorological Information Center. The
data sources used for the CMADS series, available from 2008 to 2016 and covering all of
East Asia (0◦–65◦ N; 60◦–160◦ E), were collected from nearly 40,000 regional automated
stations belonging to 2421 national stations; this ensures that the CMADS data are widely
available and increases the accuracy of the dataset [24,30,36]. In this paper, we use CMADS
v1.1, with a spatial resolution of 0.25◦ and 24 available grid points (this product is available
from the following website: http://www.cmads.org/ (accessed on 10 April 2021).

https://globalweather.tamu.edu/
http://www.cmads.org/
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2.2.3. GMS Data

GMS data from 13 rain gauges and four daily meteorological stations in the CRB were
obtained from the Meteorological and Hydrological Administration of the Ministry of
Natural Resources and Environment (MORNE). On the CRB, only the Gia Bay hydrological
station in Thai Nguyen province (which has been recording data from 1997 to the present)
is used in this study, as other stations have stopped working or have collected inadequate
data. No information is available at the river basin outlet.

The GMP and GMS data necessary for the SWAT model include the daily maxi-
mum/minimum temperature and precipitation data collected and processed from 1 Jan-
uary 2008 to 31 December 2013 to ensure consistency in the evaluation and comparison
of the performances of the input data. Detailed information about the sources and the
spatial/temporal resolutions of the products is shown in Table 1.

Table 1. The input datasets used for the meteorological assessment and hydrological simulation in this study.

Data Type Product Spatial Resolution Temporal Resolution Sources

Weather
Data

CFSR 0.31 × 0.31◦ (15 grids) Daily (1979–2014) NCEP 1

CMADS (v1.1) 0.25 × 0.25◦ (24 grids) Daily (2008–2016) CAU 2

GMS Point (17 stations) Daily (2008–2013) MORNE 3

Geography
DEM 30 × 30 m 2005 USGS 4

Soil 1 × 1 km 2005 FAO 5

Land use 1 × 1 km 2005 MORNE 3

Hydrology Discharge Point (1 station) Daily (2008–2013) MORNE 3

Note: 1: National Centers for Environmental Prediction; 2: China Agricultural University; 3: MORNE: Ministry of Natural Resources and
Environment, Vietnam; 4: USGS: United States Geological Survey; 5: FAO: Food and Agriculture Organization.

2.3. Hydrological Modeling Method

The SWAT model is a semi-distributed hydrological model developed by the Agricul-
tural Research Service of the United States Department of Agriculture [22]. The hydrologic
cycle as simulated by SWAT is based on the water balance equation, which considers
precipitation, irrigation, evapotranspiration, surface runoff, lateral flow, and percolation to
shallow and/or aquifers:

SWt = SW0 +
t

∑
i=1

(Rday − Qsu f − ETa − Pi − QRi) (1)

where SWt is the final soil water content, SW0 is the initial soil water content on day “i”,
“t” is the time (days), Rday, Qsuf, ETa, Pi and QRi are the daily amounts of precipitation,
runoff, evapotranspiration, percolation, and return flow on day “i”, respectively (all units
are mm H2O) [37]. With outstanding advantages, SWAT has been widely used to simulate
hydrological processes and conduct impact assessments of land management methods on
water and point-/non-point-source pollution in river basins and watersheds [21,37]. Inputs
of SWAT model simulations include weather data (e.g., precipitation, maximum/minimum
temperature), soil properties, topography, vegetation, and land management practices. The
2012 ArcSWAT version, an interface in ArcGIS 10.2, was used to build the hydrological
study in the CRB. Installation guidelines and research papers related to the SWAT model
are available at https://swat.tamu.edu/ (accessed on 5 April 2021), as well as in an online
open-source document [38].

Using 30 m DEM data and the river network, the basin delimiter in ArcSWAT creates
42 sub-basins in the CRB. These sub-basins are further subdivided into 405 hydrological
reactive units (HRUs) with different land, topographic, and soil management characteristics.
The GMS, CFSR, and CMADS weather data are then provided as inputs for the flow
simulations (hereinafter referred to as the SWAT model controlled by CFSR_, CMADS_,
and GMS_), and the results are verified with the hydrological observations.

https://swat.tamu.edu/
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2.4. Evaluation Indicators
2.4.1. Index Evaluates Temperature and Precipitation

Over the CRB, only four meteorological stations record maximum/minimum tempera-
ture data, while the number of grid points in CMADS/CFSR are relatively high. Therefore,
authentication of the temperature data was conducted only for the meteorological stations.
Moreover, precipitation data were collected from 13 stations covering the period from
2008–2013 at the catchment scale. A point-to-pixel assessment was applied by selecting the
closest GMP grid points as references for authentication against the GMS data.

To assess the quality of CMP in collecting temperature and precipitation data, the
following indicators were used.

