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Abstract: An efficient inundation model is necessary for emergency flood responses during storm 

events. Cellular automata (CA)-based flood models have been proven to produce rapid results while 

maintaining a certain degree of accuracy. However, the need for computational resources dramati-

cally increases when the number of grid cells increases. Digital elevation model (DEM)-based mod-

els generate results even faster, but the simplified governing equations within the models fail to 

reflect temporal flood evolution. To achieve rapid flood modeling while maintaining model sim-

plicity, a novel two-dimensional hybrid inundation model (HIM) was developed by combining the 

CA- and DEM-based concepts. Given the temporal flood evolution generated by the CA concept, 

final finer-scale predictions were obtained by applying the DEM-based concept. The performance 

of this model was compared to those of widely used, physically based hydraulic models using three 

UK Environment Agency (EA) benchmark test cases. The HIM yielded consistent prediction results 

but was faster than the CA-based model. Finally, a comparison was made against flood observa-

tions, and the overall root mean squared error (RMSE) for flood depth was 0.388–0.400 m. Consid-

ering the uncertainty in the observed flood depths, the HIM shows promising potential to serve as 

an intermediate tool for emergency response in practical cases. 
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1. Introduction 

Flooding is a major natural hazard that can arise for several reasons, such as reduced 

river and channel capacity, high rainfall intensity, topography issues, drainage system 

failure, and storm surges. Floods are among the most devastating natural disasters and 

cause massive casualties and economic losses [1]. The impact of floods on the global Gross 

domestic product (GDP) each year amounts to 96 billion US dollars (USD) on average. An 

average of 21 million people worldwide are affected by floods each year, and this number 

will rise to 54 million in 2030 due to climate change and socioeconomic development [2]. 

For these reasons, the prevention and mitigation of flood hazards have become crucial. 

To support these efforts, a robust and efficient model to predict flood inundation is nec-

essary. 

A two-dimensional (2D) hydraulic model solves the 2D governing equations of flow 

to determine the water depth and depth-averaged velocity on a grid or mesh. The models 

consider velocity variation on the floodplain and provide flood maps and depth grids as 

direct outcomes. Therefore, 2D models are suitable for the predictive analysis of a poten-

tial flooding situation for emergency response in urban areas. However, applying a 2D 

hydraulic model to an urban area is complicated and challenging. Detailed settings in 2D 

models (e.g., drainage and pumping systems, culverts, gates, manholes, etc.) and the need 

for finer grids for higher-resolution results lead to a high demand for computing power 

if the response time is limited. Efficiency is also necessary for emergency flood responses 
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during extreme events. To support the evacuation process or rescue operations during 

flood disasters, decision makers prefer high-resolution forecasts based on current weather 

conditions within a limited time [3]. If the length of the limited time, named the lead time, 

is longer, the emergency preparedness or response is more comprehensive. Therefore, an 

efficient flood model must provide results in a rapid manner so that decision makers can 

have as much lead time as possible. Thus, developing robust and efficient inundation 

models has become an important research topic in recent years. Models such as TE-

LEMAC [4], InfoWorks ICM [5], MIKE FLOOD [6,7], HYDRO_AS 2D [8], and 

NUFSAW2D [9] use shallow water equations (SWEs) to simulate flood inundation. These 

models provide detailed and accurate results but are computationally expensive because 

of the internal complexities and associated governing equations. Many physically based 

models have benefited from efficient solutions since hardware capable of parallel compu-

tation (e.g., the GPU) is currently available and parallel computing techniques are rapidly 

advancing [9–11]. Although the computation time has been reduced, these types of mod-

els cannot fully utilize parallel processing [9,12]. Moreover, these tools require highly 

trained personnel to successfully build a model and smoothly run the simulation. This 

becomes an obstacle when seeking to easily distribute these models to those in need. An-

other approach to reducing the computation time is to suppress or neglect less important 

terms within the SWEs for different purposes. For example, the inertial terms are less than 

the gravity, friction, and pressure terms and can be neglected in the SWEs. This approach 

can be used to simulate inundation in urban areas [13]. Models such as LISFLOOD-FP 

[13–15], JFLOW [16], and Urban Inundation model-UIM [17] were developed based on 

simplified versions of the SWEs. These models successfully decreased the computation 

time while still giving acceptable results. However, for finer-resolution (1–10 m) grids, to 

maintain numerical stability, the simulation cost is increased by several orders of magni-

tude due to the smaller time step [15]. It turns out that the full 2D models show better 

performance in terms of efficiency. As a consequence, solving SWEs, even in their reduced 

complexity formulations, is still computationally expensive. Parallel computational tech-

niques or high-performance computing (HPC) are still required to cope with this issue 

[16–19]. 

In recent years, many studies have focused on developing simple 2D flood models 

using the cellular automata (CA) approach [20]. This discrete and abstract computational 

system introduced by Wolfram [21] has been proven to be faster than physically based 

models in various applications. This approach considers three fundamental aspects: the 

world, transition rules, and agents. The world is the place in which the agents reside. In 

terms of the inundation model, the world could be described as a digital elevation model 

(DEM), and the agent is water. The evolution of each agent within a cell (central cell) is 

defined by a set of transition rules and the neighborhood system (NH). The concept of CA 

has been widely used in several fields; examples include urban growth [22,23], wildfire 

propagation [24], debris flows [25–27], and transportation engineering [28]. In the appli-

cation of flood simulation, Dottori and Todini [29,30] first applied the CA model to de-

velop a storage-cell-like flood model. Later, many algorithms focusing on the transition 

rules were developed, such as the ranking system [31], minimization [32,33], weighted 

parameter [12], and motion cost field [34]. All of the abovementioned CA models rely on 

similar definitions of state variables but differ in the formulation of the fluxes [20]. Alt-

hough these methods can reduce the computation time, applying the algorithms for each 

cell is still a burden, especially when the number of cells is massive or for complex terrain 

shapes [35]. 

