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Abstract: Accurate and reliable predictors selection and model construction are the key to medium
and long-term runoff forecast. In this study, 130 climate indexes are utilized as the primary forecast
factors. Partial Mutual Information (PMI), Recursive Feature Elimination (RFE) and Classification
and Regression Tree (CART) are respectively employed as the typical algorithms of Filter, Wrapper
and Embedded based on Feature Selection (FS) to obtain three final forecast schemes. Random
Forest (RF) and Extreme Gradient Boosting (XGB) are respectively constructed as the representative
models of Bagging and Boosting based on Ensemble Learning (EL) to realize the forecast of the three
types of forecast lead time which contains monthly, seasonal and annual runoff sequences of the
Three Gorges Reservoir in the Yangtze River Basin. This study aims to summarize and compare the
applicability and accuracy of different FS methods and EL models in medium and long-term runoff
forecast. The results show the following: (1) RFE method shows the best forecast performance in all
different models and different forecast lead time. (2) RF and XGB models are suitable for medium
and long-term runoff forecast but XGB presents the better forecast skills both in calibration and
validation. (3) With the increase of the runoff magnitudes, the accuracy and reliability of forecast are
improved. However, it is still difficult to establish accurate and reliable forecasts only large-scale
climate indexes used. We conclude that the theoretical framework based on Machine Learning could
be useful to water managers who focus on medium and long-term runoff forecast.

Keywords: medium and long-term runoff forecast; machine learning; feature selection; ensemble
learning; random forest; extreme gradient boosting

Highlights:

(1) This study aims to summarize and compare the applicability and accuracy of different
Feature Selection methods and Ensemble Learning models in medium and long-term
runoff forecast.

(2) Three typical methods (Filter, Wrapper, and Embedded) based on Feature Selection
are employed to obtain predictors.

(3) Two representative models (Bagging and Boosting) based on Ensemble Learning to
realize the forecast.

1. Introduction

Refined medium and long-term runoff forecast technology is an important basis for the
design, construction, and operation management of water conservancy and hydropower
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projects [1–3]. It is a basic key technology to realize the scientific allocation of water
resources and improve the utilization efficiency of water resources and has important
supporting significance for the dispatching management and optimal allocation of water
resources [4–6]. With the rapid development of the social economy and the continuous
improvement of science and technology, the ability of water resources regulation and
control has been obviously improved. The practice of water resources regulation, such as
unified regulation of basin water quantity, inter-basin water transfer, and joint regulation of
super-large cascade reservoirs, has continued to advance, putting forward higher require-
ments for the forecast accuracy and forecast scale of medium and long-term runoff forecast.
As such, its importance has become increasingly prominent [7–10]. In the unified regulation
and management of water quantity in China’s Yangtze River, Yellow River, Pearl River
and Huai River basins, medium and long-term runoff forecast are important scientific and
theoretical bases for water resource allocation and regulation schemes, and the reliability,
stability, and extensibility of the forecast results play a significant value [11,12].

However, monthly-seasonal-annual runoff forecast has always been a difficult point
in hydrological science, both in theory and application. Compared with the short-term
runoff forecast, the development is relatively slow and lags behind the actual production
requirements [13,14]. It is of great theoretical and practical significance to establish a
stable and reliable medium and long-term runoff forecast system by using fast-developing
mathematics and computer technology while strengthening the collection and arrangement
of basic data for runoff forecast [15,16].

In recent years, the fourth industrial revolution with Artificial Intelligence (AI) as its
core has played an important role in hydrological forecasting, water resources regulation,
and other fields. Among them, Machine Learning (ML) is an important branch of AI,
and it is also a new discipline to study how to make computers learn rules from massive
historical data through algorithms, so as to classify or predict new samples [17]. The
development of forecasting model in ML has experienced several significant milestone
time nodes. In 1952, Arthur Samuel firstly gave the definition and operable program of
ML [18]. In 1958, Rosenblatt put forward the Perceptron Model which is the embryonic
form of Artificial Neural Network (ANN) [19]. However, it was not until Werbos applied
BP algorithm to build multilayer perceptron in 1982 that ANN developed rapidly [20].
In 1986, Quinlan proposed the earliest Decision Tree (DT), ID3 model [21]. Since then,
C4.5 [22], CART [23] and other DT algorithm have flourished. In 1995, ML ushered in a
major breakthrough. The Support Vector Machine (SVM) [24] presented by Vapnik and
Cortes. It not only has a solid theoretical basis, but also has excellent experimental results.
In 1999, Freund and Schapire put forward Adaptive Boosting (AdaBoost) [25], and in 2001
Breiman proposed Random Forest (RF) [26]. Both were based on DT theory and developed
into representative algorithms of Boosting and Bagging [27,28], two important components
of Ensemble Learning (EL).