(i) Four basic statistical indicators: the correlation coefficient (CC), mean absolute error
(MAE), root-mean-square error (RMSE), and percentage bias (PBIAS) [8,17,39]. The
calculation formulas of these indicators are shown as follows:

CC =
∑n

i=1 (Oi − O)(Gi − G)√
∑n

i=1 (Oi − O)
2
√

∑n
i=1 (Gi − G)

2
(2)

MAE =

∣∣∣∣ 1n∑n
i=1 (Oi − Gi)

∣∣∣∣ (3)

RME =

√
1
n∑n

i=1 (Oi − Gi)
2 (4)

PBIAS =
∑n

i=1 (Gi − Oi)

∑n
i=1 Oi

× 100 (5)

where Gi and Oi are the gridded and observed temperature (or precipitation), respec-
tively; G and O are the average gridded and observed temperature (or precipitation),
respectively; “i” is representative of each individual measurement; and “n” is the
number of measurements. A high correlation coefficient value and low MAE, PBIAS,
and RMSE values indicate the reliable performance of a GMP in correlation with
GMS [2,4,40].

(ii) Three statistical-categorical indicators were used to evaluate precipitation events,
including the probability of detection (POD), false alarm ratio (FAR), and critical
success index (CSI) [39]. Their formulas are as follows:

POD =
a

a + c
(6)

FAR =
b

a + b
(7)

CSI =
a

a + b + c
(8)

where “a” represents the correct detection of precipitation (from CFSR/CMADS and
GMS); “b” represents a false alarm (when precipitation is detected in the CFSR/CMADS
products but is not observed in GMS); and “c” is a predictive error (when precipita-
tion is observed from the rain gauges but not estimated from CFSR/CMADS). These
values range from 0 to 1. A high FAR value and low POD and CSI values imply a
more accurate quantification [41,42].

(iii) To evaluate the effectiveness of GMPs in capturing extreme weather events, this
study selected indicators proposed by the “Climate Change Detection and Indica-
tor Experts Group” [43] and “Circular on technical regulations and the process of
dangerous hydro-meteorological forecasting of the MORNE, Vietnam” (2016). Ac-
cordingly, the extreme events related to temperature include: (1) very cold events
in which the average temperature is between 13◦ and 15 ◦C (Tav13–15 ◦C/day), (2)
damaging cold events in which the average temperature during the day is below
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13 ◦C (Tav13 ◦C/day), (3) strong sun events in which the maximum temperature is
in the range of 37◦–39 ◦C (Tmx37–39 ◦C/day), and (4) scorching hot days in which
the maximum temperature is recorded above 39 ◦C (Tmx39 ◦C/day). For rainfall, in
addition to the indicators R10 mm/day and R50 mm/day, we propose to test a very
heavy rainfall threshold of R100 mm/day to further assess the impact of this heavy
rain layer on river flow.

2.4.2. Flow Indicators

The performance of the SWAT model in simulating the river flow in the CRB was eval-
uated using the NSE (Nash Sutcliffe efficiency coefficient), R2 (coefficient of determination),
and PBIAS (percent bias) statistics [4,8,41]. The equations (Equations (9)–(11)) of these
indicators, as well as the criteria of Moriasi et al. [44] (in terms of performance ratings as
“very good”, “good”, “satisfactory”, or “unsatisfactory” at the monthly scale (see Table 2)),
are presented as follows:

R2 =

[
∑n

i=1 (Si − S)(Oi − O)
]2

∑n
i=1 (Si − S)2∑n

i=1 (O1 − O)
2 (9)

NSE = 1 − ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi − O)

2 (10)

PBIAS =
∑n

i=1 (Oi − Si)

∑n
i=1 Oi

× 100 (11)

where Si and Oi are the simulated and observed values, respectively; S and O are the aver-
ages of the simulations and observations at event “i”, respectively; and “n” is the number
of events. The R2 value (ranging from 0 to 1) represents the linear cohesion of the observed
and simulated flows, with an ideal value of 1 [32]. The PBIAS value shows the tendency of
the average simulated flow to be larger/smaller (overestimated/underestimated) than the
observed data [4,13,41]. For example, a PBIAS value of −15% means that the simulated
flow from CMADS/CFSR is 15% smaller than the observed flow. Moreover, this PBIAS
value shows the tendency of the data product to underestimate the flow. On the other
hand, a PBIAS value of 200% reflects that the simulated flow by the GMP is overestimated
and is twice as much as the observed flow. The NSE value is a dimensionless statistic that
determines the relative magnitude of the simulated variance against the observed data
variance. The NSE value ranges from −∞ to 1. The model prediction is more accurate with
an NSE value close to 1 [45].

Table 2. The criteria used for evaluating the SWAT model performance ratings for simulating flow at
a monthly time scale.