Other researchers have used a very different approach as an alternative to rapidly 

simulate floods in urban areas with high-resolution DEMs. The approach is based on the 

topography of the area. It is assumed that floodwater always fills the depression storage 

within the area and that the water surface remains flat when it reaches equilibrium. This 

kind of approach considers the continuity equation to predict the maximum inundation 

(GUFIM by Chen et al. [36]; ISIS FAST by CH2M [37]; SPM by Yang et al. [38]; RUFIDAM 
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by Jamali et al. [39]. This concept type is considered a DEM-based concept hereafter in this 

paper. By neglecting the complicated momentum equations and the temporal variation in 

flooding (Δt), these models can rapidly provide maximum water elevation or water depth 

predictions. The computation time is short, but data processing time is needed. These 

types of models require DEM pre- and postprocessing to generate inundation maps. The 

time to execute these steps is dependent on various factors, such as user capability, study 

area size, and grid resolution. For example, these steps can take up to 2–10 min for DEMs 

covering an area of 0.8 to 10 km2 with a 1 m resolution [39]. 

In terms of accuracy, physically based models are the best choices for applications. 

Solving SWEs is challenging and computationally costly, particularly for the large do-

mains typical of hydrological problems [40]. The same issue can also be found in CA mod-

els. Although the drawback in computation time can be addressed by using parallelism 

or HPC, in practice, not all sites have the budget or personnel to operate such complex 

models. On the other hand, the DEM-based approach provides rapid results but lacks de-

tail. For example, the temporal evolution of flooding, which is very important for decision-

making, cannot be modeled in the DEM-based approach. 

This study proposes a novel hybrid approach that integrates CA- and DEM-based 

flood models to provide a detailed inundation map with acceptable accuracy and effi-

ciency for emergency purposes without excessively complex mechanisms. The objectives 

of this study are (1) to seamlessly combine CA- and DEM-based models to generate effi-

cient and operational flood forecast information and (2) to develop an easy-to-use tool 

that can help quick decision-making for flood preparedness and response. 

2. Hybrid Inundation Model 

The purpose of this study is to develop a model that can provide fast and accurate 

enough results for emergency purposes while maintaining simplicity in operation. The 

proposed hybrid inundation model (HIM) utilizes two models, the CA-4D model and the 

D-Flat model, which are described in the next section. The basic idea of the HIM is to let 

the CA-4D model calculate the water depth for the next time step using a coarse grid (e.g., 

5 m and coarser). If the marching time reaches a certain time to extract or save the results 

(e.g., a user-defined value, usually every 5 or 10 min), the results from CA-4D at that spe-

cific marching time will be transferred to the D-Flat model. For the next step, the D-Flat 

model interpolates the results from CA-4D and generates a higher-resolution (e.g., 2 m 

and finer) inundation map. The concept is similar to the concept of the subgrid method 

used by different studies [41–44]. In these studies, the subgrid method addressed the dis-

agreement between topographic data resolution and model grid resolution. A flood model 

can use this method to run simulations with a coarser grid resolution while producing a 

solution with a finer grid resolution. Using the subgrid method, faster computation time 

is achieved by performing fewer flux computations in each time step. Additionally, a 

higher time step can be used without destroying the model stability. This approach has 

been intensively studied for the last decade, especially for SWE models. However, the 

proposed HIM used a different concept from the subgrid approach. For example, HIM 

does not derive or discretize any equations into subgrid solutions as the subgrid method 

does. Instead, HIM uses the outputs from the CA model with coarse grids as input for the 

DEM model with finer grids. The workflow of the HIM is shown in Figure 1. In the figure, 

the flood map is the inundation extent, while the inundation depth is the water depth for 

each grid cell. Overall, the HIM can be defined as a CA model that works in conjunction 

with subgrid-scale interpolation strategies to generate higher-resolution results. For pre-

liminary analysis, the model was designed to work with rectangular grids with the von 

Neumann NH system. The details of this new model are described as follows. 
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Figure 1. Flowchart of the HIM. 

2.1. Cellular Automata 4-Direction (CA-4D) Model 

The CA-4D model uses the von Neumann NH system. This means that a square grid 

DEM is applied. A central cell is considered to calculate flood exchange between its four 

cardinal adjacent cells. The basic principle of the CA-4D model uses the zero-inertia equa-

tion as the governing equation. Although some other models, such as the raster-based 

storage model LISFLOOD-FP [14] and the model proposed by Dottori and Todini [29,30], 

also use similar principles, some aspects are different. The difference is addressed below. 

CA-4D assumes that the change in cell volume over time is equal to the fluxes in and out 

of the cell during the time step (Equation (1)). However, CA-4D considers only water flow 

out of a cell, while water flowing into the cell can be treated as water flowing out of the 

neighboring cells. This assumption can speed up the calculation process. The calculation 

is repeatedly performed for each cell until equilibrium is reached. It is not necessary to 

address water flowing in/out of the same cell. Manning’s equation is used to calculate the 

flow rates between cells (Equation (2)). 

��

��
= � ��� ∀�� ∈ {1 … �} (1)

��� =
��. ℎ��

�/�

�
�

max(0, ��� − ����)

��
�

�/�

 (2)

ℎ�� = max�0, ��� − max(��, ���)� (3)
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where QNH (m3/s) denotes the flow rates from the central cell to the NH, M is the total num-

ber of cells in the NH, WS0 (m) is the water level in the central cell, WSNH (m) is the water 

level of the NH analyzed, n is the Manning roughness coefficient (m−1/3s), dx is the grid size 

(m), hNH (m) represents the depth at which water can flow between the central cell and NH 

cells, and Z0 and ZNH are ground elevations (m) for central and neighboring cells. 