When applying ML to medium and long-term runoff forecast, the first step is also the
most important one, Feature Selection (FS), which is to extract accurate and appropriate
features from the original data to the maximum extent by using relevant knowledge in
the field of data analysis for the forecast model to achieve the best performance [29,30].
Due to the huge and messy data set, FS is a key step in building forecast models and also a
highly iterative data preprocessing process [31]. This includes two reasons. First, FS can
avoid Dimension Disaster due to too many attributes, which has similar motivation to
dimension reduction (such as PCA, SVD, LDA, etc.), that is, trying to reduce the number
of features in the original data set. However, these two methods are different. Dimension
reduction mainly obtains new features by recombining the original features, while FS is
to select subsets from the original features without changing the original feature space.
Second, FS reduces data noise and the training difficulty of learners while removing the
irrelevant feature. For medium and long-term runoff forecast, the FS is to find out the
feature matching relationships between monthly-seasonal-annual runoff sequences and
the previous climate indexes and select a certain number of features with physical causes,
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strong mutual independence and accurate and stable forecast performances as forecast
factors. Climate Indexes include but are not limited to Sea Surface Temperature, El Nino
index, Subtropical High, Circulation Index, Polar Vortex, Trade Wind, Warm Pool, Ocean
Dipole, Solar Flux, etc.

Compared with the physical-driven runoff forecast model, the data-driven runoff
forecast model based on machine learning not only reduces the difficulty of understanding
runoff mechanism and the complexity of modeling, but also provides a new idea for runoff
forecasting due to its solid theoretical basis and good performance. Many hydrologists use
ML and Big Data Mining methods, such as ANN [32], SVM [3], Extreme Learning Machine
(ELM) [33], Gradient Boosting Decision Tree (GBDT) [34], Relevance Vector Machine
(RVM) [35], etc., to study and improve runoff forecast methods and models, to improve
their ability to understand, predict and apply the evolution law of runoff phenomena.

In this paper, we summarize the Filter, Wrapper, and Embedded theories from FS
based on ML and apply Partial Mutual Information (PMI), Recursive Feature Elimination
(RFE), Classification and Regression Tree (CART) as the typical algorithms of the above
three theories to select forecast factors suitable for medium and long-term runoff forecast.
In the meanwhile, we also summarize the Bagging and Boosting frameworks from EL based-
on ML and apply RF and XGB are the representative models of the above two frameworks
to realize the forecast which lead time for the next month, next quarter, and next year,
respectively. Besides, precision evaluation indexes are employed to compare and analyze
forecast results of different schemes and models, which contain Relative Error (RE), Mean
Value of Absolute Relative Error (MAPE), NASH Efficiency Coefficient (NSE), and Relative
Root Mean Square Error (RRMSE). This paper is structured as follows. The theories of FS
and EL are described in Section 2. A case study that contains catchment and research results
is detailed in Section 3. The study is summarized and concluded in Section 4.

2. Methodology
2.1. Feature Selection

As a significant data preprocessing process, FS methods can be further subdivided
into Filter, Wrapper, and Embedded [36]. In this paper, Partial Mutual Information (PMI),
Recursive Feature Elimination (RFE) and Classification and Regression Tree (CART) are
employed as the representative algorithms of Filter, Wrapper and Embedded, respectively.
Accordingly, these three methods will build three schemes named Scheme A, B, and C.
Each scheme includes three timescales predictors which are applied to monthly, seasonal,
annual runoff forecast. Besides, assuming that the advance of the effectiveness of the
climate indexes is one year, and ten predictors will be selected in each timescale forecast
model. Due to the great difference of monthly runoff series in the year, the forecast factors
of each month are different. Similarly, the same method is adopted for seasonal and annual
forecast. Three types of FS are described as follow. In fact, most ML models themselves
select features using weights. Here by using FS in advance models work faster or efficiently
in addition to removing noise, and other issues.