Indicator Very Good Good Satisfactory Unsatisfactory

R2 R2 > 0.85 0.75 < R2 ≤ 0.85 0.6 < R2 ≤ 0.75 R2 ≤ 0.6
NSE NSE > 0.8 0.7 < NSE ≤ 0.8 0.5 < NSE ≤ 0.7 NSE ≤ 0.5

3. Results
3.1. Compare CFSR and CMADS Temperatures Using GMS Data

Within the CRB, there are 4 meteorological stations with temperature data information,
while the densities of the CMADS and CFSR grid points are much higher; thus these
monitoring stations are compared with the nearest CFSR and CMADS grid points. The
average temperature and CC, MAE, RMSE, and MBE values selected to evaluate the
accuracy of the maximum and minimum temperatures in the CMADS and CFSR datasets
on daily and monthly scales are shown in Table 3. In general, Tmax and Tmin tend to
increase gradually from north to south, i.e., from high latitudes and hills (e.g., Bac Kan and
Dinh Hoa stations) to lower latitudes (e.g., Bac Ninh station). Both the CFSR and CMADS
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temperature data show strong correlations with the GMS data collected at observational
stations. The average CC values obtained from CFSR are 0.92 for Tmax and 0.97 for
Tmin, while those of CMADS are 0.96 and 0.97, respectively. The average MAE is 1.7,
ranging from 0.95 to 2.47, and the average RMSE is 1.8, varying from 1.27 to 2.85; these
values show that the GMP data are in good agreement with the temperatures observed at
the stations. Figure 2 shows a box plot of the maximum and minimum temperatures of
CFSR, CMADS, and the ground station data in the CRB. The boxes show that the CFSR
temperatures have the largest range of changes. The mean values and interquartile range
of temperature are consistent in CMADS than those in CFSR. Although the datasets are
slightly different, the CFSR and CMADS temperature data can be used as GMS station data
in hydrometeorological studies over the CRB.

Table 3. Statistical indicators used to evaluate temperature (maximum, Tmax/minimum, Tmin) in the CFSR and CMADS
data in the Cau River Basin.

Temperature Values
Bac Kan Dinh Hoa Thai Nguyen Bac Ninh

CFSR CMADS CFSR CMADS CFSR CMADS CFSR CMADS

Tmax

Mean (◦C) 25.43 26.48 25.43 26.44 26.07 27.39 27.68 27.60
CC 0.92 0.97 0.92 0.97 0.92 0.97 0.91 0.97

MAE (◦C) 2.81 1.5 2.67 1.51 2.37 1.17 2.12 1.0
RMSE (◦C) 2.47 1.53 2.46 1.57 2.51 1.57 2.85 1.39

PBIAS −8.05 −4.22 −7.34 −3.63 −5.19 −0.39 0.33 0.05

Tmin

Mean (◦C) 17.8 19.66 17.8 19.94 18.47 20.68 19.9 20.81
CC 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.97

MAE (◦C) 2.01 0.94 2.41 1.05 2.59 0.95 1.57 1.01
RMSE (◦C) 1.4 1.29 1.48 1.38 1.47 1.27 1.34 1.28

PBIAS −9.64 −0.21 −11.62 −1.02 −12.11 −1.57 −6.37 −2.11
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The PBIAS values are negative at most stations (except that of Tmax at Bac Ninh
station), reflecting that both CFSR and CMADS data tend to underestimate the maximum
and minimum temperatures compared to those observed in the GMS data. Specifically, at
Bac Ninh station, the PBIAS value is much smaller than that at other stations, showing that
the CFSR and CMADS data have higher accuracies in low-terrain areas. Conversely, the
increasing PBIAS values (especially with CFSR data) observed in areas with higher terrain
may be related to temperature estimation errors that occur due to the effects of clouds
in mountainous areas, and the minimum temperature value typically causes high PBIAS
values in winter.

3.2. Statistical Evaluation of GMP Precipitation
3.2.1. Comparison in Each Time Scale (Daily/Monthly/Seasonal)

At the daily scale, the statistical results show no significant difference between the
CFRS/CMADS rain data, with CC of 0.45/0.31 and RMSE values of 15.5/16.63, respectively
(Table 4). A difference is found in that the CMADS values underestimated the actual precip-
itation, with a PBIAS value of −16.64%, while CFSR overestimated the actual precipitation
with a PBIAS of 99.2%. Therefore, the MAE value of CFSR is also much higher than that of
CMADS, with values of 8.01 and 5.7 mm/day, respectively.

Table 4. Continuous statistical indicators of the CFSR and CMADS rainfall data on the CRB from
2008 to 2013.

