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Abstract: To further reduce the error rate of rainfall prediction, we used a new machine learning 
model for rainfall prediction and new feature engineering methods, and combined the satellite sys-
tem's method of observing rainfall with the machine learning prediction. Based on multivariate cor-
relations among meteorological information, this study proposes a rainfall forecast model based on 
the Attentive Interpretable Tabular Learning neural network (TabNet). This study used self-super-
vised learning to help the TabNet model speed up convergence and maintain stability. We also used 
feature engineering methods to alleviate the uncertainty caused by seasonal changes in rainfall fore-
casts. The experiment used 5 years of meteorological data from 26 stations in the Beijing–Tianjin–
Hebei region of China to verify the proposed rainfall forecast model. The comparative experiment 
proved that our proposed method improves the performance of the model, and that the basic model 
used is also superior to other traditional models. This research provides a high-performance method 
for rainfall prediction and provides a reference for similar data-mining tasks. 
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1. Introduction 
Rainfall is an important parameter in weather forecasting and flood control. How to 

obtain rainfall information more quickly and accurately has attracted more and more at-
tention from meteorological researchers [1,2]. Nowadays, meteorological disasters such 
as droughts and floods frequently occur and cause serious losses. This requires further 
improvement in the accuracy of weather forecasts [3]. Rainfall is affected by many key 
factors, such as hydrology, location, and circulation and is a nonlinear system [4]. There-
fore, it is of great significance to deploy an accurate generalized rainfall forecast model 
[5,6]. 

At present, rain forecasting mainly relies on satellite observation of water vapor in 
the troposphere; abundant water vapor is the basic condition for the formation of rainfall 
and strong convective weather processes [7,8]. However, it is extremely difficult to accu-
rately measure this gas [9]. The traditional methods of measuring rainfall are mainly di-
vided into satellite observations and remote sensing observations. Yin, Jiabo et al. [10] 
integrated three satellite precipitation products (IMERG Final, TMPA 3B42V7, and PER-
SIANN-CDR). Each scheme uses dynamic weights and this method can better predict the 
intensity of precipitation. Zhou, Yuanyuan et al. [11] proposed a nonparametric general 
regression (NGR) framework based on remote sensing; the rainfall prediction of this 
framework has a small absolute deviation in the rainy season. 

The accuracy of satellite observations is closely related to sensor calibration, detec-
tion errors, terrain influences, and other factors. This research hopes to reduce this uncer-
tainty through machine learning technology. With years of data accumulation and the 
development of artificial intelligence, more and more machine learning algorithms are 
used to predict rainfall. Bhuiyan et al. [12] use a random forest and neural network to 
train rainfall data, which can improve and promote the use of satellite-based precipitation 
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estimation in water resources applications. Y Derin et al. [13] used a series of satellite pre-
cipitation products to observe precipitation, and used quantile regression forest to analyze 
the prediction errors. Their experiments showed that correction based on machine learn-
ing can significantly reduce the average relative error. The above research shows that ma-
chine learning algorithms can effectively reduce the uncertainty of satellite observation of 
rainfall. Kang et al. [11] deployed long short-term memory (LSTM) network models for 
predicting the rainfall based on meteorological data from 2008 to 2018 in Jingdezhen City. 
Yang Liu et al. [13] used the back propagation neural network (BP-NN) algorithm and 
added the PWV feature to establish a high-accuracy short-term rainfall prediction model. 
Bo Xiang et al. [14] used the rainfall data from 2011 to 2018 in Chongqing, China, and 
established a rainfall prediction model based on the random forest algorithm, and the 
model has high accuracy and stability. Ko et al. [15] used Lightgbm to improve the overall 
correction of rainfall and corrected the heavy rainfall. This rainfall correction technique 
can provide hydrologically meaningful rainfall information. Zhang et al. [16] used a ran-
dom forest-based fusion model to combine random forests with neural networks to im-
prove the accuracy of rainfall forecasts. This research also inspired me to use the fusion 
model of random forest and neural network as these may provide better results. 

The above research shows that it is practical and reliable to use a rainfall prediction 
model based on neural networks and decision trees. Based on previous research experi-
ence, this research proposes a rainfall prediction model that combines the advantages of 
decision trees and neural networks. The above research did not take into account the sea-
sonal variation of rainfall prediction, and it performed poorly in long-term rainfall pre-
diction tasks. 