2.2. Filter

Filter is based on the idea of greedy algorithm. By setting up a certain index to score,
it then quantifies the relationship between each group of features and runoff, and removes
the low-score features to obtain high-score features [37]. The FS process is independent
of the subsequent learners, which is equivalent to “filtering” the original features and
then training the model with the filtered features. According to the different indexes,
Filter can be divided into four types: Distance, Correlation, Consistency, and Information
Measurement [38]. The classical European, Mahalanobis, and Chebyshev Distance are all
distance measurements. The commonly used Pearson, Spearman, and Kendall correlation
coefficients all belong to the Correlation Measurement. Consistency measurement is not
widely used because it only applies to discrete features. Information Measurement includes
Mutual Information, Correlation Degree, Information Gain, and other methods [39].
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Partial Mutual Information (PMI) which is based on Mutual information and presented
by Sharma is employed as a typical method of Filter [40]. PMI estimates the correlation
between the newly added forecast factors and the output variables, excluding the influence
of the selected variables, i.e., PMI calculates the increment of correlation between input
and output set when a new variable is added. It can be defined as [40,41]:

PMI =
x

fX′ ,Y′
(
x′, y′

)
ln
[

fX′ ,Y′(x′, y′)
fX′(x′) fY′(y′)

]
dx′dy′ (1)

x′ = x− E[x|z ], y′ = y− E[y|z ] (2)

where E is a mathematical expectation, x is input and y is output of the selection model,
and z is the selected set of forecast factors.

2.3. Wrapper

Unlike Filter which does not consider the subsequent learners, Wrapper directly
takes the forecast performance of the learners to be used as the evaluation criterion for
the FS [39,42]. In other words, FS is “wrapped” with the learners, and different learners
will lead to different forecast factors. Las Vegas Wrapper (LVW) and Recursive Feature
Elimination (RFE) are two common wrapped algorithms. LVW randomly generates feature
subsets and uses cross-validation to estimate the errors of the learner. When the errors on
the new feature subset are smaller, or the errors are equal but contain fewer features, the
new feature subset is retained and recursively calculated until the target is reached [43]. RFE
uses a base learner for multiple rounds of training. After each round of training, features
of several weight coefficients are removed and the next round of training is conducted
based on the new feature set, recursively calculating until the number of remaining features
reaches the required [44]. By comparing the above methods, RFE is employed as the
representative algorithm of wrapper in this paper. In the same way as Scheme A, ten
forecast factors are selected as Scheme B according to RFE. Similarly, Scheme B includes
three timescale predictors.

2.4. Embedded

In Filter and Wrapper, the feature selection process is obviously independent of
learners training. In contrast, Embedded combines those two parts together in the same
optimization process, in other words, feature selection is automatically done in the learner
training process [39,45]. In order to achieve the result of synchronous optimization, Em-
bedded relies on the specific forecast model and is mainly based on Regularization and
DT method. The regularization method minimizes forecast error while preventing model
over-fitting by referring to L1-norm (Lasso) or L2-norm (Ridge) as penalty terms of opti-
mization function. In addition, DT include RF, GBDT etc. In this paper, Classification and
Regression Tree (CART) is used to as the typical algorithm of Embedded, in the meanwhile,
Scheme C is also coupled with sub-forecast models and provides three timescales. Due to
the combination of the embedded strategy and forecast models, the specific theories are
described in Section 2.2.

2.5. Ensemble Learning

The core theory of Ensemble Learning is to generate a large number of individual
learners (sub-forecast models) and then synthesize the sub-forecast results through some
strategies. If the individual learners adopt the same learning algorithm, it is called homo-
geneous integration, and the individual learners are called base learners. Otherwise, they
are called heterogeneous integration and component learners, respectively [46]. Ensemble
Learning can often achieve better forecast and forecast performance than a single one by
combining multiple individual learners. Especially when the individual learner is a weak
learner, the effect is more obvious. Therefore, most of the Ensemble Learning theories are
based on weak learners. Different Ensemble learning algorithms are reflected in different
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combination strategies. Overall, Ensemble Learning can be divided into two categories:
Bagging and Boosting. Boosting is suitable for scenarios where there is a strong dependency
between individual learners, and they must be computed in serial. Bagging is suitable for
scenarios where there is no strong dependency between individual learners and can be
calculated in parallel [47–49].

In this paper, the Classification and Regression Tree (CART) is employed as a weak
learner; Random Forest (RF) and Extreme Gradient Boosting (XGB) are used as a represen-
tative algorithm of Bagging and Boosting, respectively.

