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Abstract: Identifying implicit periodicities in hydrological data is significant for managing river–
basin water resources and establishing flood forecasting systems. However, the complexity and ran-
domness of hydrological systems make it difficult to detect hidden oscillatory characteristics. This 
study discusses the performance and applicability of five period identification methods, namely 
periodograms, autocorrelation analysis (AA), maximum entropy spectral analysis (MESA), wavelet 
analysis (WA), and the Hilbert–Huang transform (HHT). The annual and monthly runoff data are 
sampled from two stations (Huayuankou and Lijin on the Yellow River in China) in the years 1949–
2015. The conclusions are as follows: (i) All methods identify the significant periods of 6 months, 12 
months, and 18–19 months, which have relatively high energy of peaks; (ii) WA and HHT perform 
best when dealing with nonstationary time series, but they are ineffective for identifying large-scale 
periods; (iii) MESA has high resolution and stability but is prone to oscillate at small-scale periods 
when applied to monthly series; and (iv) periodograms and AA are relatively simple, but their re-
sults lack stability and are significantly affected by the data length—the resolution of AA is too low 
when applied to annual data, and periodograms can easily produce “false peaks”. Generally, it is 
better to apply multiple methods comprehensively than each method singularly, and this can be 
effective in reducing subjective influences. 

Keywords: hydrology period identification; periodogram; autocorrelation analysis; maximum en-
tropy spectral analysis; wavelet analysis; Hilbert–Huang transform 
 

1. Introduction 
The hydrological cycle is a particularly complex global system driven by solar radi-

ation and gravity [1,2]. Hydrological time series (HTS) contain the influences of numerous 
processes involved in the transfer of water in the hydrological cycle [3,4], and they are 
influenced by many physical factors that are often interrelated, especially large-scale fluc-
tuations in atmospheric circulation, the Earth’s rotation and revolution, and sunspots [5–
8]. Therefore, to reveal the variability of hydrological processes, it is essential to be able to 
analyze HTS that have complicated stochastic characteristics [9,10]. The identification of 
hydrological periods is a key issue in the analysis of HTS and is of great significance for 
hydrological simulation and prediction, hydrological design, and the planning and man-
agement of water resources [11–13]. However, because strict periodicities are difficult to 
obtain, we are restricted to approximate implied periods, also known as quasi-periodici-
ties or potential cycles [14]. 

The methods currently used to identify periodicities in HTS have different theoretical 
bases and levels of performance. The main methods are three types of spectral analysis, 
namely Fourier methods (FMs), wavelet analysis (WA), and the Hilbert–Huang transform 
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(HHT) [15,16]. The FMs referred to herein are forms of spectral analysis based on the prin-
ciple of Fourier analysis, including periodograms, autocorrelation analysis (AA), and 
maximum entropy spectral analysis (MESA). 

Traditional spectral analysis methods, mainly periodograms and AA, are widely 
used and have high computational efficiency when a fast Fourier transform is applied 
(periodogram) or a few lags are needed (AA) [17]. However, they also have some inevita-
ble shortcomings. For instance, the frequency resolution of a periodogram is approxi-
mately equal to the reciprocal of the observation data length, so it is limited by the dura-
tion of the available record. The rough spectrum of AA is smoothed by a window, mean-
ing that the statistical stability and resolution depend on the subjective choices of the max-
imum autocorrelation lag and the type of window function [18,19]. Since Fourier algo-
rithms require integration over infinite time but the actual observed data are limited, per-
iodograms and AA make certain artificial assumptions about data extension. Due to the 
inherent window effect, the spectrum will suffer “leakage” that distorts it and may cause 
a low amplitude sinusoid to be submerged completely by the side lobes of a sinusoid of 
greater amplitude [20]. To improve the performance of traditional spectral analysis, 
MESA based on the principle of maximum entropy (POME) has been proposed. This as-
sumes that unknown information has maximum uncertainty and randomness, so the en-
tropy of the probability density function (PDF) should be kept at a maximum value [21]. 
For one-dimensional analysis of wide sense stationary, Gaussian processes, using a filter 
of order m to estimate the maximum entropy spectrum is identical to fitting an autoregres-
sive (AR) model of order m to the data and estimating its spectrum by the fitted parame-
ters [17,18]. MESA methods have relatively high resolution for low noise levels and good 
spectral fidelity for short data records. However, traditional approaches perform better 
for processes whose signal-to-noise ratio (SNR) is relatively low. Spectral line splitting 
and biased frequency estimates may occur when using the Burg algorithm for MESA [22], 
so the results of period identification must be discriminated with care whenever either an 
HTS contains an appreciable level of noise or spectra with multiple peaks are encountered 
[23,24]. 

While FMs are powerful tools for detecting average periodicities in hydrological 
data, they cannot show the distribution of periodic variabilities with time [25]. Moreover, 
Fourier analysis is only suitable for stationary and ergodic time series [26,27]. Wavelet 
analysis (WA) is derived from Fourier analysis, however, it has further development. 
Wavelet functions can show the localized and transient phenomena occurring in the time 
domain through the window with a fixed area but a changeable shape [28,29]. WA is suit-
able for studying HTS with multitemporal scales and nonstationary characteristics [30,31]. 
However, it should be noted that the length of the measured runoff sequence is limited 
by the observation conditions. Boundary effects may occur when applying WA to period 
identification, especially in relatively short data. 