In August 2019, the Attentive Interpretable Tabular Learning neural network (Tab-
Net) was proposed by SercanÖ. Arık et al. [17], based on retaining the end-to-end and 
representation learning characteristics of DNN, it also has the advantages of tree model 
interpretability and sparse feature selection. SercanÖ. Arık et al. used the TabNet model 
to verify real data sets and achieve a high accuracy rate that was better than other tradi-
tional machine learning algorithms. 

The original contributions of this study were as follows:  
(1) We proposed a self-supervised pre-training method for rainfall prediction, which 

would help the model to accelerate the convergence speed and maintain stability. 
This method could also provide a reference for self-supervised pre-training of tabular 
data. 

(2) We proposed feature engineering methods and training strategies that could allevi-
ate the adverse effects of seasonal changes on rainfall prediction. 

(3) We proposed a new method that combined satellite observation of rainfall with ma-
chine learning to predict rainfall. 

2. Data 
This study selected meteorological data from 26 stations in the Beijing-Tianjin-Hebei 

Urban Agglomeration of China as the research object. The data came from the Beijing En-
vironmental Planning Center. The data period was from January 2012 to December 2016, 
collecting once a day. The feature dimension was 30, which consisted of the geographic 
features: “longitude”; “latitude”; “the height of the station”; “city”; “province”; and ”sta-
tion” the time features: ”year”; ”month”; ”day”, and the meteorological features: “evapo-
ration”; “surface temperature”; “air pressure”; “humidity”; “wind speed”; “wind direc-
tion”; ”temperature”; ”sunshine time”; and “rainfall”. Table 1 describes the experimental 
data in detail. 

  



Water 2021, 13, 1272 3 of 16 
 

 

Table 1. Details the data. 

Feature Name Description Value Unit 
ID Data identifier 54602_2012_01_01  

STATION_NAME Name of the station Bao_Ding  
PROVINCE_NAME Name of the province He_Bei  

CITY_NAME Name of the city Bao_Ding  
LATITUDE Latitude 38.849976  

LONGITUDE Longitude 115.516667  
YEARTH Year of observation 2012  

Month Month of observation 1  
Day Day of observation 1  

STATION_HEIGHT Height of the station  1.72 m 
EVP_SMALL Small evaporation 0.4 mm 

EVP_BIG Big evaporation 3276.6 mm 
GST_AVG Average surface temperature −3.9 °C 
GST_MAX Maximum surface temperature 8.7 °C 
GST_MIN Minimum surface temperature −9.5 °C 
PRS_AVG Average air pressure 1031 hPa 
PRS_MAX Maximum air pressure 1034.7 hPa 
PRS_MIN Minimum air pressure 1027.5 hPa 

RHU_AVG Average humidity 7.1 % 
RHU_MIN Minimum humidity 3 % 
SSD_TIME Sunshine time 5.6 h 
TEM_AVG Average temperature −4.9 °C 
TEM_MAX Maximum temperature 1.9 °C 
TEM_MIN Minimum temperature −9.1 °C 
WIN_AVG Average wind speed 1.2 m/s 
WIN_MAX Maximum wind speed 3.3 m/s 

WIN_MAX_DCT Wind direction of max wind speed 4  
WIN_MMX Maximum wind speed 4.4 m/s 

WIN_MMX_DCT Wind direction of maximum wind speed 4  
Rainfall Rainfall 0.00 mm 

Figure 1 is the research area map of this paper, which depicts the distribution of 26 
stations in the Beijing–Tianjin–Hebei region. 

 
Figure 1. Study area map. 

Because the climate in the Beijing–Tianjin–Hebei region is a warm temperate conti-
nental monsoon type, there is little rain in winter and it is rainy in summer. As shown in 
Figure 2, the distribution of rainfall days in the rainy season (June to September) and the 
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non-rainy season (January to May, October to December) are quite different. If we directly 
use all the data to build the model, this will cause the model to be unable to better learn 
the laws of the data, so according to the local seasonal characteristics, we respectively 
establish the rainfall prediction model based on the rainy-season data (Rainy-Model) and 
the rainfall prediction model based on the non-rainy-season data (Drier-Model). 

 
Figure 2. Rainfall probability distribution. 