Python is arguably not the most efficient programming language to perform this type 

of simulation. For example, to calculate Equation (1), the algorithm considers each cell and 

its corresponding calculations sequentially. This technique is slower in the Python language 

than in other programming languages (e.g., Fortran). This disadvantage could be solved by 

implementing multiprocessing computation or applying other more efficient programming 

languages. However, since the aim of this model is to maintain simplicity, CA-4D uses an-

other technique to make the calculation more efficient. Instead of performing the calcula-

tions sequentially, CA-4D utilizes the Numpy library functions in Python and solves the 

equations using matrix-like operations. By simply changing the techniques, the computa-

tion can be made up to 30 times faster for each loop. Figure 2 shows an example of pseudo-

code to perform the matrix-like operation to calculate the velocity. 

 

Figure 2. Pseudocode for calculating velocity by using the Numpy function library. Python functions are shown in blue, 

and comments are shown in green. 

Once the flow rates are determined, the adaptive time step is calculated to update the 

water surface elevation. Given that CA-4D is a diffusive-like model, the most stable time 

step equation is that provided by Hunter et al. [15]. However, that study found that the 

corresponding formula is computationally expensive. Thus, the CA-4D model uses a dif-

ferent approach to calculate the adaptive time step by using the simple Courant-Frie-

drichs-Lewy (CFL) condition: 

∆� = ��� �∆����, �
∆�

����
� , 0 > α ≥ 1 (4)

���� = ��� (�, ����,…,�) (5)

where Δtlim is the minimum time step set by the users, and α is a coefficient used to main-

tain simulation stability for most flow conditions. The parameter α is included because 

the stable time step is often less than that indicated by the CFL condition. Instead of find-

ing the most stable time step value by using a complex equation, in which the time step 

  import numpy as np 
  def velocity (ws,z) 
 global dx,manning 
 center = [1:-1,1:-1]  %position of all center cells 
 north = [ :-2,1:-1]  %position of all north cells 
 east = [1:-1, :2]  %position of all east cells 
 west = [1:-1, :-2]  %position of all west cells 
 NH = [north,east,south,west] 
 v = np.zeros[nrows,ncols,NH] 
 h = np.zeros[nrows,ncols,NH] %creating zeros matrix 
 s = np.zeros[nrows,ncols,NH] 
 for k in range (0:4): 
  s[center,k] = ws[center] – ws[NH[k]] 
  h[center,k] = ws[center] – max(z[center],z[NH[k]]) 
  h[center,k] = np.where(h<0,0,h)  %for every h<0, return 0, else remain as h 
  s[center,k] = np.where(s<0,0,s)  %for every s<0, return 0, else remain as s 
  s/= dx 
  v[center,k] = (h[center,k]**(2/3))*(s[center,k]**0.5)/manning 
 return v 
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decreases quadratically as the cell size decreases, α is introduced to reduce the time com-

putation complexity. Vmax is the maximum of the wave celerity c and water velocity Vi to 

the surrounding cells. The stable time step in the zero-inertia model is required to ensure 

that oscillation chequerboard does not occur and destroy the results. Unlike the equation 

proposed by [15], which sometimes returns a very small dt to ensure stability, the CFL 

stability criterion allows some flexibility. For emergency purposes, where time is essential, 

a higher value of α could be chosen to obtain a larger time step. Of course, oscillation 

likely occurs as a result. However, if the oscillation does not destroy the whole solution, 

it could be treated as data noise. Furthermore, when time is not an issue, α could be set 

lower to produce more stable results. 

In the CA-4D model, the water depth is updated by subtracting the outflow volume 

from the water depth of the current time step. Then, the water depth of the NH should 

incorporate the outflow volume from the central cell. Furthermore, the water depth of the 

next time step is updated with any lateral inflow or outflow (e.g., rainfall and losses). CA-

4D applies two rules to prevent more water from leaving the central cell than it contains 

and to prevent adding more water to the NH cell than it should. Under normal conditions, 

the water volume leaving the central cell is less than or equal to the central cell’s available 

water (AW) volume. Equations (6) and (7) are used to update the water depth: 

���
��∆� = ���

� −
∑ ���

�
�

��
∆� +

���

��
−

����

��
 (6)

����
��∆� = ����

� + ���∆� (7)

where ���
��∆�(m) is the updated water surface elevation of the central cell at the next time 

step, ���
�(m) is the central cell water surface elevation at the present step, �� (m2) is the 

area of the cell, ���  (m3/s) is the outflow from the central cell to the NH cell, ��� (m3) is 

the lateral input volume of water into the central cell (e.g., precipitation, drainage over-

flow, or discharge from the upstream area), and ���� (m3) is an outflow volume of water 

from the central cell (e.g., outflow to the downstream catchment or lateral outflow). How-

ever, under certain conditions, more water leaves the central cell than is available. The 

water is distributed to the NH cells proportionally according to the water flux rates. Equa-

tions (8) and (9) are used to update the water depth for the extreme condition: 

���
��∆� = ���

� − ��
�  (8)

����
��∆� = ����

� +
���

∑ ���
�
�

��
�  (9)

where ��
�  (m) is the maximum intercellular depth allowable into the NH. In this case, ��

�  

is equal to the maximum ℎ��. 

2.2. DEM Based on the Flat-Water Assumption (D-Flat) Model 

After updating the water surface elevation in the CA-4D model, the water volume in 

each coarse grid cell is redistributed into finer grid cells by using the D-Flat model when 

the user-defined timestep is reached. The proposed hybrid model uses the coarser-grid 

DEM as an impact zone (IZ, a boundary) for the finer-grid DEM to generate the high-

resolution inundation map. The IZ is defined as a boundary where the volume could only 

be redistributed within the same boundary. Figure 3 shows an illustration of the IZ. The 

water volumes generated from the CA-4D model in the coarse grid with a certain color 

(e.g., red) can only be redistributed to the finer grid with the same color. 