While Fourier analysis uses trigonometric functions as its basis, which may obscure 
the real characteristics of the time series, the selection of prototype functions also limits 
the application of WA [32,33]. To alleviate this drawback, Huang et al. [34] developed a 
new time-series analysis technique, namely the HHT, for nonlinear and nonstationary hy-
drological data. The HHT is based on empirical mode decomposition (EMD), which is an 
adaptive decomposition method based on local temporal scales. By assuming that the sig-
nal consists of different intrinsic modes of oscillations, EMD separates it into a series of 
modes known as intrinsic mode functions (IMFs), each of which is associated with a well–
defined timescale. To identify a set of IMFs without further decomposition of the residual, 
this procedure emphasizes completeness, orthogonality, locality, and adaptiveness in the 
time domain [35]. Applying a Hilbert transform to each IMF leads to the Hilbert spectrum, 
which reflects the relationship among time, amplitude, and frequency. Compared to the 
harmonic functions of FMs, whose amplitude and frequency are constant a priori, the 
IMFs of HHT represent an a posteriori-defined basis, which is nonlinear and nonstation-
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ary in amplitude and frequency [36]. EMD is widely used because of its capacity to char-
acterize the multitemporal scales directly. However, signal intermittency and noise may 
cause mode mixing that obscures the physical meaning of individual IMFs and renders 
the EMD algorithm unstable [37]. To improve the effectiveness of EMD, ensemble EMD 
(EEMD) has been proposed, which involves adding white noise of a particular amplitude 
to the original data [38]. Additionally, some other issues should also be considered when 
decomposing the original sequence, such as the selection of the fitting curve for extreme 
points, the treatment of boundary points, and the criteria for ending the sifting process of 
IMF [14]. 

In addition to applying the aforementioned single methods, many scholars have ex-
plored multimethod ways to identify the multitemporal scales in HTS. For instance, Sang 
et al. [27] studied the relationship between period identification and noise and proposed 
a new method, namely main series spectral analysis (MSSA), which is based on two con-
ventional methods of HTS analysis, namely WA and MESA, to improve period identifica-
tion by reducing noise interference. Sang et al. [14] used empirical mode decomposition 
(EMD) to decompose an HTS into a set of intrinsic mode functions (IMFs), whereupon the 
noise could be distinguished so that the true IMFs could be analyzed by MESA. This 
EMD–MESA method can improve overall period identification by distinguishing among 
noise, periods, and trends. Yu et al. [39] combined continuous wavelet transform (CWT) 
and HHT, effectively eliminating the critical drawback in CWT regarding fine-scale mode 
mixing and revealing multiscale periodicities in precipitation signals. 

To summarize, although there are various approaches to identifying periods in HTS, 
previous studies have lacked systemic analysis of: 
(i) The conditions under which such methods are applicable and; 
(ii) How the consequences of such methods vary. 

Considering certain limitations, the method to be applied should be chosen accord-
ing to the application environment. As such, the present study analyzes the observed an-
nual and monthly runoff data (series on two different time scales) of the Huayuankou 
hydrologic station (HHS) and Lijin hydrologic station (LHS) along the Yellow River in 
China to explore the applicability of the aforementioned methods in period identification 
and to improve their efficiency and accuracy. 

2. Study Area and Data 
The Yellow River basin lies between 95°53′–119°05′ E and 32°10′–41°50′ N. For this 

study, we selected HHS and LHS on the Yellow River as study sites, as shown in Figure 
1. HHS is the demarcation point between the middle and lower reaches of the Yellow 
River basin, and plays a key role in preventing and mitigating downstream flooding. The 
control area covers 97% of the total catchment area, which is about 730,000 km2, and the 
water flow accounts for 96.6% of the total water of the Yellow River basin. LHS is the final 
hydrological control station on the Yellow River before it reaches the sea. The exchange 
of material and energy between land and sea is most frequent at the estuary and has the 
most impact on runoff. LHS is 103.6 km from the sea entrance and controls an area of 
roughly 751,900 km2, accounting for 99.92% of the total basin area. Therefore, it is very 
important to study the characteristics of the spatial and temporal variation of runoff at 
these two stations. In this study, we used the annual and monthly mean runoff series, 
which were calculated from the arithmetic average of the observed daily runoff data. Six-
teen sets of runoff data adopted to period identification are listed in Table 1. The specific 
records in this study were provided by the Yellow River Conservancy Commission 
(YRCC) and the Yellow River Water Resources Bulletin (YRWRB). 
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Figure 1. The location of Huayuankou and Lijin stations in the Yellow River basin. 

Table 1. Trend significance test of annual and monthly mean runoff series at HHS and LHS. 

Station Series Ⅰ Series Ⅱ Years 
HHS 67 a 67 m 1949–2015 

 62 a 62 m 1949–2010 
 57 a 57 m 1949–2005 
 52 a 52 m 1949–2000 

LHS 66 a 66 m 1950–2015 
 61 a 61 m 1950–2010 
 56 a 56 m 1950–2005 
 51 a 51 m 1950–2000 

Note: the unit of series Ⅰ is ‘year’, which is represented by ‘a’; the unit of series Ⅱ is ‘month’, which 
is represented by ‘m’. 

3. Methodology 
3.1. The Mann–Kendall Test 

The underlying trend existed in HTS can affect the stability of the data and should be 
eliminated before the period analysis [40]. Methods for analyzing trends in HTS are usu-
ally divided into parametric tests and non-parametric tests. Non-parametric tests, includ-
ing Spearman’s rho test and the Mann–Kendall (MK) test, are often preferred because they 
are robust with respect to non-normality, nonlinearity, missing values, serial dependency, 
censored data, and outliers (extremes) [41]. Herein, we used the MK test to identify sig-
nificant trends in HTS, this being a rank-based distribution-free method; see Hamed [42] 
for specific details. In this study, all series show a decreasing trend at the significance level 
of 0.01. We used the least-squares method to fit and then remove the trend in each se-
quence before analyzing periods. It should be noted that with the HHT, the original data 
will be used directly for period identification. 

3.2. Fourier Methods 
3.2.1. Periodogram 

Schuster [43] proposed the concept of the periodogram, which is applicable to any 
time sequence that has natural periodicity or that consists of harmonic signals imbedded 
in noise [20,44]. Periodogram directly estimates the power spectrum of the original se-
quence. It is widely used and has high computational efficiency when a fast Fourier trans-
form is applied [17]. The specific calculation steps can be found in Ding and Deng [15].  
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3.2.2. Autocorrelation Analysis (AA) 
Compared to the periodogram, AA indirectly obtains the power spectral density 

(PSD) by Fourier transform of the autocorrelation function [45]. The spectral density func-
tion, 𝑆௙ఫ෢ , is calculated by Equation (1): 

𝑆௙ఫ෢ = 2 ൥1 + 2 ෍ 𝐷௞ 𝑟௞ 𝑐𝑜𝑠(2 𝜋 𝑓௝ 𝑘)௠
௞ୀଵ ൩ 

(1) 

where k is the step and m is the maximum lag of autocorrelation; 𝑟௞ is the autocorre-
lation coefficient of the sample; 𝑓௝ = ௝ଶ௠ with j varying from 1 to m; and 𝐷௞ is the win-
dow. This study adopted hanning window as the form of 𝐷௞, as shown in Equation (2): 𝐷_𝑘 = 0.5 + 0.5 × 𝑐𝑜𝑠 (𝜋 𝑘 𝑚^(−1) ) (2) 

More information about AA can also be found in Ding and Deng [15]. 