2.6. Classification and Regression Tree

In Machine Learning, Decision Tree (DT) is often used as a basic forecast model. The
key to Decision Tree is to select the optimal partition attribute. Generally speaking, as the
division process continues, we hope that the samples contained in the branch nodes of the
decision tree belong to the same category as much as possible. In other words, the purity
of the nodes should be getting higher and higher [50].

CART can be both a classification tree and a regression tree. When CART is a classifica-
tion tree, Gini index is used as the basis for the node splitting. When CART is a regression
tree, the Minimum Variance of samples is used as the basis for the node splitting [51].
When the regression trees are generated, the space will be recursively divided according to
the optimal feature and value under the optimal feature until the stop condition is satisfied.
The stop condition can be artificially set, such as setting the sample size of a certain node to
be less than a given threshold C, or when the loss reduction value after segmentation is
less than a given threshold ε [52].

For the generated CART, the category of each leaf node is the average of the la-
bels falling on that leaf node. Assuming that the feature space is divided into M parts,
i.e., there are now M leaf nodes R1, R2, · · · , RM, and the corresponding data quantity is
N1, N2, · · · , NM, the predicted values of leaf nodes are:

cm =
1

Nm
∑

xi∈Rm

yi (3)

CART is also a binary tree, which is divided according to the value of the feature
every time. If the value S of the feature J is segmented, the two regions after segmented are
respectively:

R1(j, s) =
{

xi

∣∣∣xj
i 6 s

}
, R2(j, s) =

{
xi

∣∣∣xj
i > s

}
(4)

Calculate the estimated values C1 and C2 of R1 and R2 respectively, and then calculate
the loss after splitting according to (j,s):

min
j,s

[
∑

xi∈R1

(yi − c1)
2 + ∑

xi∈R2

(yi − c2)
2

]
(5)

Equations (4) and (5) will are recursively continued until the end condition is met.

2.7. Random Forest

Random Forest (RF) is present by Breiman and as the most widely used Bagging
algorithm. As the flow chart shown in Figure 1, the process contains three parts. Firstly,
using Bootstrap sampling method, N sub-training sets will be extracted from the original
training set. Secondly, using CART as a sub-forecast model, runoff is simulated, and N
sub-results are obtained. Finally, the weighted average of the N sub-results is carried out
to obtain the final forecast result [53,54].
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Figure 1. Flow chart of Bagging algorithm.

2.8. Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) is presented by Tianqi Chen and as an enhancement
of GBDT algorithm [55]. Both XGB and GBDT are based on Boosting algorithm whose
flow chart is shown as Figure 2. The main idea of XGB is to step up the training process,
using all samples for each round of training and changing the weights of samples. The loss
function is used to fit the residual error. The goal of each training round is to fit the residual
error of the previous round, and the forecast result is the weighted average of the forecast
results of each round when the residual error is small enough or reaches the number of
iterations [56,57].

Figure 2. Flow chart of Boosting algorithm.

XGB is essentially an addition model, and its sub-decision tree model only uses CART
regression tree. Assuming the training sample is N = {(x1, y1), (x2, y2), · · · , (xN , yN)},
and x could be a multi-dimensional vector. f t(x) represents the predicted value after the
t-th iteration, ft(x) represents the increment of the t-th iteration:

f t(x) = f t−1(x) + ft(x) =
t

∑
k=1

fk (6)

Model learning is a NP-C process to find the optimal solution and always uses a
heuristic strategy. Assuming that yi is the observed values of training samples in the
iterative process; ŷi is the simulated values; L is the loss function and Ω is the regularization
function, then the objective function OBJ of XGB can be defined as:

Obj = ∑ L(yi, ŷi) + ∑ Ω(gk) (7)

Obj = ∑ L(yi, ŷi) + ∑ Ω(gk) (8)

In the regularization function, T is the number of leaf nodes; ω is the fraction of leaf
nodes; λ is the regularization parameter and γ is the minimum loss required to further
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divide the leaf nodes. Penalizing the number of leaf nodes is equivalent to pruning in
training, so that the model is not prone to over-fitting.