As its name suggests, this model uses a flat-water assumption to distribute the water. 

This assumption is used not only because it provides the fastest computation with reason-

able results but also because in a sufficiently small area, the major driving force to control 

floodwater is assumed to be gravity only [36,38]. The water distribution from coarse to 

finer grids is explained in Figure 3. The water volume from the coarse grid is distributed 
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to the finer grid with the same color. In other words, the coarse grid acts as an IZ in the 

finer grid. Hence, the preprocessing step that generates the IZ can be neglected. 

 
(a) coarse grid (b) finer grid 

Figure 3. IZ illustration. The block of cells on the left (a) represents the coarse grid used by the CA-

4D model. Each coarse grid cell acts as an IZ for the finer grid (b) used by the D-Flat model. 

The basic idea of this model is to find the cell with the minimum elevation as the 

starting point and increase its elevation by a constant increment. This process is repeated 

until no more water is available to be distributed. However, this approach may not be able 

to spread the water within the IZ if the ground slope is very steep, causing the water to 

accumulate in only one cell. To prevent this, the threshold value is determined by averag-

ing the minimum and maximum ground elevations within an IZ. Every cell within the IZ 

that is lower than or equal to the threshold is indicated as the starting point (‘true cell’). 

As shown in Figure 4, the D-Flat model starts by counting how many cells are lower than 

or equal to the threshold value (true cells). These true cells are determined as route-start-

ing cells in which the constant incremental filling starts. To ensure mass conservation, 

before the water is distributed, the model calculates how much water is to be distributed 

by simply multiplying the constant increment by the number of true cells. If the outflow 

is less than the AW, then the number of true cells is increased by a constant increment. If 

the outflow is more than the AW, the AW instead of the outflow is distributed equally to 

the true cells. 

 

Figure 4. Pseudocode for distributing the water volume within the coarse grid cells to the finer grid cells. The IZ parameter 

refers to the ground elevation within the IZ. 

5 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m

IZ IZ

IZIZ

20 m 20 m

  import numpy as np 
  def DFLAT (IZ) %DFLAT function with IZ as an input 
  global inc_constant, AW 
 while AW>0: 
 mask = iz<= threshold  %finding which cells that lower or equal the threshold 
 if mask.sum()*inc_constant<=AW: 
  IZ = np.where(mask,IZ+inc_constant,IZ) %increase WSL by increment constant if TRUE 
  AW -= mask.sum()*inc_constant 
 elif mask.sum()*inc_constant>AW: 
  c = AW/mask.sum() %reduction coefficient 
  IZ = np.where(mask,IZ+(inc_constant*c),IZ) %divide the remaining AW to the ‘true cells’ 
  AW = 0 
 return IZ  
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Extreme rainfall is the major factor that causes floods. Earth Scientists uses a concept 

called connectivity as a means to describe the origin of floods, and this concept is associ-

ated with the fluxes of water and sediment on different scales: aggregate, pedon, location 

on the slope, slope, watershed, and basin [45]. This results in different types of floods, 

such as fluvial and pluvial floods. Floods in mountainous terrain from small creeks, clas-

sified as fluvial floods, are also becoming more frequent [46]. However, the abovemen-

tioned algorithms are focused on pluvial floods in urban areas. The soil condition was 

assumed to be fully saturated to obtain the maximum flood extent requiring an emergency 

response. The concept of equivalent or effective parameters has been used to define the 

effect of connectivity in this study. For instance, Manning’s roughness coefficients were 

used to describe roughness, vegetation or an index of connectivity. Differences in the DEM 

were used to describe the terrain slope and flood water movement. 

3. Details of Case Studies 

Two kinds of case studies were conducted in this study to evaluate the model perfor-

mance. One is hypothetical cases applied in the UK for 2D hydraulic benchmark tests, and 

the other is a historical flood event that occurred in coastal areas of Chiayi County, Tai-

wan. The details are discussed in the following subsections. 

3.1. Three UK EA Benchmark Test Cases 

The model developed in this study was applied to three cases from UK EA bench-

marking tests (hereafter referred to as the EA benchmark tests) for 2D flood modeling [47]. 

The EA benchmark test cases have been applied to many 2D hydraulic models to test their 

capability and performance in response to different types of hydraulic conditions. More 

information on the test cases can be found in Néelz and Pender [47]. In this work, three 

cases were selected: Test 2 (EAT2), filling the depression storage; Test 4 (EAT4), flood 

propagation over a flat area; and Test 8A (EAT8A), flood inundation induced by rainfall 

and a point source inflow in a small urban area. The other test cases, which were not se-

lected in this study, are either cases in which the 1D channel component is needed (e.g., 

Test 8B, 1D-2D problem) or problems that the proposed model was not designed to solve, 

such as Test 3, which requires momentum conservation. Other cases can be applied until 

further improvements are made in future studies. 

No observation data were provided within the cases; however, several models were 

used to simulate the cases, and the results were compared. To compare the proposed 

model results, the results of other 2D models were selected: TUFLOW [48] and 

LISFLOOD-FP [10]. These two models are widely used in the water industry and are 

among the 2D hydraulic models used in the EA benchmarking exercise [49]. TUFLOW 

uses full SWEs as the governing equation, while LISFLOOD-FP uses a simplification of 

the SWEs. For this purpose, three common model performance indicators [50]—namely, 

(i) the true positive rate (TPR), (ii) the false discovery rate (FDR), and (iii) the root mean 

square error (RMSE)—were used as the metrics to compare the model results. The equa-

tions of the TPR, FDR, and RMSE are expressed as 

��� (%) =  
��

�� + ��
× 100 (10)

��� (%) =  
��

�� + ��
× 100 (11)

���� (�) = �
∑ ���

� − ��
��

��
���

�
  (12)

The true positive (TP) parameter denotes the number of cells that both models con-

sidered wet (i.e., inundated). The false-negative (FN) parameter is the total number of cells 
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that the analyzed model identified as dry but the targeted model identified as wet. The 

false positive (FP) parameter is the opposite of the FN parameter; it represents the total 

number of cells that the analyzed model identified as dry but the targeted model consid-

ered wet. ��
�  denotes the predicted water depth of the ith cell of the targeted model, ��

�  

denotes the predicted water depth of the ith cell of the analyzed model, and p is the total 

number of wet cells. All these indicators consider wet cells to be those that have at least 

0.1 m of water depth. 