3.2.3. Maximum Entropy Spectral Analysis (MESA) 
Limited by the duration of available records, periodograms and AA both make arti-

ficial assumptions about data extension. To overcome this shortcoming, MESA based on 
the principle of maximum entropy (POME) has been proposed [22]. For one-dimensional 
analysis of wide sense stationary, Gaussian processes, using a filter of order m to estimate 
the maximum entropy spectrum is identical to fitting an autoregressive (AR) model of 
order m to the data and estimating its spectrum by the fitted parameters [17,18]. The AIC 
criterion and trial-and-error testing were selected to determine the optimal model order. 
Additionally, m is the optimal order when the AIC(m) reaches minimum value, which is 
shown in Equation (3): 𝐴𝐼𝐶(𝑚) = 𝑛 𝑙𝑔 𝜎௠ଶ + 2 𝑚  (3) 

In this study, both HHS and LHS take the AR model order of 9 in the annual series, 
while for the monthly series, HHS takes the order of 38 and LHS takes the order of 49. 
More details about MESA can be found in Padmanabhan and Ramachandra Rao [18]. 

3.3. Wavelet Analysis 
FMs are powerful tools for detecting average periodicities in hydrological data, but 

they cannot show the distribution of periodic variabilities with time [25]. Moreover, Fou-
rier analysis is only suitable for stationary and ergodic time series [26,27]. In the early 
1980s, Morlet proposed WA based on the short Fourier transform. WA is suitable for stud-
ying HTS with multitemporal scales and nonstationary characteristics [30,31]. Wavelet 
functions are more diverse than the basis functions of Fourier analysis [46]. They can show 
the localized and transient phenomena occurring in time domain through the window 
with a fixed area but a changeable shape [28,29]. In this study, Morlet wavelet consisting 
of a plane wave modulated by a Gaussian is adopted as expressed in Equation (4): 𝛹_0 (𝜂) = 𝜋^(−1/4)  𝑒^(𝑖 𝜔_0  𝜂)  𝑒^(−𝜂^2/2)  (4) 

where η is dimensionless time and 𝜔଴ is dimensionless frequency. To satisfy the admissi-
bility condition, the value of 𝜔଴ is usually taken to be 6. More information about WA can 
be seen in Torrence and Compo [47]. 

3.4. The Hilbert–Huang Transform 
FMs use trigonometric functions as basis, which may obscure the real characteristics 

of the time series, and the selection of prototype functions also limits the application of 
WA [32,33]. To alleviate this drawback, Huang et al. [34] developed the HHT. It consists 
of two important parts, namely EMD and the Hilbert transform. According to the internal 
features of an HTS, EMD decomposes the signal adaptively and efficiently into several 
IMFs with different characteristic time scales [14,48]. The IMF represents an a posteriori-
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defined basis, which is nonlinear and nonstationary in amplitude and frequency [36]. 
When the decomposition process ends, the original sequence can be expressed as Equa-
tion (5): 

𝑋_𝑡 = ෍ 𝑐௜(𝑡) + 𝑟௉(𝑡)௣
௜ୀଵ   (5) 

where 𝑐௜(𝑡) with 𝑖 varying from 1 to 𝑝 represents a series of IMFs and 𝑟௉(𝑡) is the resid-
ual. Applying a Hilbert transform to each IMF leads to the Hilbert spectrum, which re-
flects the relationship among time, amplitude, and frequency. The specific process of HHT 
and more details are described as Huang et al. [34]. 

4. Results 
4.1. Period Identification Results 

In this study, we calculated the aforementioned 16 sets of data and analyzed them by 
periodogram, AA, MESA, WA, and HHT. During spectral analysis, there were no stable 
peaks if the period exceeded a certain range. Therefore, only partial spectra were given 
below to ensure the integrity and clarity of the recognition results. In addition, if the pe-
riod identified in a monthly series exceeded 24 months, the results were not sufficiently 
stable at different series lengths and it was difficult to find regularities directly when 
viewed on a monthly scale. Therefore, turning these periods into an annual scale facili-
tated not only analysis but also comparison with the identification results for the annual 
series (minimum two years). Therefore, we divided the periods identified from the 
monthly series into two categories: 
(i) Periods of less than 24 months (which are recorded directly) and; 
(ii) Periods of 24 months or more. 

We measured the second category of period in years to analyze whether the periods 
in annual and monthly mean runoff series were consistent. 