Time Scale Product Mean
(mm) CC MAE

(mm)
RMSE
(mm) PBIAS (%)

Daily CFSR 9.04 0.45 8.01 15.5 99.2
CMADS 3.81 0.31 5.7 15.63 −16.64

Monthly CFSR 275.18 0.82 145.72 151.78 99.2
CMADS 115.95 0.84 58.44 80.31 −16.64

Rainy season
(V–X)

CFSR 2783.2 −0.2 1463.9 469.3 109.4
CMADS 1227.2 0.4 256.5 199.7 −8.5

Dry season
(XI–IV)

CFSR 523.1 0.5 277 111 114.8
CMADS 145.1 0.6 121.5 73.3 −40.9

As predicted, the trend described above is also seen on the monthly scale. The CC
values of the CFSR and CMADS data ranged from 0.82 to 0.84, showing a good correlation
with the GMS data. Moreover, the MAE and RMSE values of CFSR are many times higher
than those of CMADS. The errors at the daily scale were eliminated by the aggregation to
the monthly scale, causing the CC to become more balanced; however, this does not explain
the big difference observed in the evaluation trends between CFSR and CMADS. The CFSR
precipitation data is always overestimated across the basin, and the largest bias statistic
indicator values were recognized with this dataset in evaluations by Mou Tan et al. [4] and
Roth Lemann et al. [46]. Generally, CMADS precipitation data are slightly more accurate
and agree relatively better than CFSR data with observations measured on the monthly
scale.

As shown in Table 4, the analysis results of the seasonal statistical indicators obtained
from the CFSR data show the largest mean errors, with MAE and RMSE values that are
too large. At the same time, the PBIAS value of CMADS in the dry season is −40.9%,
many times different from the rainy season value of −8.5%. This is related to the very low
CMADS rainfall that occurs in the dry season; the lower rainfall value in the denominator
of Equation (5) will cause the PBIAS value to be higher. Due to underestimating rainfall
in the dry season, the rainfall in the CMADS data makes the difference between the two
seasons much larger than the observed data. The rainfall ratios between the dry and rainy
seasons for CMADS were 11% and 89%, respectively, while those for GMS were 18% and
82%, respectively.
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3.2.2. Comparison in the Spatial Scale (Pixels)

The distributions of the CC, MAE, and PBIAS values on a monthly scale at the pixel
scale on the CRB are shown in Figure 3. Compared with the CC values obtained on the daily
scale (ranging from 0.2 to 0.6), the values obtained on the monthly scale were significantly
improved, with CC values of 0.82 for CFSR and 0.84 for CMADS (Figure 3a–d).

The spatial distribution of MAE shows the difference between CFSR and CMADS in
the basin more clearly than the other indicators. As shown in Figure 3e, the largest MAE
values were found in CFSR in the north and northwest (in altitudes ranging from 160 m to
300 m); the values then tended to decrease gradually to the south. Smaller MAE values
were found at the western edge of the study region, such as at Tam Dao and Diem Mac
stations; these are the locations with the highest rainfall rates, and as such their recorded
data are balanced with the CFSR data; in the south of the study area, such as at Phuc Loc
Phuong station, the MAE values may be related to the decline in rain forecasts by CFSR in
the delta. In contrast, the CMADS-derived rainfall data achieved the highest MAE values
in the western part of the river basin (ranging from 60 to 100 mm/month) (Figure 3f).
Overall, the MAE values of the CMADS precipitation had less deviation than the GMS
data, with an average value of 58.44 mm (ranging from 40.58 to 93.26 mm), because the
rainfall rating of CMADS performs better on the daily scale than the observed data.
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The PBIAS values obtained at the pixel scale in the basin, as shown in Figure 3g,h,
provide more insight into the spatial variation in the GMPs. The CFSR rainfall data was
overestimated over most of the basin, with a prevalence value between 60% and 150%.
The PBIAS value of −2.3% obtained at Tam Dao station (at an elevation of ~900 m) shows
that the CFSR precipitation data perform best in high mountainous terrain on the CRB
(Figure 3g). In contrast, the rainfall data of CMADS tends to underestimate rainfall on
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the catchment scale, with an average PBIAS of −16%, but the data exhibit different states:
rainfall is underestimated near the western edge of the study region (ranging from −23%
to −38%), while the data have slightly higher ratings in the south of the region (~2% at Da
Phuc and Phuc Loc Phuong stations) than those of the precipitation gauge data.