3.2. A Historical Flood Event 

A low-pressure zone and southwest airstream moved toward southern Taiwan grad-

ually between August 23 and 29, 2018. Over 500 mm of precipitation fell on coastal areas 

in Chiayi County, Taiwan, in 24 h, resulting in 7 casualties, 8492 people evacuated, and 

more than 14 million USD in economic losses. A total of 116 locations were flooded. Ac-

cording to a postdisaster report, the intensity of the rainfall exceeded the design capacity 

of drainage systems and was the major cause of flooding. The coastal areas of Chiayi 

County and this event were selected as the case study. The RMSE between recorded flood 

depths, TUFLOW results, and simulated results was used to evaluate the performance of 

the HIM model. 

4. Results and Discussion 

4.1. Three UK EA Benchmark Test Cases 

Within the first study, two scenarios were analyzed. First, the model was set to act as 

a fully CA-based model, and in the second scenario, the model was set to act as a hybrid 

model (i.e., a combination of CA-4D and D-Flat). The purpose of these two scenarios was 

to evaluate the improved performance of the DEM-incorporating model in terms of accu-

racy and efficiency. 

Table 1 shows the parameters of various simulations used to simulate the EA bench-

mark test cases. The most important parameter for CA-4D is the parameter α in Equation 

(4). This value has a significant impact on the actual computation time to finish a run. The 

parameter α should be low enough to ensure model stability but high enough to ensure 

computational efficiency. In conclusion, a higher α value returns a coarser precision but 

with a faster run time. For the hybrid simulation, many parameters must be determined 

based on professional judgment or trial-and-error rules. An important configuration step 

is to set the ratio of grid resolution between coarse grid resolution (CA-4D) and fine grid 

resolution (D-Flat). If the ratio (hereafter referred to as the DEM ratio) is high, the compu-

tation time may decrease significantly. The prediction accuracy may decrease for the fol-

lowing reasons. The assumption of flat-water theory in D-Flat is limited to small and flat 

areas. If the topography of the applied area (i.e., each color block on the right in Figure 3) 

changes dramatically or the area is too large, the assumption may not be sustained. A 

higher DEM ratio makes the IZ larger and may cause the D-Flat assumption to not be 

sustainable. Second, the results of CA-4D serve as input to the D-Flat model in HIM. The 

CA results have an impact on the prediction accuracy. It tends to oversimplify the topo-

graphic effect and provides fewer details by running CA-4D with a coarser grid. In this 

work, a 4–5 DEM ratio was used. For example, Table 1 shows that a ratio of 5 was applied 

in the HIM for the EAT2 scenario. This means that an integration of the CA-4D model 

with a 100 m × 100 m DEM and the D-Flat model with a 20 m × 20 m DEM was considered. 

The resolution of the final results was 20 m × 20 m, which is consistent with the results of 

the CA-4D model only. The second important parameter is the output frequency, which 

determines when the data are being extracted or saved. In the case of the HIM, it is the 

time when the data from the coarse CA–4D results are interpolated to a finer resolution 

using the D-Flat model. If a very small output frequency is used, then the computational 

time will increase due to excessive D–Flat model activation. In this case, the HIM uses the 

output frequency that is already set consistent with the benchmark. The last important 
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parameter is the increment constant (inc_const). This constant determines how much wa-

ter is added to fill the lowest elevation within the IZ during each iteration. Selecting a 

smaller increment constant leads to better performance. However, it necessitates more 

simulation time. Ref. [50] performed a sensitivity analysis regarding the increment con-

stant. The model performance was found to not improve for increment constants smaller 

than 0.001 m. Hence, the HIM used 0.001 m as a default value for the increment constant. 

For both models, a finer grid resolution was used as the final result. 

Table 1. Parameters used in CA-4D and the HIM for the EA benchmark test cases. 

Parameter/Test Case 
EAT2 EAT4 EAT8A 

CA-4D HIM CA-4D HIM CA-4D HIM 

Input Grid Resolution 20 m 100 m 5 m 20 m 2 m 10 m 

Output Grid Resolution 20 m 20 m 5 m 5 m 2 m 2 m 

Event Duration 48 h 48 h 5 h 5 h 5 h 5 h 

Output Frequency 300 s 300 s 20 s 20 s 20 s 20 s 

α 0.0125 0.5 0.02 0.2 0.0015 0.025 

∆tlim 1 s 1 s 1 s 1 s 1 s 1 s 

Inc_Constant - 0.001 m - 0.001 m - 0.001 m 

Total Number of Cells 10,000 80,000 97,000 

The purpose of implementing EAT2 is to evaluate the capability of the model to de-

termine the inundation extent and final flood depth, which involves low-momentum flow 

over complex topography. The region, as shown in Figure 5a, has an area of 2000 m × 2000 

m and 16 locations with ~0.5 m deep depressions. A uniform Manning coefficient of 0.03 

was applied to the whole domain, and a 20 m resolution DEM was expected to be used. 

The initial condition was a dry bed with a closed boundary area. The inflow boundary 

was applied along a 100 m line running south from the northwest corner, the value of 

which is given in Figure 5b. The original problem specified 16 output points at the center 

of each depression, where points 1–4 start from the lower left depressions (X, Y = 250 m, 

250 m) to the upper left (X, Y = 250 m, 1750 m). 