The periodogram spectra are shown in Figures 2 and 3. When adopting the AA 
method, it is necessary to determine the maximum delay m in different series lengths. 
Since all sample lengths n are greater than 50, we require m < n/4 and usually take m ≈ n/10 
[15]. Herein, we took three values of m for each data set: m = 8, 10, and 12 for annual series 
and m = 80, 100, and 120 for monthly series. Figures 4 and 5 show the power spectra for 
the different values of m. We approximated the refined discrete frequency to the continu-
ous frequency, whereupon we obtained the continuous MESA spectrum. However, if the 
frequency was insufficiently accurate, the spectrum was insufficiently smooth. Herein, the 
initial frequency was 0.001 (1/T, T is period) and the frequency interval (accuracy) was 
0.001 (1/T). When using MESA, both HHS and LHS took the AR model order of 9 in the 
annual series, while for the monthly series, HHS took the order of 38 and LHS took the 
order of 49. Finally, the maximum entropy spectra are shown in Figures 6 and 7. In the 
CWT, the wavelet scale (a) cannot represent the period directly, so an appropriate scale 
sequence was constructed according to the relationship given by Equations (1) and (2), 
which corresponded to an arithmetic sequence of the frequency. For WA, scale (a) should 
range from 2f to infinity, but herein the scale maximum was 1500 (the unit of scale (a) was 
equal to period ‘T’), which corresponded to a frequency interval of 0.001 (1/T); realisti-
cally, this scale was large enough for practical applications. We then used “symmetry ex-
tension” to reduce the boundary effect, that is, we extended the length of both ends of the 
series symmetrically once. Figures 8 and 9 show the wavelet variance diagrams. In the 
application of HHT analysis, EMD was used to decompose a runoff sequence into a resid-
ual and various IMFs. The results regarding the decomposition of sequences 67 a, 67 m, 
66 a, and 66 m are shown in Figures 10–13, respectively. The residual of each sequence 
shows a decreasing trend, which was in keeping with the results of previous MK tests. A 
Hilbert transform was then applied to each IMF to obtain the Hilbert spectra, as shown in 
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Figures 14–17, respectively. The frequency corresponding to each IMF was not constant 
but fluctuated around a central frequency; the higher the frequency, the greater the fluc-
tuation energy (amplitude squared). Additionally, the fluctuation range was limited and 
there were relatively few overlaps between different components, so each IMF component 
had a relatively clear distribution. The central frequencies and the corresponding average 
periods of the 16 sequences are given in Tables 2–5. Finally, during the five identification 
processes, we excluded some periods that were not stable at different sequence lengths. 
In addition, we regarded some low–energy peaks near the main period as oscillations and 
did not list them separately. The specific period identification results are given in Tables 
6–9. 

From Table 6, the period recognition results for series 67a, 62a, 57a, and 52a were 3 
years, 4–5 years (periodogram, MESA, and WA), 6–7 years (periodogram and WA), 9–11 
years (all methods except AA), and 20–21 years (HHT). The second-category periods for 
series 67m, 62m, 57m, and 52m series are given in Table 7 as 2–3 years (all methods), 3–5 
years (periodogram, WA, and HHT), 6–7 years (periodogram and HHT), 8–10 years (per-
iodogram and WA), and 21 years (WA). Comparing these two sets of results shows good 
correspondence, that is, the periods identified in the annual series can also be found in the 
monthly series. The first-category periods for series 67m, 62m, 57m, and 52m are also 
given in Table 7. All methods identify the significant periods of 6 months, 12 months, and 
18–19 months, which have relatively high energy of peaks, especially the period of 12 
months. Additionally, periodograms and the HHT identify periods of 9–10 months and 
7–8 months, respectively. Additionally, the three FMs all identify periods of 4 months. 

From Table 8, the period recognition results of series 66a, 61a, 56a, and 51a were 3 
years (all methods except HHT), 4–5 years and 9–11 years (all methods except AA), 6–7 
years (periodogram and WA), and 20–22 years (HHT). The second-category periods for 
series 66m, 61m, 56m, and 51m are given in Table 9 as 3 years (all methods), 4–5 years and 
6–7 years (periodogram, WA, and HHT), 9–12 years (all methods except AA), and 20–21 
years (WA). Comparing these two sets of results also shows good correspondence. The 
first-category periods for series 66m, 61m, 56m, and 51m are also given in Table 9. All 
methods identify the significant periods of 6 months, 12 months, and 17–19 months, AA 
and MESA both identify the period of 4 months, and HHT and periodograms identify the 
periods of 7–8 months and 9–11 months, respectively. 

These five methods identify different periods, some of which (the obvious ones) were 
identified by most of the methods while others were identified by only some of the meth-
ods. In general, overall comparison shows that (i) the results of periods identification ob-
tained from HHS were relatively consistent to those obtained from LHS and (ii) the sec-
ond-category periods in the monthly series corresponded reasonably well with those in 
the annual series. 
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Figure 2. Periodogram of HHS. 

 
Figure 3. Periodogram of LHS. 
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Figure 4. Power spectra of HHS. 

 
Figure 5. Power spectra of LHS. 
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Figure 6. Maximum entropy spectra of HHS. 

 
Figure 7. Maximum entropy spectra of LHS. 
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Figure 8. Wavelet spectra of HHS. 

 
Figure 9. Wavelet spectra of LHS. 



Water 2021, 13, 1265 12 of 23 
 

 

 
Figure 10. Empirical mode decomposition for the 67 a series of HHS. 

 
Figure 11. Empirical mode decomposition for the 67 m series of HHS. 
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Figure 12. Empirical mode decomposition for the 66 a series of LHS. 

 
Figure 13. Empirical mode decomposition for the 66 m series of LHS. 
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Figure 14. The Hilbert spectrum for the 67 a series of HHS. 

 
Figure 15. The Hilbert spectrum for the 67 m series of HHS. 
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Figure 16. The Hilbert spectrum for the 66 a series of LHS. 

 
Figure 17. The Hilbert spectrum for the 66 m series of LHS. 

Table 2. The center frequencies and average periods of IMFs from annual series at Huayuankou station. 

Series 
Intrinsic mode functions 

IMF1 IMF2 IMF3 IMF4 
f (1/a) T (a) f (1/a) T (a) f (1/a) T (a) f (1/a) T (a) 

67a 0.2639 3.79 0.1027 9.74 0.0437 22.88 0.0262 38.16 
62a 0.2667 3.75 0.0982 10.18 0.0468 21.37 0.0279 35.8 
57a 0.2717 3.68 0.1049 9.53 0.0491 20.35 0.0174 57.31 
52a 0.2584 3.87 0.0987 10.13 0.0476 20.99 0.0193 51.68 

Note: f is frequency; T is period; the scale of the period is ‘year’, which is represented by ‘a’. 

Table 3. The center frequencies and average periods of IMFs from monthly series at Huayuankou station. 