We predicted the rainfall for each station in the next 30 days. We chose September 
2016 as the test set of Rainy-Model, and December 2016 as the test set of Drier-Model. The 
reason for not using cross-validation to randomly select the test set was to ensure the order 
of the time-series prediction. 

Tables 2 and 3 describe the division of the data set of the rainy season model and the 
dry season model, respectively. We selected the data for one consecutive month as the 
verification set and the test set to ensure that the model could capture the continuity of 
rainfall. 

Table 2. Rainy-Model’s data set description. 

Data Set Type Quantity Date 

Training set 14,300 
2012–2015 (June–September) 

2016 (June–July) 
Training set 780 2016 (August) 

Test set 780 2016 (September) 

Table 3. Drier-Model’s data set description. 

Data Set Type Quantity Date 

Training set 31,299 
2012–2015 

(January–May, October–December) 
2016 (January–May, October) 

Training set 780 2016 (November) 
Test set 780 2016 (December) 

3. Methodology 
3.1. TabNet 

The neural network was based on the extension of the perceptron, and deep neural 
networks (DNNs) can be understood as neural networks with many hidden layers. At 
present, DNNs have achieved great success in images [18], text [19], and audio [20]. How-
ever, for tabular data sets, ensemble tree models are still mainly used. In many data-min-
ing competitions, Xgboost [21] and Lightgbm [22] have been widely used. These rely on 
the following: 
(1) The tree model has a decision manifold [23], which approximates the boundary of 

the hyperplane. The boundary of the hyperplane can effectively divide the data so 
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that the tree model has an efficient representation of tabular data. 
(2) Good interpretability. 
(3) Fast training speed. 

Secondly, the previously proposed DNN structure is not suitable for tabular data. 
Traditional DNN based on convolutional layers or multi-layer perceptron (MLP) often 
have too many parameters for tabular data and lack proper inductive bias, which makes 
them unable to find the decision manifold for tabular data. The main disadvantage of the 
decision tree and its variant model is the dependency of feature engineering. A very im-
portant reason why deep learning methods can achieve great success in images, natural 
language, and audio is that deep learning can encode raw data into meaningful represen-
tations. End-to-end training based on the backpropagation algorithm can effectively en-
code tabular data, thereby reducing or even eliminating the need for feature engineering. 
Not only that, when the data set is larger, the expressive ability of the neural network 
model may have a better effect. 

Figure 3 shows that the TabNet encoder architecture is mainly composed of a feature 
transformer, an attentive transformer, and feature masking at each decision step. The tab-
ular data includes category data and numeric data. TabNet uses original numerical data 
and uses trainable embedding [24] to map categorical features to numerical features. Each 
decision step inputs the same B × D feature matrix; B is the size of the batch size, and D is 
the dimension of the feature. TabNet’s encoding is based on the processing of multiple 
decision steps. The characteristics of each decision step are determined by the output of 
the previous decision step through the Attentive transformer. This outputs the processed 
feature representation and integrates it into the overall decision-making. 

 
Figure 3. The encoder of the TabNet architecture. 

3.1.1. Feature Selection 
Feature selection is realized by the Mask module of each decision step. The Attentive 

converter of the decision step selects the function to be implemented. 
As shown in Figure 4, the Attentive transformer realizes the feature selection of the 

current decision step by learning a mask. The sequence number in Figure 2 represents the 
sequence of tensor flow, and the specific meaning is as follows: 
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Figure 4. The topological structure of the Attentive transformer layer. 

(1) First, the Feature transformer of the previous decision step outputs the tensor and 
sends it to the Split module. 

(2) The Split module splits the tensor in step 1 and obtains a i − 1 . 
(3) a i − 1  passes through the �� layer, which represents a fully-connected (FC) layer 

and a BN layer. The role of ��  is to achieve the linear combination of features, 
thereby extracting higher-dimensional and more abstract features. 