 
(a) (b) 

Figure 5. (a) EAT2 domain with contour lines every 0.05 m (b) Inflow from the northwest point (x, y = 0 m, 2000 m). 

Figure 6 shows a comparison of the water levels at points 1, 2, 3, and 4 for CA-4D, 

HIM, TUFLOW, and LISFLOOD-FP. The results agree well. However, for the CA-4D re-

sult, there is a small discrepancy in water level compared with the TUFLOW and 

LISFLOOD-FP results, especially at point 1, which is far from the inflow source. The dif-

ference in the maximum water levels is 10 cm. At point 1, the CA-4D result slightly lags 

those of TUFLOW and LISFLOOD-FP in terms of the time when the water begins to fill 
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the depression. This occurs at t = ~3 h in TUFLOW and LISFLOOD-FP and at t = ~6 h in 

CA-4D. Interestingly, unlike the CA-4D result, the HIM result at point 1 tends to be similar 

to those of TUFLOW and LISFLOOD-FP. 

(a) simulated water level at point 1 (b) simulated water level at point 2 

  
(c) simulated water level at point 3 (d) simulated water level at point 4 

Figure 6. Temporal variation in the water level for EAT2 at points 1, 2, 3, and 4; comparison among the CA-4D, HIM, 

TUFLOW, and LISFLOOD-FP models. (a) simulated water level at point 1; (b) simulated water level at point 2; (c) simu-

lated water level at point 3; (d) simulated water level at point 4. 

Figure 7 shows a comparison of the flood extent between CA-4D (a) and the HIM (b) 

at t = 48 h. The HIM shows significant inundation at point 9, while the CA-4D output is 

completely dry. The discrepancy occurs due to the different grid resolutions that were 

used. For the HIM, a 100 m grid resolution was used as an input, while for the full CA-4D 

scenario, a 20 m grid resolution was used. Since the coarse grid resolution data tend to 

oversimplify the topographic information, the final results of the flood extent might be 

different. Since there are no observation data, this paper assumes that the flood map pro-

duced by CA-4D represents the true value. In this way, the impact of the DEM model can 

be identified. Based on the performance indicator TPR, the HIM successfully predicts 85% 

of the area identified by CA-4D as inundated. The FDR shows the percentage of the over-

predicted area by the HIM. Based on the calculation, the FDR is 18.32%. The last perfor-

mance indicator, RMSE, is 0.047 m. The results show that the DEM model does not 

strongly negatively impact the results. 
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(a) (b) 

Figure 7. EAT2: predicted water depth at 48 h by (a) the CA-4D model with 20 m resolution and (b) the HIM. 

The EAT4 test consisted of a 1000 m × 2000 m horizontal floodplain with a ground 

elevation of 0 m, and a flood wave occurred due to an overtopping embankment defense 

failure. The flow boundary condition, as shown in Figure 8b, was applied at the central-

west border (x = 0, y = 1000 m). A uniform Manning coefficient of 0.05 m−1/3 s was applied 

to the whole domain. The scenario was simulated until the time reached 5 h with 6 speci-

fied points (see Figure 8a). Figure 9 shows the water level versus time at points 1, 3, 5, and 

6. The results obtained from CA-4D and the HIM are in very good agreement with those 

from TUFLOW and LISFLOOD-FP, with no significant discrepancy. This means that the 

CA-4D model and HIM show good performance in modeling wave propagation. The HIM 

successfully predicted 97.7% of the inundated area predicted by CA-4D, and only 0.39% 

of the area was overpredicted by the HIM. The RMSE value was only 0.0035 m, which is 

almost negligible. 

 
 

(a) (b) 

Figure 8. (a) EAT4 domain with 6 outpoints taken from Néelz and Pender [38] (b) Inflow hydro-

graph at the central-west point (x, y = 0 m, 1000 m). 
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(a) simulated water level at point 1 (b) simulated water level at point 3 

  
(c) simulated water level at point 5 (d) simulated water level at point 6 

Figure 9. Temporal variation in water level for EAT4 at points 1, 3, 5, and 6; comparison among the CA-4D, HIM, 

TUFLOW, and LISFLOOD-FP models; (a) simulated water level at point 1; (b) simulated water level at point 3; (c) simu-

lated water level at point 5; (d) simulated water level at point 6. 

Unlike EAT2 and EAT8A, which involve complex topography, EAT4 involves only 

flat topography with a 0 m ground elevation. Therefore, the HIM results, which are very 

sensitive to the grid resolution, do not differ from the other model results. The only dif-

ference is the flood extent area. Figure 10 shows that the inundation area produced by the 

HIM is slightly larger than that of the CA-4D results. As shown in Figure 11, at t = 1 h, the 

water already propagated at x = 420 m in the HIM and x = 380 m in the CA-4D model. A 

similar phenomenon was also observed by Hsu et al. [51], who found that the inundation 

area may increase with coarser DEMs. This makes sense since the HIM model takes the 

results from the coarse CA-4D as input. However, the difference may be only minimally 

detectable in flood extent maps. 

  

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300

W
a

te
r 

L
ev

el
 (

m
)

Time (minutes)

EAT4 Point 1

CA-4D

HIM

TUFLOW

LISFLOOD-FP

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300

W
a

te
r 

L
ev

el
 (

m
)

Time (minutes)

EAT4 Point 3

CA-4D

HIM

TUFLOW

LISFLOOD-FP

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300

W
a
te

r 
L

ev
el

 (
m

)

Time (minutes)

EAT4 Point 5

CA-4D

HIM

TUFLOW

LISFLOOD-FP

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300

W
a
te

r 
L

ev
el

 (
m

)

Time (minutes)

EAT4 Point 6

CA-4D

HIM

TUFLOW

LISFLOOD-FP



Water 2021, 13, 1311 14 of 23 
 

 

CA-4D HIM Difference 

CA-4D HIM Difference 

Figure 10. EAT4: comparison of flood extents at t = 1 h (first row) and at t = 3 h (second row). 