3. Case Study
3.1. Study Area

In the paper, we apply the proposed methodology to the Three Gorges Reservoir
which is located in the Yangtze River Basin. The Yangtze River is the longest and most
abundant river in China, with a total length of 6300 km. As the third longest river in the
world, its total amount of water resources is 961.6 billion cubic meters, accounting for
about 36% of the total river runoff in the country, 20 times that of the Yellow River. Above
Yichang is the upper reaches of the Yangtze River, with a length of 4504 km and a basin
area of one million square meters. Yichang to Hukou is the middle reaches, with a length
of 955 km and a basin area of 0.68 million square meters. Below Hukou is the downstream,
with a length of 938 km and a basin area of 0.12 million square meters. The Three Gorges
Reservoir, located in Yichang City, is the largest water conservancy project in China and
has a series of functions such as flood control, irrigation, shipping, and power generation.
Its control basin accounts for about 60% of the Yangtze River basin, with a total area of
1084 square meters, a total capacity of 30.3 billion cubic meters and an average flow of
15,000 cubic meters per second for many years [58,59].

3.2. Predictors

The forecast factors are based on 130 remote-related climate indexes provided by the
National Climate Center (China) (https://cmdp.ncc-cma.net/Monitoring/cn_index_130.
php accessed on 4 April 2021). Climate indexes contain three parts. The first part includes
88 atmospheric circulation indexes such as Subtropical High, Polar Vortex, Subtropical High
Ridge, Zonal/Meridional Circulation, Pattern Index, Wind Index, etc. All the atmospheric
circulation indexes have an exact location, strength and range. The second part is about
26 sea surface temperature indexes which include NINO 1 + 2 SSTA Index, NINO 3.4 SSTA
Index, Indian Ocean Basin-Wide Index, South Indian Ocean Dipole Index, etc. The third
part includes 16 other indexes such as Cold Air Activity Index, Total Sunspot Number
Index, Southern Oscillation Index, etc. The detail of 130 remote-related climate indexes can
be found on the website of National Climate Center (China).

As mentioned in Section 2.1, schemes named A, B, C as three kinds forecast factors,
which are used as the representatives of theory of Filter, Wrapper and Embedded. Due
to the space limitation in this paper, only the predictors of January in monthly forecast
at Three Gorges Reservoir are shown as an example. The predictors are as follows in the
Table 1. Since the factors are all previous year, the first number means the specific month.
For example, 5_Western Pacific Subtropical High Intensity Index represents the value of
this climate index in May last year.

Table 1. Forecast factors of January runoff at Three Gorges Reservoir.

Scheme A Scheme B Scheme C

5_Western Pacific Subtropical High
Intensity Index 11_Indian Ocean Basin-Wide Index 8_Northern Hemisphere Subtropical High

Ridge Position Index

5_Pacific Subtropical High Intensity Index 11_Pacific Subtropical High Area Index 11_South China Sea Subtropical High
Intensity Index

11_Indian Ocean Warm Pool Strength Index 11_Indian Ocean Warm Pool Area Index 10_East Asian Trough Intensity Index
10_Pacific Subtropical High Area Index 10_Atlantic Meridional Mode SST Index 11_Indian Ocean Warm Pool Area Index

10_Indian Ocean Basin-Wide Index 8_Atlantic Subtropical High Area Index 8_South China Sea Subtropical High Ridge
Position Index

8_East Atlantic Pattern, EA 10_Atlantic Multi-decadal Oscillation Index 8_Eastern Pacific Subtropical High Northern
Boundary Position Index

11_Western Hemisphere Warm Pool Index 10_Indian Ocean Basin-Wide Index 7_Asia Polar Vortex Intensity Index

10_Atlantic Multi-decadal Oscillation Index 5_Pacific Subtropical High Intensity Index 12_Northern Hemisphere Polar Vortex Central
Intensity Index

4_Western Pacific Warm Pool Strength index 9_Pacific Subtropical High Northern Boundary
Position Index 5_Asian Zonal Circulation Index

6_North Atlantic Subtropical High
Intensity Index

5_Western Pacific Subtropical High
Intensity Index 6_Antarctic Oscillation, AAO

https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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3.3. Precision Evaluation Indexes

The model accuracy analysis is based on six performance indexes that have been
widely used to evaluate the good-ness-of-fit of hydrologic models. Although there are
other hydrological evaluation indexes, we intend to use Square of Correlation Coefficient
(R2), Relative Root Mean Square Error (RRMSE), Relative Error (RE), Mean Absolute
Percentage Error (MAPE), Nash-Sutcliffe Coefficient of Efficiency (NSE) and Qualification
Rate (QR). In the following description, Qi,o, Qi,s, Qo and Qs are observed values, simulated
values, mean of observed sequences and mean of simulated sequences, respectively. The
values of n and N are the qualified length and total length of data set, respectively.