(4) The output of the �� layer is multiplied by the prior scale p i − 1  of the previous 
decision step. The prior scale represents the use of features in previous decision steps. 
The more features used in the previous decision step, the smaller the weight in the 
current decision step 

(5) The M i  is then generated through Sparsemax [25]. Equation (1) represents this pro-
cess of learning a mask: M i =  Spar6semax P i − 1 × ℎ (a i − 1 )  (1) 

Sparsemax encourages sparsity by mapping the Euclidean projection onto the prob-
abilistic simplex, make feature selection more sparse. Sparsemax can make ∑ 𝑀 𝑖 , =1, where D represents the dimension of the feature. Sparsemax implements weight distri-
bution for each feature, j, of each sample, b, and makes the sum of the weights of all fea-
tures of each sample to 1, thus realizing instance-wise [26] feature selection which makes 
TabNet use the most beneficial features for the model in each decision step. To control the 
sparsity of the selected features, TabNet uses the sparse regular term: 

𝐿 = −𝑀 , 𝑖𝑁 × 𝐵 log (𝑀 , 𝑖 + 𝜀) (2) 

When most of the features of the data set are redundant, the sparsity of feature selec-
tion can provide better inductive bias for convergence to a higher accuracy rate. 
(6) M i  uses Equation (3) to update p i : P i =  (𝑟 − 𝑀 𝑗 ) (3) 

When γ = 1, it means that each feature can only appear in one decision step.  
(7) M i  and feature elements are multiplied to realize the feature selection of the current 

decision step. 
(8) The selected features are then inputted into the feature transformer of the current 

decision step, and a new decision step loop is started. 

3.1.2. Feature Processing 
The features filtered by Mask are sent to the Feature transformer layer for feature 

processing. The processed features are divided into two parts by the split module; one 
part is used for the output of the current decision step, and the other part is used as the 
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input information of the next decision step. The above process is expressed in Equation 
(4):   d i , a i = f (M i × f)  (4) 

The Feature transformer layer is composed of the BN layer, gated linear unit (GLU) 
layer, and FC layer. The structure is shown in Figure 5. 

 
Figure 5. The topological structure of the Feature transformer layer. 

It can be seen that the Feature transformer layer consists of two parts. The parameters 
of the first half of the layer are shared, which means that they are jointly trained on all 
steps, while the second half is not shared, and is trained separately on each step. For each 
step, the input is the same features, so we can use the same layer to do the common part 
of the feature calculation, and then use different layers to do the feature part of each step. 
This structure will make the model have robust learning with high capacity. The residual 
connection is used in the layer, and it is multiplied by √0.5 to ensure the stability of the 
network. 

3.1.3. TabNet Decoder Architecture 
The encoded representation in Figure 6 is the sum vector of the encoder without the 

FC layer. The encoded representation is used as the input of the decoder. The decoder 
uses the Feature transformer layer to reconstruct the representation vector into a feature. 
After the addition of several steps, we output the reconstructed feature. 

 
Figure 6. The topological structure of the decoder. 

3.2. Feature Engineering 
To make the model better learn the laws of data, we used feature engineering to im-

prove the model. Feature engineering is the process of transforming raw data into features 
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that better represent the underlying problem to the predictive models, resulting in im-
proved model accuracy on hidden data, which usually includes feature selection, feature 
preprocessing, and feature construction. The feature selection method has been intro-
duced in detail in Section 3.1.1. Section 3.2.1. mainly introduces the feature construction 
used in this research and Section 3.2.2. mainly introduces the statistical features used in 
this research. 

3.2.1. Feature Construction 
To help the model learn the laws of the data better, we used feature construction 

methods to combine features through different parameters. Feature construction is the 
manual construction of new features from raw data or new data, it is an important method 
to increase the model limit. 

Precipitable water vapor (PWV) was used to quantify the water vapor content in the 
troposphere to make the measurement more accurate. PWV refers to the amount of pre-
cipitation formed by the condensation of water vapor into rain in the air column of the 
unit cross-section from the ground to the top of the atmosphere [27]. However, rainfall is 
affected by complex factors. To improve the accuracy of predicting rainfall, we cannot just 
use the PWV indicator. 

Zenith total delay (ZTD) occurs as the Global Navigation Satellite System (GNSS) 
signal is affected by the atmospheric refraction when it passes through the troposphere, 
ZTD includes zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD) [28]. ZHD ac-
counts for approximately 90% of ZTD [29]. ZHD can be calculated by using Equation (5): ZHD =  0.0022768 × 𝑝1 − 0.002266 × cos(2𝜙) − 0.00028 × 𝐻 (5) 

where PW is the surface pressure of the station with a unit of °C, ϕ refers to the latitude of 
the station with a unit of a radian, and H is the geodetic height of the station with a unit 
of km. Therefore, ZWD can be obtained by extracting ZHD from ZTD, and PWV can be 
calculated by using Equation (6): PWV =  𝛱 × 𝑍𝑊𝐷ρ  (6) 

where ρ  is the water vapor density, and Π represents the conversion factor: Π = −1 × sgn(𝜙) × 1.7 × 10 × |𝜙| − 0.0001 × cos 𝐷𝑜𝑌 − 28365.25 × 2π + 0.165 − (1.7 × 10 ) × |𝜙| .+ (−2.38 × 10 ) × 𝐻 
(7) 