The analysis of the statistical indicators in the Cau River basin revealed the contra-
diction between the CMADS and CFSR rainfall data at the pixel scale, especially in the
west. The amplification of precipitation in sheltered, mountainous terrain significantly in-
creased the precipitation recorded at the GMS stations, so the statistics were more balanced
with the CMADS than those of the CFSR data, for which the infrared sensors misjudged
the effects of moist clouds on the mountaintops [7]. Second, considering medium-sized
river basins such as the CRB, the CC value ratings obtained on the pixel scale at the daily
and monthly temporal scales do not represent the characteristics of or variability in the
gridded precipitation products. Moreover, the MAE and PBIAS values show the same
trend, but these trends occur according to different parts of the spatial domain that are
determined by terrain factors rather than latitudinal factors. This also shows that local
knowledge and information are very useful in hydro-meteorological research to avoid too
many misunderstandings occurring due to the characteristics of the utilized GMPs.

3.3. Evaluate the Precipitation Event Detection Accuracy

Using the value of 0.1 mm/day as the threshold for detecting rain/no rain [8,47],
the POD, FAR, and CSI values were used to investigate the ability of the GMPs to detect
rain. In terms of the CFSR data, the mean POD value of 0.98 (ranging from 0.94 to 0.99)
shows the tendency of the data to capture nearly all daily precipitation events. At the
same time, the average FAR value of 0.72 (ranging from 0.56 to 0.74) indicates that only
nearly 30% of the rain events obtained from the CFSR data are accurate. In contrast, the
CMADS data showed more harmony in their forecasts, with POD and FAR values of 0.61
and 0.2, respectively, consistent with a successful rain detection forecast of 43%. Overall,
the CMADS precipitation data are more accurate when estimating precipitation events
than the CFSR data, while the CFSR data excel at detection but require reliable validation
with rain gauges.

Figure 4 plots the occurrence frequencies and the contribution rates of the rainfall
thresholds to the cumulative daily-scale rainfall from the CFSR, CMADS, and GMS data.
Visually, we can see that the frequencies of the rain layers obtained from CMADS and GMS
are similar. Specifically, the highest rate is observed at the threshold of 0.1 mm, accounting
for over 66% (Figure 4a), indicating that the CMADS data may be suitable for detecting
rain/no rain events. At other rainfall thresholds, although there is little difference, the
rainfall threshold ratio observed between CMADS and GMS is still the smallest. Moreover,
CFSR shows a clear difference in the drop to the 0.1mm rainfall threshold due to its
association with excessively high POD and FAR values, leading to the omission of rain/no
rain events. Compared with CMADS and GMS, CFSR tends to overestimate the light rain
layer (1–20 mm), light rain (0.1–1 mm), and moderate rain (20–50 mm) at rates of 49.46%,
15.65%, 13.62%, respectively.

Despite the frequency of occurrence, but due to the insignificant rainfall, a threshold
value < 0.1 mm limited the contribution to the total cumulative precipitation density
(Figure 4b). The light rainfall (1–20 mm) and moderate rainfall (20–50 mm) layers of
the CMADS and CFSR data are the most important contributors to the rainfall density,
accounting for approximately 68% to 71% of the total rainfall. Simultaneously, in the
GMPs, these rain layers all illustrate the same changes at higher ratings than that of the
GMS data due to the large frequency of occurrence. Another degree is found in heavy
rainfall (>50 mm) when estimates by CMADS, particularly by CFSR, tend to underestimate
the actual rainfall. This precipitation layer has a small occurrence frequency (2.24%), but
heavy rains contribute the greatest amount to the proportion of rain; approximately 37% of
the rainfall over the CRB is related to typical summer showers as well as tropical storms
brought to the area.
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Thus, the analysis of the differences between the rain layers of GMPs and GMS
data shows that the CMADS data have the same frequency as the rain gauge data at all
thresholds. Moreover, CFSR has a disadvantage in capturing rain/no rain events but
overestimated the occurrence of light rain (1–20 mm) and moderate rain (20–50 mm). At
the same time, local calibration with on-site observations (rain gauge data or terrestrial
radar) is needed to improve the performances of GMPs in heavy rainfall (>50 mm), as
heavy rains play the most important role in the proportion of precipitation in the basin.

3.4. Evaluate the Ability to Capture Extreme Weather Events

In this section, further studies on extreme weather events, such as temperature and
precipitation events, on the CRB are conducted using the aggregated statistical results
of GMPs data at meteorological stations at a daily scale over the period from 2008 to
2013. Specifically, the extreme events studied in the CRB included: (1) very cold events
(Tav13–15 ◦C/day); (2) damaging cold events (Tav13 ◦C/day); (3) strong sun events (Tmx37–
39 ◦C/day) and (4) scorching hot events (Tmx39 ◦C/day), and the specific results are listed
in Table 5. For rainfall, the indicators R10 mm/day, R50 mm/day, and R100 mm/day were
selected in this study.

Table 5. Statistics on the total number of cold and damaging days at meteorological stations in the Cau River basin in the
period 2008–2013.

