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Abstract: Vulnerability maps are useful for groundwater protection, water resources development,
and land use management. The literature contains various approaches for intrinsic vulnerability
assessment, and they mainly depend on hydrogeological settings and anthropogenic impacts. Most
methods assign certain ratings and weights to each contributing factor to groundwater vulnerability.
Fuzzy logic (FL) is an alternative artificial intelligence tool for overlay analysis, where spatial
properties are fuzzified. Unlike the specific rating used in the weighted overlay-based vulnerability
mapping methods, FL allows more flexibility through assigning a degree of contribution without
specific boundaries for various classes. This study compares the results of DRASTIC vulnerability
approach with the FL approach, applying both on Qatar aquifers. The comparison was checked and
validated against a numerical model developed for the same study area, and the actual anthropogenic
contamination load. Results show some similarities and differences between both approaches. While
the coastal areas fall in the same category of high vulnerability in both cases, the FL approach
shows greater variability than the DRASTIC approach and better matches with model results and
contamination load. FL is probably better suited for vulnerability assessment than the weighted
overlay methods.

Keywords: artificial intelligence; fuzzy logic; solute transport; groundwater vulnerability; DRAS-
TIC; Qatar

1. Introduction

Vulnerability maps have been widely used for groundwater management, planning,
and protection [1–4]. These maps are normally based on several geological and hydrological
factors. This includes the type of geology, hydraulic properties, and aquifer media, among
other things. Some approaches combine the intrinsic properties with other factors, such as
contamination load and land-use. Generally, vulnerability maps can be classified into three
categories: weighted overlay, statistical methods, and modeling-based methods.

The weighted overlay methods produce the intrinsic vulnerability of a groundwater
system based on its physical/hydrogeological properties [5–7]. The statistical approach
uses statistical tools, such as regression analysis and prediction tools, to build the ground-
water vulnerability based on various contaminants and environmental factors [8–10].
Modeling-based vulnerability methods use flow and solute transport models to produce
vulnerability maps, and, in some cases, are combined with land-use [11–13]. Some studies
incorporate climate change modeling results in vulnerability assessment [14–16].

DRASTIC method (and its many variants) is one of the most widely used index–based
approaches for groundwater vulnerability mapping [17–19]. This approach relies on the
fact that contaminants leach down into aquifers from the land surface and the hydroge-
ological settings of aquifers may provide some sort of resistance or protection against
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contaminants [20]. As such, DRASTIC considers seven factors to create a vulnerability
map of groundwater. These factors are depth to the water table, net groundwater recharge,
aquifer media, soil media, land slope, the impact of the vadose zone, and hydraulic con-
ductivities [20].

DRASTIC approach (and all index-based methods) classifies each factor and applies
specific ratings for each category. It also assigns standard weights for each factor. Then it
sums up all weighted classes to produce the final vulnerability index. While the original
developed DRASTIC uses specific rates and weights, various studies adopted localized
rates and weights. The classifications of parameters and the assigned weights may vary
from one study to another, as there are no clear rules for the rating and weights selection.
The rating classification may significantly affect the resulting vulnerability.

Fuzzy Logic (FL) is one of the artificial intelligence tools that mimic human reasoning.
In the Boolean logic of computers, only two possibilities are available: yes or no (0,1). FL
allows for a degree of contribution to the answer, which is represented by a membership
function, as explained later. It has been widely used in hydrogeology. Nobre et al. [21] used
fuzzy hierarchy to evaluate groundwater contamination risk in Brazil. They combined
fuzzy logic with numerical model and DRASTIC vulnerability to produce a risk index.
Nadiri et al. [22] used fuzzy logic to analyze and model time series of groundwater levels.
Another study used fuzzy logic to create variogram for spatial analysis of groundwater
level interpolation [23], which found to improve the results. Other studies combined fuzzy
logic with other tools for groundwater assessment [24], groundwater pollution level [25],
and groundwater quality [26]. FL is advantageous as it considers the degree of the truth
(not the probability). It deals with possibilities based on set theory. For example, a certain
contaminant in groundwater may or may not exceed the maximum permissible limit, based
on crisp analysis. FL enables assigning a degree of exceedance of the maximum permissible
limit. In addition, FL overcomes the problem of the boundary between categories in the
classical vulnerability assessment methods. Because vulnerability thematic maps may
contain high uncertainty, FL is more suitable than the classical index–methods.