Π is an empirical parameter, which is approximately 1.48 in the northern hemisphere. 
We combined pressure, latitude, and the height of the station features into ZTD fea-

tures according to Equation (5), and combined data, the height of the station, and ZTD 
into PWV features according to Equations (6) and (7).  

We constructed PWV feature which is a common indicator for satellite observation 
of rainfall, realized the combination of machine learning and traditional methods, and 
improved the performance of the model. 

3.2.2. Statistical Features 
We constructed statistical features to help the model learn the distribution of data. 

Taking into account that each province and city will have different rainfall due to their 
geographic factors, we constructed the average and standard deviation of the rainfall for 
each province and city. Taking into account that in each month, due to its seasonal factors, 
the rainfall will be different, we constructed the average and standard deviation of the 
rainfall for each month. 
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Through the above method, we could obtain the average rainfall of each province 
and each month, so that the model could capture the change information of regions and 
months, and then learn the changes of the seasons. 

We constructed the relationship between the rainfall and the station. If we directly 
calculated the average rainfall of each station, which would lead to data leakage, because 
the model would use future information when training, making the model perform poorly 
on the test set. To solve this problem, We calculated the average rainfall of each station in 
the previous 7 days. For example, on the 6th day of the station “Bao_Ding”, we calculated 
the average rainfall from the 1st to the 5th day of the station “Bao_Ding”.  

Through the above methods, we could get the average rainfall of each station in the 
previous 7 days, so that the model could capture the weekly rainfall information of each 
station, and then learn the changes in rainfall during the seasons. 

3.3. Self-Supervised Pretraining 
There are two basic learning paradigms in machine learning—one is supervised 

learning and the other is unsupervised learning. In a supervised learning model, the al-
gorithm learns based on a labeled data set, and the data set provides answers. The algo-
rithm can use the answers to evaluate their accuracy in training data. In contrast, unsu-
pervised models use unlabeled data, and algorithms need to extract features and laws 
themselves to understand these data. Self-supervised learning mainly uses a pretext to 
mine its supervision information from large-scale unsupervised data, and trains the net-
work through this constructed supervision information, so that it can learn valuable rep-
resentations for downstream tasks. 

Self-supervised pretraining can constrain the parameters in an appropriate space, so 
that the pre-training can be initialized in this space, making the weights non-linear, and 
the loss function will become more complicated, because it has more topological structure, 
such as mountains and valleys. The existence of these topologies makes it difficult for 
parameters to move significant distances. The model with pre-training starts from more 
favorable regions of feature space. 

This study used TabNet for self-supervised pre-training. Different features of the 
same sample are related, so our self-supervised learning was to first mask some features 
and then use the encoder-decoder model to predict the masked features. The encoder 
model trained in this way can effectively characterize the features of the sample, speed up 
model convergence, and enhance the performance of the model. 

4. Model Evaluations 
This study used modified Kling–Gupta efficiency (KGE), mean absolute error (MAE), 

random error (RMSE), and mean absolute percentage error (MAPE) as the evaluation met-
ric. 

The KGE was developed by Gupta et al. [30] to provide a diagnostically interesting 
decomposition of the NSE, which facilitates the analysis of the relative importance of its 
different components (correlation, bias, and variability) in the context of hydrological 
modeling [31]. KGE = 1 − (𝑟 − 1) + (β − 1) + (γ − 1)   (8) 

β = 𝑢𝑢   (9) 

γ = 𝐶𝑉𝐶𝑉  (10) where 𝑟 is the correlation coefficient between the simulated and observed runoff (dimen-
sionless), β is the bias ratio (dimensionless), γ is the variability ratio (dimensionless), u is 
the mean runoff in m3/s, and CV is the coefficient of variation (dimensionless). The KGE 
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exhibits its optimum value at unity [30]. 
The greater the deviation between the predicted value and the true value, the greater 

the value of MAE, and the worse the performance of the model. RMSE describes the de-
gree of dispersion of data. When the RMSE of model A is smaller than model B, the sta-
bility of model A is better. MAPE not only considers the error between the predicted value 
and the true value, but also considers the ratio between the error and the true value. 