(1) Square of correlation coefficient (R2)

R2 is one of the most employed criteria to evaluate model efficiency. Its range between
−1 and 1 (perfect fit) and it is defined as:

R2 =

(
N
∑

i=1
(Qi,o −Qo)(Qi,s −Qs)

)2

N
∑

i=1
(Qi,o −Qo)

2 N
∑

i=1
(Qi,s −Qs)

2
(9)

(2) Relative Root Mean Square Error (RRMSE)

RRMSE is based on RMSE which is not suitable for comparing different magnitudes
of streamflow, i.e., RRMSE which ranges from −1 and 1 shows a good performance to
compare runoff sequences in different river basins. RRMSE is calculated as [60]:

RRMSE =

√√√√ 1
N

N

∑
i=1

(
Qi,s −Qi,o

Qi,o

)2

(10)

(3) Relative Error (RE) and Mean Absolute Percentage Error (MAPE)

RE and MAPE are conventional criteria to show the results in each data point. There
are given by:

RE =
Qi,s −Qi,o

Qi,o
(11)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣Qi,s −Qi,o

Qi,o

∣∣∣∣∣ (12)

(4) Nash-Sutcliffe Coefficient of Efficiency (NSE)

The NSE is one of the best performance metrics for reflecting the overall fit of a
hydrograph. It varies from −∞ and 1 (perfect fit). If the NSE value between 0 and 1, it
means an acceptable model performance. If NSE value is lower than 0, it indicates that
mean value of the series is a better estimation than the constructed model. NSE is defined
as [61]:

NSE = 1−

N
∑

i=1

(
Qi,s −Qi,o

)2

N
∑

i=1

(
Qi,o −Qo

)2 (13)

3.4. Monthly Forecast

Python is adopted as the programming platform this time, including open-source
databases Numpy, Pandas, Scikit-Learn, etc. The runoff sequences are calibrated over the
37-year period 1965–2001 and validated over the 15-year period 2002–2016. The parameters
of RF and XGB models in different scales are determined by the fitting effect in calibration.
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In order to verify the adaptability and accuracy of the three predictors selection methods
and the two types of machine learning for medium and long-term forecast models in
different timescales, the forecast lead time focus on one month, one quarter and one
year, respectively.

As shown in Figure 3, for the situation of different models with same predictors’
schemes, the accuracy in calibration of XGB is better than that of RF. Scatters in XGB are
much closer the 1:1 line which means a perfect fitness. In the meanwhile, all the values
on the scatterplots are evenly located at both sides of orange line, show little indication of
system deviation. For another situation of same models with different predictors’ schemes,
it shows a similar accuracy and adaptation. It is difficult to compare the performance of the
Scheme A, Scheme B, and Scheme C from the graphs. The precision evaluation indexes are
shown in the following Table 2 which contains the specific values towards three schemes
and two monthly forecast models. Data in the table further verify the above conclusions.

Figure 3. Scatterplots of monthly observed and simulated runoff sequences estimated from (a) RF
and (b) XGB model in calibration. The orange line represents 1:1 line which means a perfect fitness.
The vertical axis is the observed runoff value and the horizontal axis is the simulated runoff value.

Table 2. Precision evaluation indexes of RF and XGB monthly forecast model in the period of calibration.

RF XGBoost

A B C A B C

R2 0.992 0.993 0.993 0.999 0.999 0.999
RRMSE 0.072 0.068 0.070 0.019 0.012 0.013
MAPE 5.36% 4.65% 5.00% 1.03% 0.69% 0.74%
NSE 0.982 0.986 0.984 0.997 0.998 0.998

In the validation period, the specific RE is shown as Figure 4 and Table 3. For the
heatmaps, red indicates that the predicted is greater than the observed value, and blue
indicates that the predicted is less than the measured value. According to the value of RE, set
the legend to +50% at the maximum and −50% at the minimum and the darker the color, the
greater the absolute value of the RE. In the horizontal direction of Figure 4, the left and right
is RF and XGB model. In the vertical direction, there are Scheme A, B, and C, respectively.