This study produces an FL-based groundwater vulnerability map for Qatar and
compares it with a DRASTIC-based index-based one. To have a fair comparison, a solute
transport model for the study area was developed and used to validate the vulnerability
results of both methods. Results were checked against actual anthropogenic–sourced
contamination.

2. Materials and Methods

The following sub-sections describe the study area and the methods followed for
vulnerability mapping, groundwater modeling, and validation. The study area describes
the main hydrogeological settings and groundwater status, and the vulnerability sub–
section describes DRASTIC method. The last part of this section describes fuzzy logic,
membership functions, and overlays method. Results of both DRASTIC and fuzzy logic
vulnerability are checked against groundwater model, and the comparison is presented in
the discussion part.

2.1. The Study Area

Qatar is a small country located in the eastern part of the Arabian Peninsula and covers
an area of around 11,500 km2. It is surrounded by the Arabian Gulf from all directions
except for the south, where it has a boundary with Saudi Arabia (Figure 1). The terrain of
the country is flat, except for some small areas in the south, but the topography altitude
varies between 0 near the coast to around 107 m above mean sea level inland [4]. The
country has a population of around 2.8 million inhabitants (as of 2021). Aquifers are
the only natural source of water, which is almost solely used for irrigation. Domestic
and industrial demand is met by desalination plants. The average annual groundwater
abstraction is 250 million m3 [27]. Farms, especially in the northern part of the country
(Figure 1), are the main consumer of groundwater. Aquifer recharge is very little due to
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low rainfall and harsh climate conditions. The annual average rainfall is no more than
80 mm [28,29], and the long-term annual recharge is around 60 million m3 [4,30,31]. As a
result of this substantial overexploitation, groundwater level has dramatically dropped
over the last few decades, resulting in serious environmental problems. These problems
include loss of aquifer storage, the salinity of groundwater increases, and seawater interface
advanced further inland.
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Figure 1. The study area.

The surface geology of Qatar comprises mainly carbonate formations, with some
Quaternary deposits, such as sand dune and beach sediments. Tertiary formations from
the middle and early Eocene make the main aquifer in Qatar. The uppermost main three
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layers are from top to bottom: Dam & Dammam Formation, Rus Formation, and Umm
Er Radhuma Formation, respectively [28–30]. They have a variable thickness, but Rus
and Umm Er Radhuma are the main aquifers. These layers comprise mainly limestone
and dolomite, with some clay layers in various places, and gypsum deposits, especially
in the southern part of the country. Groundwater level varies between 0 near the coastal
areas to around 10 m above mean sea level in the middle of the aquifer. Dam & Dammam
Formations are dry, except for the coastal areas. Rus and Umm Er Radhuma are the
two main aquifers. Rus aquifer is being recharged locally by rainfall, whereas Umm Er
Radhuma received its water from regional flow infiltrates the formation outcrop in Eastern
Arabia [29,31,32].

The groundwater quality is relatively good in the north, compared to the southern
part, where it is saline. This is because of the dissolution of gypsum formation that occurs
in the southern part of the country, in addition to the higher recharge that the northern
aquifer receives. Because of overexploitation of groundwater resources in Qatar over the
last few decades, the quality has significantly deteriorated. Other environmental impacts
include seawater intrusion and upconing of brackish deep groundwater.

Data used in this study come from various sources. Surface and subsurface geology
data came from published reports and journal papers, in addition to interpretation of
structural contours [28,33]. The soil data, classification, and soil map are based on the Atlas
of soil Qatar [34]. Depth to water table was calculated using piezometric survey data [21].
Aquifer recharge was based on previous studies [24,27,31,35].

Hydraulic properties were based on aquifer test data [27], and calibrated model
results [28]. Groundwater recharge data came from various sources [31,35]. Topography
data are based on LiDAR (or light detection and ranging) data from the Ministry of
Municipalities and Environment in Qatar. A digital elevation model was created in GIS,
and the slope function of Spatial Analyst was used to create the slope map.