Series 
Intrinsic mode functions 

IMF1 IMF2 IMF3 IMF4 IMF5 
f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) 
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67 m 0.1842 5.43 0.1366 7.32 0.0831 12.04 0.0527 18.96 0.0327 30.59 
62 m 0.1848 5.41 0.1372 7.29 0.0855 11.69 0.0592 16.9 0.0371 26.99 
57 m 0.1862 5.37 0.1346 7.43 0.0833 12.01 0.0542 18.44 0.0343 29.16 
52 m 0.1842 5.43 0.1312 7.62 0.0811  12.33 0.0546 18.33 0.0341  29.34 

Series 
IMF6  IMF7 IMF8 IMF9 IMF10 

f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) 
67 m 0.0210 47.54 0.0112 89.39 0.0061 163.36 0.0029 346.2 0.0012  802.92 
62 m 0.0234 42.74 0.0131 76.26 0.0072 138.15 0.0027 372.49 0.0013 743.67 
57 m 0.0225 44.47 0.0134 74.47 0.0088 113.93 0.0034 293.58 0.0015 683.29 
52 m 0.0183 54.53 0.0119 83.98 0.0081 123.39 0.0040 252.57 0.0016 623.53 

Note: f is frequency; T is period; the scale of the period is ‘month’, which is represented by ‘m’. 

Table 4. The center frequencies and average periods of IMFs from annual series at Lijin station. 

Series  
Intrinsic mode functions 

IMF1 IMF2 IMF3 IMF4 
f (1/a) T (a) f (1/a) T (a) f (1/a) T (a) f (1/a) T (a) 

66a 0.2159 4.63 0.1029 9.72 0.0453 22.06 0.0211 47.29 
61a 0.2392 4.18 0.0980 10.20 0.0499 20.06 0.0235 42.53 
56a 0.2193 4.56 0.0990 10.10 0.0484 20.68 0.0256 39.11 
51a 0.2280 4.39 0.0979 10.21 0.0479 20.86 0.0303 33.01 

Note: f is frequency; T is period; the scale of the period is ‘year’, which is represented by ‘a’. 

Table 5. The center frequencies and average periods of IMFs from monthly series at Lijin station. 

Series 
Intrinsic mode functions 

IMF1 IMF2 IMF3 IMF4 IMF5 
f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) 

67m 0.1861 5.37 0.1398 7.15 0.0850 11.77 0.0546 18.33 0.0360 27.80 
62m 0.1809 5.53 0.1344 7.44 0.0828 12.07 0.0542 18.46 0.0338 29.56 
57m 0.1771 5.65 0.1275 7.84 0.0783 12.78 0.0521 19.19 0.0306 32.72 
52m 0.1851 5.40 0.1310 7.63 0.0789 12.68 0.0527 18.96 0.0324 30.85 

Series 
IMF6  IMF7 IMF8 IMF9 IMF10 

f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) f (1/m) T (m) 
67m 0.0216 46.37 0.0125 79.77 0.0070 142.70 0.0030 328.95 0.0013 790.91 
62m 0.0185 54.11 0.0131 76.11 0.0075 132.81 0.0032 316.41 0.0014 730.91 
57m 0.0167 59.72 0.0105 95.51 0.0055 180.54 0.0041 244.47 0.0015 670.91 
52m 0.0190 52.54 0.0121 82.68 0.0080 125.10 0.0038 260.29 0.0016 610.91 

Note: f is frequency; T is period; the scale of the period is ‘month’, which is represented by ‘m’. 

The specific period identification results are given in Tables 6–9. In general, overall 
comparison shows that: 
(i) The results of periods identification obtained from HHS are relatively consistent to 

those obtained from LHS and  
(ii) The second-category periods (24 months or more) in the monthly series correspond 

reasonably well with those in the annual series. 
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Table 6. The periods identified from annual series at Huayuankou station. 

Methods     
Periodogram AA MESA WA HHT 

4–5  3 3  9–10  3–4 
3  10–11  6–7 9–10 

9–10   4–5  4–5  20–21 
6–7    3  

Note: the scale of the period is ‘year’; the minor periods of low energy and some oscillation com-
ponents are not listed. 

Table 7. The periods identified from monthly series at Huayuankou station. 

Methods 
Periodogram AA MESA WA HHT 
Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ 

12 2–3 12 3 12 3 12 21 5–6 2–3 
6 4–5 6  6  6 9–10 7–8 3–4 
4 8–10 18  4  18–19 3 12 6–7 

18 6–7 4  18–19   4–5 18–19  
9–10          

Note: ‘Ⅰ’ is the first category of the periods, of which the scale is ‘month’; ‘Ⅱ’ is the second category of the periods, of which 
the scale is ‘year’; in addition to the main periods listed in this table, some periods of low energy and some oscillation 
components are not listed. 

Table 8. The periods identified from annual series at Lijin station. 

Methods     
Periodogram AA MESA WA HHT 

9–10 3 11 9–10 4–5 
6–7  3 6–7 9–10 
3  5 3 20–22 
4   4–5  

Note: the scale of the period is ‘year’; the minor periods of low energy and some oscillation components are not listed. 

Table 9. The periods identified from monthly series at Lijin station. 

Methods 
Periodogram AA MESA WA HHT 
Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ 

12 9–10 12 3 12 3 12 20–21 5–6 2–3 
6 6–7 6  6 10–12 6 9–11 7–8 4–5 

9–11 5 17–18  17–18  18 6–7 12–13 6–7 
17–18 4 4  4   4 18–19 10–12 

 3      3   
Note: ‘Ⅰ’ is the first category of the periods, of which the scale is ‘month’; ‘Ⅱ’ is the second category of the periods, of which 
the scale is ‘year’; in addition to the main periods listed in this table, some periods of low energy and some oscillation 
components are not listed. 

4.2. Period Validation  
This study shows the implicit runoff periodicity, mainly the periods of 3–5 years, 6–

7 years, 9–11 years, and 20–21 years at HHS and 2–5 years, 6–7 years, 9–11 years, and 20–
22 years at LHS. Sang et al. [49] conducted cross-correlation WA of two runoff series from 
HHS and LHS and found them to be well cross-correlated on four time scales, namely 3 
years, 7 years, 11 years, and 20 years, which correspond to the four evident periods of each 
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runoff series. Wang and Zhu [50] used the POME-based MEM1 spectrum to analyze the 
monthly HHS runoff series from 1952 to 1990 and obtained the main periods of 12 months, 
6 months, 4 months, and 3 months. Those periods were basically consistent with the re-
sults in the present study. 