Generally speaking, the forecasts of Jan and July to Oct are much worse than other
months. Figure 5 presents an enhanced boxplot named letter-value plot [62]. Standard box-
plots consist of the outliers, maximum, upper quartile, median, lower quartile, minimum
and outliers from top to bottom. Boxplots are useful to illustrate the rough information
about the distribution of the variables but do not take advantage of precise estimates of tail
behavior, i.e., the specific data distribution cannot be displayed. As for letter-value plot, in
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addition to drawing the original quartiles, it continues to draw 8th, 16th, 32nd, etc., and the
width and color depth of each box correspond to the corresponding sample size. Based on
letter-value plots, we could tell the concentration and dispersion of monthly runoff, which
not only shows the position of the data quintiles, but also shows the probability density
of any position. As the runoff of Jan, July to Oct shown in Figure 5, the distributions of
observed values are extremely scattered, and the annual differences are large. Transversely,
the distributions are relatively uniform, and the repeat abilities are low. This feature of
runoff increases the difficulty of forecast.

Figure 4. Heatmaps plots of monthly observed and simulated runoff sequences estimated from RF and XGB model in
validation. The legend is set to +50% at the maximum and −50% at the minimum of all the heatmaps and the lighter the
color, the smaller the absolute value of the RE.

Table 3. Precision evaluation indexes of RF and XGB monthly forecast model in the period of validation.

RF XGBoost

A B C A B C

R2 0.924 0.930 0.926 0.907 0.923 0.921
RRMSE 0.226 0.231 0.258 0.238 0.211 0.229
MAPE 16.48% 15.74% 17.33% 17.92% 15.61% 16.11%
NSE 0.836 0.837 0.814 0.805 0.844 0.832

In general, the horizontal comparison shows that XGB model has a slightly better
forecast result than RF model under the same forecast factors. At the same time, the vertical
comparison shows that for the same forecast model, Scheme B has the highest accuracy,
and Schemes A and C are similar.
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Figure 5. Letter-value plots of monthly observed and simulated runoff sequences estimated from RF and XGB model of
Scheme A, B, C in validation. 1-A means the result of using Scheme A as predictors in Jan and others have an analogous
meaning. The vertical axis is the observed runoff value, and the horizontal axis is the simulated runoff value.

3.5. Seasonal Forecast

When forecasting the runoff in the next quarter, 130 remote-related climate indexes
with an advance of one year are still used as forecast factors, and the total runoff values
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of each quarters are used as forecast targets, with the calibration and validation period
the same as monthly forecast. Figure 6 and Table 4 show the forecast results of the two
models in calibration, and similar conclusions which according to Figure 3 and Table 2 can
be obtained.

Figure 6. Scatterplots of seasonal observed and simulated runoff sequences estimated from (a) RF and (b) XGB model in
calibration. The orange line represents 1:1 line which means a perfect fitness. The vertical axis is the observed runoff value,
and the horizontal axis is the simulated runoff value.

Table 4. Precision evaluation indexes of RF and XGB seasonal forecast model in the period of calibration.

RF XGBoost

A B C A B C

R2 0.995 0.996 0.994 0.998 0.999 0.998
RRMSE 0.057 0.053 0.058 0.026 0.022 0.025
MAPE 4.27% 4.00% 4.39% 1.60% 1.40% 1.53%
NSE 0.989 0.992 0.987 0.993 0.995 0.993

As can be seen from Figure 7, in general, the forecast results of the validation period
are similar for the two models with the same forecast factor scheme. Except for the poor
forecast results in 2006, 2009 and the first quarter combined Scheme A, the second quarter’s
combined Scheme B and the third quarter combined Scheme C from 2010 to 2016, the
results are still acceptable. Table 5 shows similar results to those shown in Table 3, except
for further demonstration of the above results, the results of Scheme B are the best, slightly
better than those of Scheme A and C, and the latter two results are parallel.

3.6. Annual Forecast

When forecasting the runoff for the next year, 130 remote-related climate indexes
with an advance of one year are still used as forecast factors, and the total runoff values
of each years are used as forecast targets, with the calibration and validation period the
same as monthly forecast. Because the data sequence is short, only the MAPE is used to
evaluate the forecast results. Similar to the previous description, scatterplots are employed
to illustrate the accuracy shown in Figure 8 and Table 6. There still displays a closely
phenomenon that XGB is better than RF model in calibration. It is worth noting that, for
the annual forecast, the RF shows that the lower observation contributes under-estimates,
and the higher observation contributes the over-estimates. As for XGB, most cases are
overestimated, and with the increase of observed values, the overestimation phenomenon
becomes more obvious. One possible reason is that the annual runoff varies greatly from
year to year. In the period of model building, some extreme values significantly affect the
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modelling process, resulting in overestimation/underestimation on the whole. We will pay
attention to this in the follow-up research.