2.2. DRASTIC Vulnerability

Aller et al. [20] were the first to propose DRASTIC approach for groundwater vul-
nerability. DRASTIC assumes contaminants move to groundwater from land surface and
hydrogeological settings of the aquifer provide some sort of protection against contami-
nation. The acronym DRASTIC represents seven parameters. These are: depth to water
table/confining layer, net recharge, aquifer media, soil media, topography, impact of va-
dose zone, and hydraulic conductivities. Numerous studies have used DARSTIC and its
variations to build groundwater vulnerability maps [36].

DRASTIC vulnerability index is given by [20]:

Index = 5 × Dr + 4 × Rr + 3 × Ar + 2 × Sr + 1 × Tr + 5 × Ir + 3 × Cr, (1)

where D, R, A, S, T, I, C are the seven DRASTIC parameters mentioned before, and the
subscript r indicates the rate. The numbers multiplied by these parameters are the standard
weights by Aller et al. [20]. The DRASTIC model has been used and applied in many
areas around the world, with various hydrological and climate settings. Climate impact on
DRASTIC results depends on how extreme all relevant parameters are. In arid countries,
net recharge is small, whereas depth to the water table is high, compared to wet countries.
This provides higher vulnerability in arid countries, but other parameters, such as aquifer,
topography, and soil media, play an important role.

2.3. Fuzzy Logic Analysis

Fuzzy Logic was first proposed by Zadeh in 1965 as an alternative to the 0–1 Boolean
approach [37]. Unlike weighted overlay approaches, Fuzzy logic allows more flexibility
in rating than the classical weighted overlay methods. As such, instead of assigning
specific classes as in DRASTIC, with specified boundaries, fuzzy Logic assigns a continuous
membership value varies between 0 and 1, using a certain function that can be identified
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as a prior (membership function). Weights are not important in fuzzy overlay, as it is based
on set theory and not linear combination.

The membership function shows how likely a parameter is a member of a set. It should
be noted that the membership function is about the possibility and not the probability.
For example, if the hydraulic conductivity of an aquifer varies between 10 and 30 m/day,
the membership function of the hydraulic conductivity will transform class values to be
between 0 and 1 [38]. The higher value of the membership function (i.e., 1) the more
likelihood the class contribution will be. Several membership functions exist [39]. The most
common ones are: The available functions are fuzzy Gaussian, fuzzy Large, fuzzy Linear,
fuzzy MSLarge, fuzzy MSSmall, fuzzy Near, and fuzzy Small.

2.3.1. Fuzzy Gaussian

Fuzzy Gaussian is derived from the probability density function as the most likelihood
occurs in the center and values with less likelihood occurs at either side of the function.

The transformation function for Fuzzy Gaussian membership is:

µ(x) = eˆ(−f1 (x − f2 )ˆ2), (2)

where f1 and f2 are the spread and the midpoint, respectively. Fuzzy Gaussian membership
function is not suitable for vulnerability mapping.

2.3.2. Fuzzy Large

Fuzzy large membership function is used when large values increase the contribution
to the membership. For example, the larger value of hydraulic conductivity increases the
latter contribution to vulnerability. Thus, Fuzzy Large may be used in to produce the
membership function of hydraulic conductivity. In the standard Fuzzy Large function, the
default midpoint is 0.5. The transformation to Fuzzy Large is given by:

µ(x) = 1/(1 + (x/f2)ˆ(−f1)), (3)

where f1 is the spread, and f2 is the midpoint.

2.3.3. Fuzzy MS Large

This is like Fuzzy Large where the contribution to the membership function increases
directly, but the difference is the MS Large uses the mean and the standard deviation. High
fuzzy memberships take values above the mean in this case. The membership function of
Fuzzy MS Large is given by:

µ(x) = 1 − bs/(x − am + bs), (4)

where m and s are the mean and the standard deviation of the variable, respectively,
and a and b are multiplier for the mean and the standard deviation, respectively. The
resultant membership function takes a sigmoid shape with the mean membership value is
0.5. Equation (4) above is valid when a × m < x. If a◦m ≥ x then µ(x) = 0.

2.3.4. Fuzzy Small

Fuzzy Small is the inverse of Fuzzy Large. That is, the higher value of the variable
corresponds to lower contribution to the membership function. High fuzzy memberships
take values below the mean in this case. For example, higher depth to water table decreases
the contribution to vulnerability; thus, Fuzzy Small can be used to represent it.