 

Figure 11. Cross-section of depths along the line y = 1000 m at t = 1 h. 

The goal of the EAT8A test is to simulate 2D flood routing within an urban area 

(Glasgow, UK). The boundary conditions involve two inflow sources: uniform rainfall 

across the area and surcharge flow located at (x, y = 920 m, 61 m), where the values are 
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given in Figure 12. The study area is approximately 0.4 km2 with an average slope of 4.3%, 

and the ground elevation ranges from 21 m to 37.6 m. The provided DEM, see Figure 13, 

is a 0.5 m resolution DEM (no vegetation or buildings) created from LiDAR data. The 

model is expected to simulate flood routing using a 2 m resolution DEM. Two Manning 

values are used: 0.02 for road and pavement and 0.05 elsewhere. All boundaries of the 

domain are closed, and the initial condition is a dry bed. 

  
(a) rainfall event (b) surcharge flow 

Figure 12. EAT8A rainfall event (a) and surcharge flow (b). 

 

Figure 13. EAT8A domain in which the area inside the black solid lines is considered the road. 

Figure 14 shows that the temporal water levels obtained by CA-4D and the HIM are 

in good agreement with those of TUFLOW and LISFLOOD-FP. All stage hydrographs 

show two peaks. This phenomenon is caused by the two inflows coming at different times. 

Although the results are well correlated, some small discrepancies occur in the HIM and 

CA-4D results. Some small oscillations in the CA-4D and HIM models at point 3 are visible 

even though they do not greatly disrupt the overall results. Hunter et al. [15] mentioned 

that this kind of problem is likely, especially when considering deep water. It could be 

solved easily by reducing the value of parameter α. However, doing so would dramati-

cally increase the computation time. 
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(a) simulated water level at point 1 (b) simulated water level at point 2 

  
(c) simulated water level at point 3 (d) simulated water level at point 6 

Figure 14. Temporal variation in water level for EAT8A at points 1, 2, 3, and 6; comparison among the CA-4D, HIM, 

TUFLOW, and LISFLOOD-FP models; (a) simulated water level at point 1; (b) simulated water level at point 2; (c) simu-

lated water level at point 3; (d) simulated water level at point 6. 

Some differences occurred in the predicted maximum water level. At points 1 and 6, 

the hybrid simulation predicted values 5–10 cm and 2–3 cm, respectively, higher than the 

other models’ results. Moreover, at point 2, the hybrid simulation gave the lowest maxi-

mum water level compared to the others, especially the TUFLOW result. This primarily 

occurred because, at point 2, the water movement was primarily driven by momentum. 

LISFLOOD and CA-4D, which neglect the momentum equation, returned similar results. 

Figure 15 shows the flood extent predicted by CA-4D and the HIM. Visually, the inunda-

tion areas predicted by both models exhibit very good agreement. This conclusion is sup-

ported by a TPR value equal to 84.5%, an FDR value equal to 15.6%, and an RMSE value 

equal to 0.08 m. The results are also in good agreement with those of Jamali et al. [49]. 

Three models—namely, TUFLOW, HEC-RAS, and CA-ffé—were applied by Jamali et al. 

[49], and only a slight difference was found in the maximum inundation depth. 
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(a) the result of HIM at t = 1800 s (b) the result of CA-4D at t = 1800 s 

(c) the result of HIM at t = 18,000 s (d) the result of CA-4D at t = 18,000 s 

Figure 15. Flood extents produced by the HIM (left column) and CA-4D (right column) at t = 1800 s (first row) and t = 18,000 s (second row); (a) the result of HIM at t = 1800 s; (b) the 

result of CA-4D at t = 1800 s; (c) the result of HIM at t = 18,000 s; (d) the result of CA-4D at t = 18,000 s. 
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4.2. Coastal Areas of Chiayi County 

The Chiayi County area is a low-elevation and relatively flat area located near the 

coastal region. The total area of the simulated domain is approximately 33 km2. A rainfall 

event of 550 mm over 30 h was applied to the whole domain, and the temporal distribu-

tion is shown in Figure 16. The drainage system was not included since this is not yet 

implemented in the HIM. However, this is reasonable in this case since the drainage sys-

tem was reported as having failed due to a high tide. The full simulation time was 36 h. 

To examine the effect of the DEM ratio, two scenarios that used different DEM ratios were 

simulated. Two coarse DEMs with resolutions of 25 and 40 m, obtained from averaging 

the 5 m DEM, were used as an input for the CA-4D model, and within this study, these 

are called the C25 m and C40 m scenarios, respectively. The D-Flat model interpolated the 

outputs from CA-4D into 5 m resolution results. 

 

Figure 16. Rainfall distribution in Chiayi County on 23–24 August 2018. 

Figure 17 shows the DEM of the area with the observation points, indicated by the 

red dots, and the maximum flood extent predicted by both DEM ratios. The water flows 

from east to west due to topography. Two detention ponds are located on the left-hand 

side of the map. The DEM ratio has a significant impact on the model performance. Figure 

17a,c show that the two ratios produce almost identical maximum flood extents. Flood-

water accumulates in particular on the left-hand side of the map, and some differences are 

found in the areas near the boundaries. This study area is similar to the ET4 case, in which 

the area is topographically flat. The result shows that the impact of the DEM ratio is small 

when the study area is flat. Hence, this allows for a higher DEM ratio to be used. In this 

case, the DEM ratio of C25m is 5, while that of C40 m is 8. 
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(a) (b) (c) 

Figure 17. Maximum flood extent of the (a) Chiayi County DEM and observation points (red dots), 

(b) C25 m and (c) C40 m. 