Product
Bac Kan Dinh Hoa Thai Nguyen Bac Ninh

Tav13 ◦C Tav13–15 ◦C Tav13 ◦C Tav13–15 ◦C Tav13 ◦C Tav13–15 ◦C Tav13 ◦C Tav13–15 ◦C

GMS 153 108 147 108 114 91 112 94
CMADS 125 108 114 103 96 94 96 89

The assessment results of the ability of the datasets to collect extreme rain layers were
calculated using the average value of the corresponding points/stations in the period
2008–2013. The CFSR rainfall data contained 560 days of R10 mm, which is higher than that
of the GMS data (216 days) and the CMADS data (190 days) obtained at the polymerization
station. However, for R50 mm events, the GMS and CFSR precipitation data show 40
and 44 days, respectively, both of which are significantly more than the 29 days observed
in the CMADS data. The total R100 days observed in the GMS precipitation data was
9 days, while the totals were 5 days for the CFSR and CMADS data. Thus, the CMADS
rain data have a much lower rain detection rate than the rest of the heavy rain layers
(>50 mm/day), while CMADS and CFSR have much lower detection probabilities than the
GMS for extreme rain events (>100 mm/day).
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Regarding Tav13–15 ◦C/day and Tav13 ◦C/day, these data are not available for CFSR,
and as such only CMADS is compared with GMS. The statistics listed in Table 5 show
that both of these datasets have similar changes, with the number of days decreasing from
the high-latitude areas and hilly areas (Bac Kan and Dinh Hoa stations) to the regions
with lower latitude and flat terrain (Thai Nguyen and Bac Ninh stations). The CMADS
data are slightly underestimated compared to the GMS data in terms of cold days (except
Tav13–15 ◦C at Thai Nguyen station) with the difference being over 11%. Notably, the
total number of days with temperatures below 15 ◦C in the CMADS data are quite large
(17.2 days/year), showing the strong influence of the northeast monsoons on the CRB. The
appearance of cold airwaves not only lowers the temperature of the area (from December
to February, the average temperature is below 20 ◦C) but also drastically decreases the
humidity and precipitation during this period. This is a satisfactory explanation for the
surge observed in the PBIAS values in the dry season and explains the difference in the
rainfall contribution between the two seasons of the CMADS data.

The statistics compiled from the temperature stations also show that the CFSR and
CMADS data outperformed at Tmx37–39 ◦C/day and Tmx39 ◦C/day. The largest dif-
ference was observed in the CFSR temperature data representing the peak likelihood
compared to the GMS and CMADS data, which is consistent with the assessment results
for temperature obtained from testing with box plots (see Figure 2). This discrepancy
may be related to excessive misunderstandings about the buffer surfaces of GMP datasets.
For example, at Dinh Hoa station, the number of days with Tmx37–39 ◦C and Tmx39 ◦C
is very high, possibly due to the widely captured CFSR data in low mountainous areas
in the windless part of summer. Moreover, Bac Ninh station is located in the delta area,
with many industrial and construction activities, so its maximum temperatures may be
incorrectly calculated for the buffer surface.

The distributions of the maximum temperatures recorded over the studied years (see
Figure 5), from 2008 to 2013, also show that the CFSR data is outstanding in the number of
days when hot weather occurs (Tmx > 37 ◦C). Notably, an unusual increase in hot days was
found in all three datasets in 2010 (except for in the GMS data at Tmx39 ◦C/day). According
to our collected information, from May to July of 2010, northern Vietnam experienced
the longest heatwave in 27 years with many extremely hot days. This shows that while
there are similar error characteristics if they can be “calibrated with the observed ground
temperature”, the GMPs can provide an additional viable alternative to predicting and
capturing extreme events in the CRB at various temporal and spatial scales.

Water 2021, 13, x FOR PEER REVIEW  14  of  20 
 

 

predicting  and  capturing  extreme  events  in  the CRB  at  various  temporal  and  spatial 

scales. 

 

Figure 5. Number of days when hot weather occurred in the period 2008–2013. 

3.5. Flow in the Cau River Basin 

3.5.1. Calibration and Sensitivity Analysis of Parameters 

The parameters affecting the sensitivity analysis and calibration were partly inher‐

ited from previous studies on the CRB [33,34]. The SWAT‐CUP software and the SUFI‐2 

algorithm were used to calibrate the parameters in the CFSR, CMADS, and GMS simula‐

tions [22]. Accordingly, calibrations were performed simultaneously on SWAT‐CUP and 

manually, with 1000 model runs performed for each iteration to obtain optimal parame‐

ter values. At the same time, due to the uncertainty of the meteorological data (especially 

the  precipitation  data),  the  parameter  values  and  sensitivities may  vary  among  each 

model [22]. Therefore, in this study, parameterization was performed in the SWAT model 

on the CRB using the CMADS, CFSR, and GMS data, and the results are listed in Table 6. 