Potential physical causes about possible periods were also analyzed. Deterministic 
periods of 24 h and 12 months (1 year) were due mostly to the Earth’s rotation and revo-
lution, respectively. Runoff periods of less than 12 months may be related to seasonal 
changes, and other periods may be due to the air–sea interaction or sunspot activity [51]. 
For example, the Western Pacific subtropical high has the 3–4 years quasi-period [52]; the 
polar-motion amplitude variation has the 6.5 years period [53]; the sunspot-cycle period 
is about 11 years [54] and solar activity has the 22 years quasi-period [51]. In fact, the 
complex connections among the air–sea interaction and solar activity can also impact run-
off either directly or indirectly [55,56]. Most are reflected intuitively in variations of cli-
mate factors such as precipitation, evaporation, and temperature, which have significant 
influences on runoff [57]. In addition, runoff variations can also be affected by topogra-
phy, human activities, and other factors. The specific mechanisms of these influences re-
quire further exploration. 

5. Discussion 
5.1. Performance of Five Methods 

The periodogram could identify most periods, however, an obvious “false peak” 
problem makes the identification process difficult. Meanwhile, its results lacked stability 
and consistency at different series lengths, especially in the annual series. MESA per-
formed well with both annual and monthly series. AA performed well with monthly se-
ries, but its resolution was particularly low when applied to annual series. Additionally, 
both MESA and AA produced obvious short-period oscillations. WA had good stability 
at short periods, but the spectral lines began to shift as the period increased and this phe-
nomenon was more obvious with shorter series. Compared to FMs, WA did not oscillate 
at short periods and were affected less by the series length. The HHT obtained the central 
frequencies by modulating the IMFs directly and then transformed them into periods, 
meaning that the identification results were no longer influenced by the spectral shape. 
The periods were stable and consistent when the IMF frequency was relatively high (i.e., 
the period was short), whereas the results became unstable as the IMF frequency de-
creased (i.e., the period increased). 

With the increasing demand for industrial water, agricultural irrigation, and domes-
tic water in the Yellow River Basin, the contradiction between water supply and demand 
in the Yellow River Basin has become increasingly severe. Water shortage has become an 
important factor restricting regional socioeconomic development and agricultural pro-
duction. Studying the characteristics of the Yellow River runoff change was directly re-
lated to the efficient use and scientific allocation of water resources in the basin and areas 
along the Yellow River. Related research should pay attention to the periodicity and range 
of runoff changes. The Yellow River runoff is affected by human activities, climate change, 
and other factors, which may cause interference in the period identification process. To 
determine significance levels, it is first necessary to choose an appropriate background 
spectrum. For many geophysical phenomena, an appropriate background spectrum is ei-
ther white noise (with a flat Fourier spectrum) or red noise (increasing power with de-
creasing frequency) [47]. A potential signal depends quite sensitively on our a priori as-
sumptions regarding the nature of the background noise, and the appropriateness of our 
statistical model for the signal itself [58,59]. It is worth noting that the study recognizes 
implicit period components and provides a reference standard to choose period identifi-
cation methods. Therefore, if further analysis or prediction is required, that is, when each 
period component needs to be analyzed more accurately, different methods should be 
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selected for noise elimination and period significance test according to the applicable con-
ditions. 

5.2. Theoretical Analysis 
The frequency resolution of MESA, WA, and the HHT was relatively high and was 

not easily affected by the data length, while the recognition abilities of periodograms and 
AA depended greatly on the data length. A periodogram spectrum is discrete: as the data 
length n decreases, the frequency interval 1/n increases and the priori frequency points 
decrease. Thus, its spectral resolution is lower with fewer data points, furthermore, the 
recognized periods basing different sequence lengths become unstable. The frequency in-
terval of AA is 1/2m (where m is the maximum lag and its value is related to n). Herein, m 
values of different series were equal, so the recognized periods based on different data 
lengths could be stable. However, AA assumes that the autocorrelation coefficient ap-
proaches zero rapidly [18,20], thereby requiring a sufficiently long data record to achieve 
the required frequency resolution. For different sequence lengths, the frequency intervals 
of MESA and WA were identical; herein, both were 0.001 (1/T, T is period). Besides, suffi-
ciently refined discrete frequencies were selected to approximate the continuous spectra 
in MESA. CWT was adopted in WA and proper scales could be selected to meet the re-
quired frequency precision. The HHT also had good resolution when the decomposition 
levels were adequate.  

In spectral analysis, waves of multiple frequencies were used to fit the original fluc-
tuation, thereby producing some extra high- or low-frequency components that may not 
actually exist. The IMFs derived from EMD have certain physical meanings, allowing such 
“false peak” problems to be avoided effectively. Theoretically, Fourier spectral analysis is 
the most effective approach if the signal is stable and its spectral characteristics are clearly 
distinguishable from noise. For nonstationary series, however, the distribution character-
istics of random variables cannot be inferred by statistical indicators, so problems such as 
“false regression” can occur [26,60]. WA and HHT are more suitable for studying nonsta-
tionary data with multitemporal scales. WA can reveal the local characteristics of time 
series from the time and frequency domains [30,31], while HHT can directly give the Hil-
bert spectrum, which can reflect the instantaneous changes of frequency and amplitude 
[34].  

5.3. Artificial Influences 
Period identification results can be affected by certain artificial choices when apply-

ing these five methods alone. This is reflected mainly in the selection of relevant parame-
ters and various application conditions. Under certain circumstances, the relevant param-
eters as selected by the researcher may produce differing degrees of deviation, but there 
are usually no exact standards or criteria for such choices. This also makes it difficult to 
control artificial influences when applying a single method. The following are some re-
lated options that may impact the results. 