The maximum flood depths were collected at three different locations, as shown in 

Figure 17a. It is known that the observations are not from gaging stations but local sur-

veys. Table 2 shows the comparisons between the observation data and the simulation 

results. The observations showed that the locations of points 1 and 2 were inundated, and 

point 3 was not. The HIM results are consistent with this finding. Overall, there is no sig-

nificant difference between the C25 m and C40 m results. However, compared to the ob-

servation data, there is a 50% difference at point 2. This study used TUFLOW to simulate 

the study area and used the results to verify the HIM performance. The HIM and 

TUFLOW results are compared with observations in Table 2. The difference is less than 

10 cm in all observations. The results confirm the flood prediction capability of the HIM. 

Table 2. Comparison of observed and simulated maximum flood depths at different locations. 

 Observation C25m C40m TUFLOW 

Point 1 0.775 m 0.572 m 0.570 m 0.513 m 

Point 2 1.100 m 0.459 m 0.426 m 0.506 m 

Point 3 0.000 m 0.000 m 0.000 m 0.030 m 

RMSE (m)  0.388 m 0.407 m 0.375 m 

4.3. Model Efficiency 

All simulations were run using an Intel Core i7-8550U CPU @ 1.80 GHz without par-

allel or graphics processing unit computations. Table 3 shows the computation times for 

the three EA benchmark case simulations and coastal areas of the Chiayi County case. 

When compared to the TUFLOW and LISFLOOD-FP computation times, for the EA 

benchmark cases, the CA-4D and HIM computation times were longer for all simulations. 

This is attributed to TUFLOW and LISFLOOD-FP using massive parallelism to accelerate 

computation. However, the HIM shows a significantly shorter computation time than CA-

4D: 30 and 35 times faster to obtain the EAT2 and EAT4 results, respectively. The EAT8A 

results show that the CA-4D computation time was massive: more than 2 weeks to finish 

the 5-h simulation. This massive computation time was caused by the very fine resolution 

being used (2 m). As a consequence, the time step decreased to ensure model stability. The 

HIM did not face this kind of problem since a coarse grid resolution was used (10 m). That 

is, the HIM could finish the simulation up to 1200 times faster. These results show that the 

hybrid process could enhance the efficiency of the CA-4D model without using any par-

allelism technique. From the real case study, it could be seen that the HIM computation 

time could be decreased even more by simply increasing the DEM ratio. Scenario C25m, 

which used a ratio of 5, produced a computation time similar to that of TUFLOW-GPU. 



Water 2021, 13, 1311 20 of 23 
 

 

However, scenario C40m, which used a ratio of 8, was almost 7 times faster than 

TUFLOW-GPU. However, the DEM ratio cannot be increased carelessly since a higher 

DEM ratio returns less accurate results. 

Table 3. Comparison of the computation times. 

Model Multiprocessing 

Computation Time (min) 

UK EA Test Cases Historical Event 

EAT2 EAT4 EAT8A C25m C40m 

CA-4D No 136 580 21,160 - - 

HIM No 4.5 16.5 18.8 450 71 

TUFLOW Yes -GPU 0.27* 0.42* 1.5 * 480 

LISFLOOD-FP* Yes 0.12* 0.35* 4.5 * - 

* retrieved from [49]. 

5. Conclusions 

The rapid flood model HIM is presented in this study, and the performance was eval-

uated using three case studies from the EA-UK benchmark tests and a historical event in 

a coastal area in Chiayi County. The stage hydrographs produced by the HIM for the three 

UK EA test cases (EAT2, EAT4, and EAT8A) at various points are consistent with those of 

the commercial software TUFLOW and LISFLOOD-FP. To evaluate the performance of 

the combination, the results of a purely CA model (CA-4D) and the HIM were compared. 

Some discrepancies occurred between the flood extent predicted by CA-4D and the HIM 

in EAT2 because the HIM is very sensitive to the grid resolution. However, the inundation 

extents predicted by both models show very good agreement for all cases. Based on these 

three cases from EA-UK, the performance indexes of the TPR and FDR range from 85–

97% and from 0.39–18%, respectively, and the RMSEs are between 0.047 m and 0.08 m. In 

terms of efficiency, the computation time of the HIM compared to that of CA-4D shows 

that the HIM was 23 to 1200 times faster. It can be concluded that the HIM can provide 

faster results than a CA-based flood model without significantly sacrificing accuracy. 

Finally, a historical flood event was also investigated in this study, and two grid com-

bination scenarios, C25m and C40m, were conducted to determine the effect of the DEM 

ratio on the results. The performance was also confirmed when the simulated results were 

compared with the TUFLOW model. The computation time could be reduced by simply 

increasing the DEM ratio. However, by doing so, the model must sacrifice the accuracy of 

the result. Therefore, further study on the optimal DEM ratio must be performed in the 

future so that the results of the HIM can meet the needs of emergency response. Compared 

to the observation data, the grid ratios showed no difference, and all results underpre-

dicted the flood depth at some points. One reason is that the simplified governing equa-

tions in HIM may not provide enough accuracy. Since the flood record was collected based 

on the local surveys, its accuracy may be also be an issue. Overall, the concept of combin-

ing CA and DEM models shows potential for practical purposes. However, certain com-

ponents, such as drainage systems and detention basins, which are common in urban ar-

eas, are not included in the HIM model. Further research must be conducted to include 

these features to increase the accuracy of simulations in urban areas. The DEM ratio be-

tween CA-4D and D-Flat in the HIM is not investigated in this study. It is expected to have 

a nonlinear impact on the results. The best DEM ratio is therefore a topic to be further 

investigated in the future. The results have shown the model’s potential, and considerable 

work remains for the model to be capable of meeting the requirements of real applications. 

Furthermore, the governing equations considered in the HIM are simplified. They can 

provide only a certain degree of accuracy when attempting to meet the needs of emer-

gency response. In conclusion, the HIM is not the model that should be selected for de-

tailed simulations or situations that demand high standards of accuracy. 
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