In all simulations, CFSR, CMADS, and GMS data  from 2008 were set  to warm up  the 

model, the calibration period was 2009–2011, and the validation period was 2012–2013. 

The calibration and validation of each simulation were conducted independently at daily 

and monthly time steps 

Table 6. Sensitivity values of the parameters used for flow simulations by GMS_, CFSR_, and CMADS_ using the SWAT 

model in the Cau River basin. 

Parameter  Name  Range 
Calibrated Value 

GMS  CFSR  CMADS 

v__ALPHA_BF.gw  Baseflow alpha factor  0–1  0.7  0.001  0.689 

v__GW_DELAY.g

w 
Groundwater delay time  0–500  250  328.75  38.25 

v__GWQMN.gw  Threshold water depth in the shallow aquifer for flow  0–5000  2500  107.5  32.5 

v__GW_ 

REVAP.gw 
Groundwater re‐vaporisation coefficient  0.02–0.2  0.11  0.109  0.059 

v__  Threshold depth of water in the shallow aquifer for  0–500  250  447.75  433.25 

Figure 5. Number of days when hot weather occurred in the period 2008–2013.



Water 2021, 13, 1314 14 of 19

3.5. Flow in the Cau River Basin
3.5.1. Calibration and Sensitivity Analysis of Parameters

The parameters affecting the sensitivity analysis and calibration were partly inher-
ited from previous studies on the CRB [33,34]. The SWAT-CUP software and the SUFI-2
algorithm were used to calibrate the parameters in the CFSR, CMADS, and GMS simula-
tions [22]. Accordingly, calibrations were performed simultaneously on SWAT-CUP and
manually, with 1000 model runs performed for each iteration to obtain optimal parameter
values. At the same time, due to the uncertainty of the meteorological data (especially the
precipitation data), the parameter values and sensitivities may vary among each model [22].
Therefore, in this study, parameterization was performed in the SWAT model on the CRB
using the CMADS, CFSR, and GMS data, and the results are listed in Table 6. In all sim-
ulations, CFSR, CMADS, and GMS data from 2008 were set to warm up the model, the
calibration period was 2009–2011, and the validation period was 2012–2013. The calibration
and validation of each simulation were conducted independently at daily and monthly
time steps.

Table 6. Sensitivity values of the parameters used for flow simulations by GMS_, CFSR_, and CMADS_ using the SWAT
model in the Cau River basin.

Parameter Name Range
Calibrated Value

GMS CFSR CMADS

v__ALPHA_BF.gw Baseflow alpha factor 0–1 0.7 0.001 0.689
v__GW_DELAY.gw Groundwater delay time 0–500 250 328.75 38.25

v__GWQMN.gw Threshold water depth in the shallow aquifer
for flow 0–5000 2500 107.5 32.5

v__GW_
REVAP.gw Groundwater re-vaporisation coefficient 0.02–0.2 0.11 0.109 0.059

v__
REVAPMN.gw

Threshold depth of water in the shallow
aquifer for “revap” to occur 0–500 250 447.75 433.25

v__
CANMX.hru Maximum canopy storage 0–100 10 16.35 74.25

v__SURLAG.bsn Surface runoff lag coefficient 0.05–24 16.815 4.996 16.512
v__CH_N2.rte Manning value for main channel −0.01–0.3 0.207 −0.001 0.021

v__CH_K2.rte Effective hydraulic conductivity in main
channel alluvium −0.01–500 449.99 201.74 182.74

r__CN2.mgt Initial SCS runoff curve number for moisture
condition II −0.42–0.065 −0.275 −0.029 −0.291

r__SOL_AWC.sol Available water capacity of soil layer 0–3.347 2.342 0.322 3.118
r__SOL_K.sol Saturated hydraulic conductivity 0–306.6 30.66 259.23 184.41
r__ESCO.hru Soil evaporation compensation factor 0–1 0.1 0.069 0.237
r__EPCO.hru Plant uptake compensation factor 0–1 0.7 0.984 0.682

Notes: r: the parameter value is multiplied by (1+ given value); v: the parameter is replaced by the given value and then compared with
the measured flow results from the Gia Bay hydrological station (Thai Nguyen).

3.5.2. Flow Simulation in the CRB

Table 7 summarizes the statistical indicators (R2, NSE and PBIAS) used for the SWAT
simulations based on data from GMS, CFSR and CMADS for the 2009–2013 period. Overall,
the SWAT model based on the GMS data is best suited during the calibration and validation
periods at both daily and monthly scales. The simulated flow reproduced by GMS data at
Gia Bay station is “good”, with NSE > 0.79 and R2 > 0.68. The simulations performed using
the CMADS-driven model tended to underestimate the observed flow, with PBIAS values
varying from −16.19 to −19.35%, but with R2 > 0.76 and NSE > 0.78; thus, this dataset was
also identified as “satisfactory” on a monthly scale. Finally, the CFSR data led to a relatively
appreciate assessment of the observed flows during the simulation period (as indicated by
a high PBIAS value of >41.81%) and a tendency to capture peak flows (Figures 6 and 7).
Generally, the CFSR control model is not suitable for flow simulations over the CRB basin,
with R2 and NSE values that are “unsatisfactory” based on the given criteria [44].
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Table 7. Statistical indices obtained during the calibration and validation periods of the streamflow simulations with GMS-,
CFSR-, and CMADS-driven models.