MAE = 1𝑛 |𝑦^ − 𝑦 | (11) 

RMSE = 1𝑚 (𝑦^ − 𝑦 )  (12) 

MAPE = 100%𝑛 | 𝑦^ − 𝑦𝑦 |  (13) 

5. Results 
5.1. Hyperparameter 

By setting the parameters of the model, if the MAE of the model does not drop 10 
times, the learning rate will be halved to help the model converge and make it easier to 
obtain the best solution. If the MAE of the model does not drop 30 times, the model will 
stop early to reduce overfitting. 

Table 4 shows the hyperparameter settings of TabNet. N_d, N_a, and N_steps are 
important parameters that determine the capacity of the model. For most data sets, 
N_steps ranging from 3 to 10 is a reasonable parameter, and N_d = N_a is a reasonable 
choice [17]. Reducing N_d, N_a, and N_steps is an effective way to reduce overfitting 
without significantly reducing the accuracy.  

Table 4. The hyperparameter settings of TabNet. 

Hyperparameter Description Value 
N_d Width of the decision prediction layer 8 
N_a Width of the attention embedding for each mask 8 

N_steps Number of steps in the architecture 3 
Lr Learning_rate 0.01 

optimizer_fn Optimizer Adam 

5.2. The Result of Feature Selection 
As shown in Figure 7, the probability of rainfall is determined by many factors, so 

how to better select features will become an important factor affecting model perfor-
mance. We use the Instance-wise feature selection method of TabNet to select features.  
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Figure 7. Correlation of each feature with the probability of rainfall. 

Figure 8 shows which features are selected between the first decision step and the 
third decision step. The brighter color means that at this decision step, the feature is as-
signed a greater weight. Figure 8 also shows that each decision step will assign a different 
weight to each feature, which reflects the instance-wise idea. 

 
Figure 8. Feature importance masks M[i] (that indicate which features are selected at ith step). 

Figure 9 shows the global importance of each feature. TabNet considers average hu-
midity (RHU_AVG), maximum wind speed (WIN_MAX), average surface temperature 
(GST_AVG), and daily maximum air pressure (PRS_AVG) to be relatively important. 
These four features account for 40% of the total feature importance. 
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Figure 9. Global importance of each feature. 

5.3. Convergence 
The original Rainy-Model converged in 58 epochs and got an MAE of 0.8332 in the 

test set. Figure 9 shows that the original model had serious oscillation problems in the 
early stage of training. We used the self-supervised learning of TabNet to help the model 
speed up convergence and maintain stability. We masked 80% of the features during pre-
training.  

Figure 10 shows that after the model underwent self-supervised pre-training, the 
convergence speed became faster. Compared with the original Rainy-Model that com-
pleted the convergence at 58 epochs, the new Rainy-Model completed the convergence at 
49 epochs. This improvement was more pronounced in larger data sets or more complex 
tasks. More fast convergence can be highly beneficial particularly in scenarios like contin-
ual learning and domain adaptation. The TabNet with Pre-training (TabNet-P) is also 
more stable and the performance has been improved; the MAE of the test set was 0.7403. 

 
Figure 10. The model with self-supervised pre-training. 
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Figure 11 shows the entire experimental process of this study. 

 
Figure 11. Experiment process. 

6. Discussion 
6.1. Extreme Rainfall 

When extreme rainfall occurs, the surface temperature and humidity of the day will 
change drastically. The model learns the changes of these factors to predict the amount of 
rainfall. The satellite system found that the PWV value will increase sharply before it rains, 
which proves that the PWV value can well reflect the extreme rainfall. We synthesized the 
PWV features so that the model can better capture extreme rainfall conditions. Table 5 
shows the prediction of extreme rainfall by the model. 

Table 5. Forecast of extreme rainfall. The bolded fields emphasize that extreme rainstorms oc-
curred on that day. 