The subjective choices of the maximum time lag m and the window function both 
impact the AA calculation results. The MESA results depend greatly on the signal-to-noise 
ratio and the initial phase. If the initial parameters of the entropy spectra are selected im-
properly, spectral peak shifting and line splitting may appear [22,23]. The optimal order 
of the AR model will affect the identification results in practice. AIC can be affected sig-
nificantly by the sample size when used alone [61]. For example, the model order is clearly 
small when applying AIC to the annual series in this study. WA is affected mainly by the 
selection of the wavelet function and the admissibility conditions. Shorter series are af-
fected more easily by the “boundary effect” and the original series should be prolonged 
to eliminate this influence before using WA. Since WA requires the wavelet radix and the 
decomposition layer to be chosen in advance, it is not adaptive. By contrast, the HHT is 
adaptive, having no fixed a priori basis, and the IMFs are extracted based on the temporal 
characteristics of the data. However, there are incompletely solved problems in HHT, 
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such as the “end effect”, the “under-envelope” phenomenon caused by cubic spline fit-
ting, and the “negative frequency” phenomenon that occurs during the demodulation 
process [14,37]. 

6. Conclusions 
The main purpose of this study was to assess the period identification abilities of five 

methods, namely periodograms, AA, MESA, WA, and the HHT. Periodograms and AA 
are simple and easy to operate but their identification abilities are susceptible to the data 
length; in particular, the resolution is too low when AA is applied to short series. For 
periodograms, the spectral lines are prone to shift and the results contain many false 
peaks. MESA performed relatively well in period identification but oscillated easily at 
small periods, especially in long series, and this phenomenon also existed in AA. Com-
pared with FMs, WA can give relatively ideal spectra. The HHT can avoid the spectrum 
shape influencing the recognition results. Theoretically, WA and the HHT are more suit-
able for nonstationary time series, but those two methods are also not very effective in 
identifying large periods. 

If a single algorithm is used directly, the related parameters must be adjusted accord-
ing to the results, making the method subject to artificial influences. Furthermore, each 
method depends greatly on the relevant applicability conditions. These factors may cause 
bias in the identification process. This study has shown that the results of these five meth-
ods under consideration are strongly connected, that is, they are not completely independ-
ent. Therefore, selecting appropriate methods based on different applicability conditions 
and then combining the related results can give more complete and reliable periods. In 
brief, such a comprehensive method is less susceptible to artificial factors, its operation is 
intuitive and feasible, and the results are more accurate. 

Author Contributions: Conceptualization, J.L.; data curation, X.C.; formal analysis, X.C.; Funding 
acquisition, J.L.; Investigation, X.C.; Methodology, X.C. and X.W.; Project administration, J.L.; Re-
sources, X.W. and J.L.; Software, X.C. and X.W.; Supervision, J.L.; Validation, X.W.; Visualization, 
J.L.; Writing—original draft, X.C.; Writing—review & editing, X.C., X.W. and J.L. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This study was supported by the National Key R&D Program of China (2018YFC1508403), 
and the Science Fund for Creative Research Groups of the National Natural Science Foundation of 
China (51621092). 

Informed Consent Statement: All authors have read and agreed to the published version of the 
manuscript. 

Acknowledgments: The authors would like to express their sincere gratitude to all of those who 
have offered selfness help during the course of this research. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. 
2. Du, T.; Xiong, L.H.; Xu, C.Y.; Gippel, C.J.; Guo, S.L.; Liu, P. Return period and risk analysis of nonstationary low–

flow series under climate change. J. Hydrol. 2015, 527, 234–250. 
3. Lee, M.; You, Y.; Kim, S.; Kim, K.T.; Kim, H.S. Decomposition of Water Level Time Series of a Tidal River into Tide, 

Wave and Rainfall–Runoff Components. Water 2018, 10, 14. 
4. Jukić, D.; Denić–Jukić, V. Partial spectral analysis of hydrological time series. J. Hydrol. 2011, 400, 223–233. 
5. Zhang, L.L.; Wang, C.Y.; Liang, G.X.; Cui, Y.L.; Zhang, Q.L. Influence of Land Use Change on Hydrological Cycle: 

Application of SWAT to Su–Mi–Huai Area in Beijing, China. Water 2020, 12, 17. 
6. Worqlul, A.W.; Taddele, Y.D.; Ayana, E.K.; Jeong, J.; Adem, A.A.; Gerik, T. Impact of Climate Change on 

Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water 2018, 10, 18. 



Water 2021, 13, 1265 21 of 23 
 

 

7. Wang, F.; Hessel, R.; Mu, X.M.; Maroulis, J.; Zhao, G.J.; Geissen, V.; Ritsema, C. Distinguishing the impacts of 
human activities and climate variability on runoff and sediment load change based on paired periods with similar 
weather conditions: A case in the Yan River, China. J. Hydrol. 2015, 527, 884–893. 

8. Tan, C.; Huang, B.S.; Liu, K.S.; Chen, H.; Liu, F.; Qiu, J.; Yang, J.X. Using the wavelet transform to detect temporal 
variations in hydrological processes in the Pearl River, China. Quat. Int. 2017, 440, 52–63. 

9. Hanson, R.T.; Newhouse, M.W.; Dettinger, M.D. A methodology to asess relations between climatic variability and 
variations in hydrologic time series in the southwestern United States. J. Hydrol. 2004, 287, 252–269. 

10. Yang, X.H.; Mei, Y.; She, D.X.; Li, J.Q. Chaotic Bayesian optimal prediction method and its application in 
hydrological time series. Comput. Math. Appl. 2011, 61, 1975–1978. 

11. Xie, Y.Y.; Huang, Q.; Chang, J.X.; Liu, S.Y.; Wang, Y.M. Period analysis of hydrologic series through moving–
window correlation analysis method. J. Hydrol. 2016, 538, 278–292. 

12. Stojković, M.; Plavšić, J.; Prohaska, S. Annual and seasonal discharge prediction in the middle Danube River basin 
based on a modified TIPS (Tendency, Intermittency, Periodicity, Stochasticity) methodology. J. Hydrol. Hydromech. 
2017, 65, 165–174. 

13. Danandeh Mehr, A.; Kahya, E. A Pareto–optimal moving average multigene genetic programming model for daily 
streamflow prediction. J. Hydrol. 2017, 549, 603–615. 

14. Sang, Y.F.; Wang, Z.G.; Liu, C.M. Period identification in hydrologic time series using empirical mode 
decomposition and maximum entropy spectral analysis. J. Hydrol. 2012, 424–425, 154–164. 