Period Value
Daily Monthly

GMS CFSR CMADS GMS CFSR CMADS

Calibration
(2009–2011)

R2 0.73 0.36 0.69 0.89 0.63 0.82
NSE 0.81 0.38 0.69 0.85 0.58 0.85

PBIAS (%) 0.16 51.78 −18.9 2.14 38.23 −16.19

Validation
(2012–2013)

R2 0.68 0.25 0.62 0.84 0.58 0.76
NSE 0.79 0.43 0.71 0.82 0.43 0.78

PBIAS (%) −0.58 48.29 −19.92 5.42 41.81 −19.35
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In the CRB, rainfall is the major source of streamflow, so the accuracy of these data will
greatly affect the runoff simulation results. The above results showed that the rainfall data
obtained from GMS and CMADS reached agreement better than the agreement between
CFSR and GMS; thus the flow simulation performed by GMS- and CMADS-driven models
also showed better performance, with high R2 and NSE values, and the absolute PBIAS
value was smaller than that of the CFSR-driven simulation. Research by Mou Tan et al.
showed that integrating temperature data from CFRS with the precipitation data of the
other GMPs did not cause any difference compared to conventional simulations [34]. At the
same time, the published results of Mou Tan et al. [4], D. N. Khoi et al. [48], Roth et al. [46],
and Bressiani et al. [31] showed that the CFSR data had much lower, or even unacceptable,
performances compared to other GMP products, mainly because these data overestimate
actual precipitation values.

It is possible that the CFSR precipitation data are more suitable and have more uniform
and dense grid point densities in temperate, subtropical climates, such as in the United
States and China, as reported by Fuka et al. [23], Meng et al. [30], and Lu et al. [2], while
these data have not been used extensively in Southeast Asia or Vietnam. It is quite difficult
for estimated products such as CFSR to accurately capture climatic conditions in areas
with very complex climates such as northern Vietnam (a tropical monsoon climate with
cold winters). Furthermore, differences in catchment areas and topographies (including
elevations and directions of ridges) also lead to changes in the model algorithm, interpola-
tion, and parameters [49,50]. The CMADS dataset is integrated with CMROPH data and
collected from automatic measuring stations in the region for reverse interpolation, so it
can be widely used and increase its accuracy in Chinese territories [2,3,30,51]. Compared
to published studies, we find that the performance of these data needs to be confirmed
in areas within the region of coverage. In general, the analytical results show that the
CMADS control model will have good performance if the input data are confirmed with
an observation gauge.

4. Conclusions

This study is the first to refer to the role of temperature in extreme events based on
regulations in Vietnam. The temperature verification in the CRB shows that CFSR and
CMADS can be representative as ground temperature measurement stations in meteoro-
logical and hydrological studies. Temperature events such as very cold, damaging cold,
strong sun, and scorching hot events affect the rainfall distribution and the inputs to the
flow simulations. Moreover, the proposed study of the R100 mm/day rain layer is suitable
for humid climate conditions in the tropics, such as the climatic conditions in the study
area, and can be reliably used in other basins with similar conditions. The usefulness and
suitability of the climate reanalysis products were evaluated in this study. Both the CMADS
and CFSR temperature datasets performed well in comparison to the GMS data. Therefore,
the CMADS and CFSR temperature data can be reliably used in areas with low numbers of
observation stations. The verification of rainfall in the GMPs, as well as the flow simulation
results of the SWAT model on the CRB, show that the CMADS data obtain more suitable
results than the CFSR data; moreover, it is recommended that the overall CFSR data should
be evaluated before they are applied in other hydrological research in which the conditions
are similar. The advantages and disadvantages of the CFSR and CMADS data suggest that
local knowledge/information is also very useful in hydro-meteorological research to avoid
excessive misunderstandings of gridded climate products.

In our opinion, the results obtained in this study should not be conceded as a general-
ized imposition but rather can be seen as an attempt to explore the potential of reanalysis
data in terms of their performances that are, as of yet, unproven due to limited, short
duration, and heterogeneous observational data. Our tentative studies will be further
expanded with other gridded climate products already recognized in Vietnam, and the
spatial variations in the water balance components and the effects of climate change on
flow changes in the CRB will be calculated.
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