Figure 9 and Table 6 demonstrates a specific RE for three schemes in each year. For
the case of RF/XGB models under different forecast factors, Scheme B represents the best
forecast skill. For the situation of three schemes under different models, XGB shows a
higher accuracy and stability than RF model both in validation and calibration.

Figure 7. Heatmaps plots of seasonal observed and simulated runoff sequences estimated from RF and XGB model in
validation. The legend is set to +50% at the maximum and −50% at the minimum of all the heatmaps and the lighter the
color, the smaller the absolute value of the RE. S1_A means the result of using Scheme A as predictors in first season and
others have an analogous meaning.

Table 5. Precision evaluation indexes of RF and XGB seasonal forecast model in the period of validation.

RF XGBoost

A B C A B C

R2 0.921 0.946 0.923 0.931 0.940 0.925
RRMSE 0.238 0.219 0.251 0.231 0.209 0.247
MAPE 18.89% 16.71% 18.51% 18.98% 15.89% 18.82%
NSE 0.813 0.881 0.804 0.848 0.872 0.830

Table 6. Precision evaluation indexes of RF and XGB seasonal forecast model in the period of
calibration and validation.

RF XGBoost

A B C A B C

MAPE (Calibration) 3.32% 2.56% 2.49% 4.23% 3.97% 3.94%
MAPE (Validation) 8.84% 8.34% 9.79% 8.99% 7.11% 7.54%
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Figure 8. Scatterplots of annual observed and simulated runoff sequences estimated from (a) RF and (b) XGB model in
calibration. The orange line represents 1:1 line which means a perfect fitness. The vertical axis is the observed runoff value
and the horizontal axis is the simulated runoff value.

Figure 9. Bar plots of RE of annual observed and simulated runoff sequences estimated from (a) RF and (b) XGB model in
validation. Blue, green and red respectively represent the result of Scheme A, B and C.

4. Conclusions

For the medium and long-term runoff forecast on the monthly-seasonal-annual scale,
the difficulty and emphasis include two parts. The first is to select accurate and stable
forecast factors with certain physical causes, and the second is to build forecast models
with clear theory and good forecast.

In this paper, we summarize three typical methods of Feature Selection theory based
on Machine Learning in the selection of forecast factors and employ PMI, RFE, and CART
as typical algorithms of Filter, Wrapper, and Embedded, respectively, to obtain three sets of
forecast factor schemes. In the meanwhile, we summarize two typical theories of Ensemble
Learning based on Machine Learning, and selected RF and XGB as typical models for
Bagging and Boosting to simulate and forecast runoff sequences. The above forecasting
frameworks are applied to the Three Gorges Reservoir in the Yangtze River Basin to realize
monthly-seasonal-annual runoff forecast. Through the forecast results in the periods of
calibration and validation, the following conclusions can be obtained:

(1) For three schemes, Scheme B shows the best forecast skills, highest accuracy and
stability when comparing the same forecast lead time and models. Scheme A and
Scheme C have similar results and are slightly inferior to Scheme B. It illustrates that
taking the forecast performance of the learners to be used as the evaluation criterion
for the FS is an effective and efficient approach.
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(2) For two models, XGB shows a better forecast result than RF model during the calibra-
tion period when comparing the same forecast lead time and predictors. Furthermore,
in the validation period, XGB also shows a smaller forecast error if only taking Scheme
B as a comparison. This is not to say that XGB is a better model than RF for two
reasons. Firstly, it requires more basin data to verify whether there are differences in
forecasting skill. Secondly, among some forecast factor schemes, RF displays a better
performance. Therefore, the Ensemble Learning algorithms based on two different
frameworks are suitable for medium and long-term runoff forecast.

(3) For three different forecast lead time, it shows an interesting phenomenon. According
to the most commonly used MAPE index, the annual runoff forecasting error is the
smallest. MAPE is 8.34% and 7.11% in RF and XGB model, respectively, while the
monthly and seasonal runoff forecast results are similar, and MAPE floats around
16%. This demonstrates that with the increase of the runoff magnitudes, the instability
and non-uniformity of the distribution of the extreme value series are reduced, and
the accuracy and stability of forecast are improved.
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