µ(x) = 1/(1 + (x/f2)ˆ(f1)), (5)

where f1 is the spread, and f2 is the mean of the input variable.
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2.3.5. Fuzzy MS Small

This is the inverse to Fuzzy MS Large:

µ(x) = bs/(x − am + bs). (6)

Equation (6) above is valid when a × m < x. If a × m ≥ x, then µ(x) = 0. All variables
are as previously defined.

2.3.6. Fuzzy Linear

This function is used when a variable is linearly increases or decreases. The equation
of this membership takes the following from if the variable contribution is increasing:

µ(x) = ((x − min))/((max − min)), (7)

where max and min are the maximum and the minimum values of the variable, respectively.
If the variable contribution is decreasing, then the membership is:

µ(x) = 1 − ((x − min))/((max − min)). (8)

3. Results
3.1. DRASTIC Vulnerability

DRASTIC model was done in GIS using Equation (1). Seven thematic maps were
prepared in ArcGIS, based on previous studies and modeling work [4,28], and the resulting
DRASTIC vulnerability map is shown in Figure 2. The map was classified into 5 categories
(very low, low, intermediate, high, and very high).

The resulting vulnerability map shows the majority of Qatar falls under low to in-
termediate class, whereas the high vulnerability areas occur along the coastline. This is
because the coastal areas have low terrain, and the depth to water table is small. DRASTIC
assigns the highest weight for depth to water table, which explains why these areas have
high vulnerability.

3.2. Fuzzy Logic Vulnerability

Based on the previous discussion, the linear membership functions were used to
convert the seven parameters of DRASTIC approach to fuzzy membership. All variables
used increasing linear trend except for depth to water table, and topography (i.e., slope),
where the membership contributions are indirectly proportional to variable increase (linear
decreasing trend). Using ArcGIS, the membership functions of the seven thematic maps
were produced, as depicted in Figure 3. Values of various parameters were obtained based
on previous studies [4,34,35].

Fuzzy Overlay (FO) enables identify the relation between membership sets. It provides
more flexibility than the traditional weighted overlay [40]. In the case of vulnerability
assessment, FO takes the effect of all parameters into consideration and produces the
overlay map, which has class values between 0 and 1. Several Overlay functions are
available in ArcGIS. These are: And, Or, Product, Sum, and Gamma [41,42]. The overlay
“Fuzzy And” produces the minimum value of the cell, contrary to “Fuzzy OR”, which
returns the maximum value of the cell from all layers. Overlay “Fuzzy Product” produces
the product of all values in a cell from all layers. The overlay “Sum” is algebraic sum and
not additive. It is a linear increase of fuzzy values at a cell. “Gamma” is a special type
produces a value between Fuzzy Product and Fuzzy Sum. Table 1 below summarizes the
various FO available in ArcGIS, and how each overlay is calculated.
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Table 1. Fuzzy Overlays in ArcGIS.

Overlay Type Equation

Fuzzy And Min (ƒ1, ..., ƒ7) *
Fuzzy Or Max (ƒ1, ..., ƒ7)

Fuzzy Product Product (ƒ1, ..., ƒ7)
Fuzzy Sum 1 − Product (1 − ƒ1, ..., 1 − ƒ7)

Fuzzy Gamma (FuzzySum)γ * (FuzzyProduct)1−γ **
* ƒ1, ..., ƒ7 are the fuzzified parameters of DRASTIC. ** γ varies between 0 and 1.
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Figure 4 shows the relationship between Gamma value and Fuzzy membership func-
tions. If Gamma = 0, then the membership equals Fuzzy product. When Gamma is 1, then
the membership is Fuzzy sum. “Fuzzy and” and “Fuzzy or” are in between.
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DRASTIC map (Figure 2), FL vulnerability map shows higher variability, and more
skewed towards high vulnerability.

Using the Spatial Analyst tool of ArcGIS, various fuzzy overlays were used to produce
the vulnerability map based on fuzzified variables, as shown in Figure 5. Vulnerability
maps vary significantly based on the overlay method.