ID Date Actual value Predictive Value 
54406_2016_12_03 2016/12/03 0.00 0.12 
54406_2016_12_04 2016/12/04 0.00 0.04 
54406_2016_12_05 2016/12/05 72.00 62.65 
54602_2012_05_10 2012/05/10 0.00 0.71 
54602_2012_05_11 2012/05/11 0.00 0.09 
54602_2012_05_12 2012/05/12 112.00 101.99 

6.2. The Final Model  
We used the feature engineering method introduced in Sections 2.2.1. and 2.2.2. to 

make TabNet-P better learn data rules to enhance model performance. Table 6 shows part 
of the output of TabNet with pretraining and feature engineering (TabNet-PF). 

Table 6. Part of the output of TabNet-PF is based on rainy-season data. 

ID Date Actual Value Predictive Value 
54602_2016_09_01 2016/09/01 0.00 0.00 
54602_2016_09_02 2016/09/02 0.00 0.07 
54602_2016_09_03 2016/09/03 3.83 4.02 
54602_2016_09_04 2016/09/04 3.79 3.93 
54602_2016_09_05 2016/09/05 14.25 13.88 
54602_2016_09_06 2016/09/06 0.14 0.12 
54602_2016_09_07 2016/09/07 0.58 0.77 
54602_2016_09_08 2016/09/08 0.00 0.11 
54602_2016_09_09 2016/09/09 0.00 0.00 
54602_2016_09_10 2016/09/10 0.00 0.03 

Figure 12 shows the learning curve of TabNet-PF generated based on rainy-season 
data and the learning curve of TabNet-PF generated based on non-rainy-season data. Fig-
ure 12 also shows that after pretraining and feature engineering, the performance of Tab-
Net has been significantly improved; the MAE of the test set of TabNet-PF based on rainy-
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season data is 0.3373, which is better than the MAE of TabNet-P, proving the necessity 
and rationality of feature engineering. 

 
Figure 12. The learning curve of TabNet-PF. 

Table 7 shows the performance differences of the models in different seasons. The 
performance of the Rainy-Model is better than the Drier-Model, because the data set used 
by Drier-Model is more imbalanced. 

Table 7. Model performance differences in different seasons. 

Model Test MAE Test RMSE KGE Test MAPE 
Rainy-Model 0.3373 0.5561 0.84 3.8% 
Drier-Model 0.4825 0.6812 0.92 5.1% 

6.3. Comparative Experiments 
This study used BP-NN [32], LSTM [33], Lightgbm as comparative experiments. The 

BP neural network has good robustness when processing tabular data because its struc-
ture is simple; it is only composed of the input layer, hidden layer, and output layer. LSTM 
solves the vanishing gradient problem caused by the gradual reduction of the gradient 
backpropagation process, so it is very suitable for handling problems that are highly re-
lated to time series. Lightgbm, as an integrated tree model, can fit the hyperplane bound-
ary in tabular data well. 

Table 8 shows that TabNet has the best performance when compared with gradient 
boosted tree and traditional neural network. Table 8 also shows that after pretraining and 
feature engineering, the difference between the training set MAE and the test set MAE of 
TabNet was reduced, effectively reducing over-fitting, and proving that the data-mining 
method we propose has good robustness. 

Table 8. Comparative experiment results. 

Model Training MAE Test MAE KGE RMSE MAPE 
BP-NN 1.8961 2.101 0.71 4.751 19% 
LSTM 1.199 1.374 0.75 2.098 13% 

Lightgbm 0.9677 1.279 0.77 1.6781 9.87% 
TabNet 0.8277 0.9176 0.82 1.4844 8.52% 

TabNet-P 0.7581 0.8033 0.83 1.2172 7.81% 
TabNet-PB 0.3923 0.4099 0.88 0.6187 4.45% 
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7. Conclusions 
Rainfall is affected by a variety of meteorological factors and is a complex nonlinear 

system. A rainfall forecast model was proposed based on an improved TabNet neural 
network by using multiple meteorological parameters. To accelerate model convergence 
and improve model stability, we optimized the model using self-supervised pre-training. 
We combined traditional methods with machine learning methods to improve the accu-
racy of the model and used feature engineering methods to make the model learn the 
seasonal changes of rainfall. Comparative experiments showed that our proposed model 
had the best performance. This result proves the reliability of using the model to forecast 
rainfall. In future research, more data, better parameters, and more reasonable feature en-
gineering methods should be used to increase the robustness of the model. 
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