Fuzzy And is on the lower side of membership, as most of the produced map occurs
in the very low vulnerability. Fuzzy Or is a sort of intermediate (it corresponds to 75% of
the membership, as shown in Figure 5b). The high vulnerability areas occur only along
the coastal areas in the southern part of the country. This is also not reflecting the actual
vulnerability as most of the area occurs in the intermediate class. Fuzzy Sum (Figure 5c)
shows a more plausible distribution of vulnerability classes, with high vulnerability along
the coast and some inland areas in the north. Fuzzy Product (Figure 5d) is at the lowest
end of vulnerability classification, so it is not representative. Figure 5e shows the Fuzzy
Gamma = 0.5, which is mostly in the very low vulnerability, whereas Fuzzy Gamma = 0.99
is shown in Figure 5f. The latter shows a more plausible distribution of vulnerability classes.
In this study, Fuzzy Sum and Fuzzy Gamma = 0.99 will be considered and compared to
DRASTIC, as they show a better distribution of vulnerability and less skewness.

3.3. Comparison with Groundwater Model Result

To check the validity of both vulnerability models, a 3D groundwater flow model and
solute transport were developed. The model is based on the finite–difference MODFLOW,
covering the entire country of Qatar, with a 500 × 500 m grid size. Data for the model
was based on the previously published work of [34], and the model was calibrated for
steady-state conditions.

The model includes three layers representing the main geological formations in the
country: Dam & Dammam, Rus, and Umm Er–Radhuma formations. The steady-state
model was calibrated against field measurements.

Figure 6 shows the simulated groundwater level contours for the steady–state simula-
tion, and the velocity magnitude. The level map resembles the pre-development conditions
of water resources. Groundwater levels vary between 0 near the sea to more than 22 m
above mean sea level in the middle of the northern aquifer. The velocity vectors are also
shown in Figure 6, which indicate the flow direction.
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Modeling results reveal that the coastal areas are a discharge zone for groundwater.
This implies any solute or contaminant flow with the mobility of water will end up in
these areas.

On the other hand, the middle of the aquifer (groundwater mound) is a recharge
area where flows originate. Despite being located upstream, these areas are in the low
vulnerability class due to the high depth to groundwater.

The groundwater velocity magnitude shows the highest velocities occur in the north-
ern and north–eastern parts of the country. Areas of high groundwater velocity are more
vulnerable to contamination because high velocity enables fast movement and more dis-
tribution of contaminates when introduced in these areas. When draping velocity map
(Figure 6) over FL Sum, FL Gamma = 0.99 maps (Figure 5), and DRASTIC map (Figure 2),
some match is observed between high velocity and high vulnerability. The area of mis-
match is the high velocity over the middle of the north aquifer. FL Sum shows the best
match with velocity map, compared to DRASTIC or FL Gamma.

A solute transport model was developed using MT3DMS [43]. The velocity matrix
from the flow model was used to run the solute transport model. Advection and dispersion
components were considered in the model, and an equal and homogeneously distributed
initial concentration of total dissolved solids (TDS) = 5000 mg/L was introduced at the
beginning of the simulation. The model was run for 100 years.

Figure 7 shows the propagation of the solute at 5, 10, 50, and 100 years. Like the
velocity magnitude, the concentration decreases in the northern area of the model and
increases elsewhere. This is another indication of the high vulnerability of the northern
area, in addition to some smaller areas in the middle of the country.

It should be noted that vulnerability may not necessarily reflect the actual contam-
ination load in aquifers. This is because a source of contamination must exist on land
surface of a vulnerable area for contamination to occur [44]. Like velocity, solute transport
propagation appears to move faster in the northern part of the country, because of high
hydraulic conductivity. These areas are highly vulnerable because any contamination
introduced on the land surface will spread fast in the aquifer.

3.4. Chemical Indicators in Aquifer

Qatar General Electricity and Water Corporation (KAHRAMAA) monitors the ground-
water state of the environment on regular basis, using a network of wells. The main
chemical parameters being analyzed include major ions and cations, in addition to salinity
and TDS. The source of these contaminants is mainly natural due to the dissolution of
gypsum and other salts in the sub–surface and the nature of limestone geology. As a result,
analyzing the concentration of these chemicals is not helpful for vulnerability mapping.
This is because intrinsic vulnerability assumes all contaminants come from the land surface
and percolate down into the aquifer.

Nitrate contamination in groundwater in Qatar comes mainly from the heavy ap-
plication of fertilizers, in addition to leachate of wastewater from some ponds (i.e., Abu
Nakhla area) [45]. As such, it may help to look at nitrate concentration and relate it to
vulnerability mapping. Figure 8 shows the main nitrate contamination zones in the ground-
water of Qatar, based on Ahmad et al. [45]. The highest concentrations (50 mg/L) occur
in the north–eastern part of the country, which is the maximum permissible limit by the
World Health Organization [46]. This area is known for many agricultural farms, where
organic fertilizers are applied heavily [45]. Some areas in the south show moderate to low
nitrate concentration due to leakage from wastewater ponds. It should be noted that most
agricultural activities occur in the northern part of the country (Figure 1), where the fresh
groundwater occurs. Besides, most built-up areas are in the eastern side of the country,
where wastewater is a major source of nitrate contamination. As such, sources of nitrate
contamination do not exist in the west and south-western parts of Qatar.
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4. Discussion

This study aimed at exploring the usage of fuzzy logic for vulnerability assessment us-
ing Qatar as a case study. Results were compared with DRASTIC method, and both FL and
DRASTIC were examined against groundwater model results and anthropogenic impact.

Figure 9 shows a comparison between DRASTIC, FL–Gamma = 0.99, and FL Sum
with nitrate contours overlaid each. DRASTIC and FL Sum show the high vulnerability
areas are along the coast, but the latter approach includes larger areas in this class than the
former. While DRASTIC emphasis more on the depth to the water table, FL has no focus
on one single factor. FL map shows a greater interaction between various vulnerability
classes, but DRASTIC produces a gradual change between vulnerability levels.

It should be noted that the nitrate concentrations are indicative only. By definition,
an area of high vulnerability will become contaminated if a contamination source on
land exists [44]. In other words, some areas can be highly vulnerable despite the aquifer
underneath has no contamination because of absent of contamination source. This is the
case in the south and in the western parts of Qatar, where no on-land activities, such as
agriculture, occur. The highest nitrate concentrations (triple black line closed contour in the
figure) occur over the intermediate and low vulnerability classes of DRASTIC. The same
contours occur over very high, intermediate, and low vulnerability areas of FL Gamma. In
FL Sum, high nitrate contours occur over very high and intermediate vulnerability. The FL
Sum has by far a better match with nitrate concentration than DRASTIC and FL–Gamma.

The limitation of this work is the lack of a robust way for comparison of FL and
DRASTIC. Although anthropogenic contamination load provides a fair way to check
vulnerability, the latter does not necessarily correlate strongly with contamination load.
However, this limitation affects both DRASTIC and FL equally, so the comparison is still
fair. Future research should focus on exploring various overlay methods of FL to find the
most suitable one for vulnerability assessment.
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5. Conclusions

Groundwater vulnerability maps are useful for groundwater protection and assess-
ment. Most vulnerability assessment methods revolve around the use of hydrogeological
settings, which are assumed to provide a certain level of protection against contamina-
tion. The problem with these methods is the use of ad–hoc rating and weights for each
hydrogeological parameter to produce the index map, and then to classify the map into
various vulnerability classes. Classification of parameters to assign ratings is challenging
as there is no robust method to identify the boundary between various bands. Fuzzy Logic
(FL) eliminates all these challenges using membership functions, and it does not require
weights for input variables.

This study compares vulnerability assessment results of DRASTIC and FL approaches.
In absence of any measure of accuracy, the combination of numerical models and actual
anthropogenic contamination load is useful to check the results of various vulnerability
methods. Results show both DRASTIC and FL produce vulnerability maps with some
similarities and some differences. DRASTIC produces a vulnerability map with a gradual
change in classes and more homogeneous patterns, whereas FL-based map has a heteroge-
neous pattern. The coastal areas in both DRASTIC and FL maps occur within the very high
vulnerability, but this class extends further inland in the FL. The FL map shows a better
agreement with groundwater velocity from the flow model, and the actual contamination
load resulting from land-use activities. As such, FL is probably more suitable for vulner-
ability assessment in this case. However, more research is needed to explore the impact
of fuzzy membership variation on the results. In addition, various FL overlays produce
significantly different vulnerability maps, which requires further research on this issue.
Results of this study revealed Fuzzy Sum is more suitable than other FL overlays methods,
although Fuzzy Gamma seems to be promising but requires further research.
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