15. Ding, J.; Deng, Y.R. Stochastic Hydrology; Chengdu University of Science and Technology: Chengdu, China, 1988. 
(In Chinese) 

16. Huang, N.E.; Wu, Z.H.; Long, S.R.; Arnold, K.C.; Chen, X.Y.; Blank, K. On instantaneous frequency. Adv. Adapt. 
Data Anal. 2009, 1, 177–229. 

17. Kay, S.M.; Marple, S.L. Spectrum analysis—A modern perspective. Proc. IEEE 1981, 69, 1380–1419. 
18. Padmanabhan, G.; Ramachandra Rao, A. Maximum entropy spectral analysis of hydrologic data. Water Resour. Res. 

1988, 24, 1519–1533. 
19. Übeyli, E.D.; Güler, İ. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA 

methods. Comput. Biol. Med. 2004, 34, 293–306. 
20. D’Amico, K.H. Practical utilization of power spectrum estimation techniques. In Proceedings of the IEEE Region 5 

Conference, Colorado Springs, CO, USA, 21–23 March 1988; pp. 107–111. 
21. Singh, V.P. The use of entropy in hydrology and water resources. Hydrol. Processes 1997, 11, 587–626. 
22. Herring, R.W. The cause of line splitting in burg maximum–entropy spectral analysis. IEEE Trans. Acoust. 1980, 28, 

692–701. 
23. Rigozo, N.R.; Echer, E.; Nordemann, D.J.R.; Vieira, L.E.A.; De Faria, H.H. Comparative study between four classical 

spectral analysis methods. Appl. Math. Comput. 2005, 168, 411–430. 
24. Sang, Y.F.; Wang, D. New method for estimating periods in hydrologic series data. In Proceedings of the 2008 Fifth 

International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008; pp. 645–
649. 

25. Andreo, B.; Jiménez, P.; Durán, J.J.; Carrasco, F.; Vadillo, I.; Mangin, A. Climatic and hydrological variations during 
the last 117–166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous 
wavelet analyses. J. Hydrol. 2006, 324, 24–39. 

26. Hernandez, G. Time series, periodograms, and significance. J. Geophys. Res. Space Phys. 1999, 104, 10355–10368. 
27. Sang, Y.F.; Wang, D.; Wu, J.C.; Zhu, Q.P.; Wang, L. The relation between periods’ identification and noises in 

hydrologic series data. J. Hydrol. 2009, 368, 165–177. 
28. Partal, T.; Kişi, Ö. Wavelet and neuro–fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342, 

199–212. 
29. Labat, D. Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour. 2008, 

31, 109–117. 
30. Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. 
31. Altunkaynak, A.; Nigussie, T.A. Monthly water consumption prediction using season algorithm and wavelet 

transform–based models. J. Water Resour. Plan. Manag. 2017, 143, 4017011. 
32. Maheswaran, R.; Khosa, R. Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 

2012, 46, 284–295. 
33. Nourani, V.; Hosseini Baghanam, A.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–Artificial Intelligence 

models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. 



Water 2021, 13, 1265 22 of 23 
 

 

34. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical 
mode decomposition and the Hilbert spectrum for nonlinear and non–stationary time series analysis. Proc. R. Soc. 
Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. 

35. Chen, P.C.; Wang, Y.H.; You, G.J.Y.; Wei, C.C. Comparison of methods for non–stationary hydrologic frequency 
analysis: Case study using annual maximum daily precipitation in Taiwan. J. Hydrol. 2017, 545, 197–211. 

36. Castino, F.; Bookhagen, B.; Strecker, M.R. Oscillations and trends of river discharge in the southern Central Andes 
and linkages with climate variability. J. Hydrol. 2017, 555, 108–124. 

37. Ma, H.; Qiu, X.; Luo, J.P.; Gu, P.Q.; Liu, Y.L. Analysis of temperature time series based on Hilbert–Huang 
Transform. J. Hydrodyn. Ser. B 2015, 27, 587–592. 

38. Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise–assisted data analysis method. Adv. 
Adapt. Data Anal. 2009, 1, 1–41. 

39. Yu, S.; Yang, J.; Liu, G.; Yao, R.; Wang, X. Improvement for the multi–scale periodic characteristics revealing of 
precipitation signals and its impact assessment on soil hydrological process by combining HHT and CWT 
approaches. Nat. Hazards Earth Syst. Sci. 2015, 15, 393–407. 

40. Wang, W.S.; Jin, J.L.; Li, Y.Q. Advances in stochastic simulation of Hydrology. Adv. Water Sci. 2007, 18, 768–775. (In 
Chinese with English Abstract) 

41. Ishak, E.H.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating the non–stationarity of Australian annual 
maximum flood. J. Hydrol. 2013, 494, 134–145. 

42. Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. 
Hydrol. 2008, 349, 350–363. 

43. Schuster, A. On the investigation of hidden periodicities with application to a supposed 26 day period of 
meteorological phenomena. Terr. Magn. 1898, 3, 13–41. 

44. Schuster, A. On the periodicities of sunspots. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 
1906, 206, 69–100. 

45. Gadiyar, H.G.; Padma, R. Ramanujan–Fourier series, the Wiener–Khintchine formula and the distribution of prime 
pairs. Phys. A Stat. Mech. Its Appl. 1999, 269, 503–510. 

46. Su, L.; Miao, C.Y.; Borthwick, A.G.L.; Duan, Q.Y. Wavelet–based variability of Yellow River discharge at 500-, 100-, 
and 50-year timescales. Gondwana Res. 2017, 49, 94–105. 

47. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. 
48. Huang, N.E.; Wu, Z.H. A review on Hilbert–Huang transform: Method and its applications to geophysical studies. 

Rev. Geophys. 2008, 46, RG2006. 
49. Sang, Y.F.; Wang, D.; Wu, J.C.; Zhu, Q.P. Wavelet cross–correlation method for hydrologic time series analysis. J. 

Hydraul. Eng. 2010, 41, 1272–1279. (In Chinese with English Abstract) 
50. Wang, D.; Zhu, Y.S. Research on cryptic period of hydrologic time series based on MEM1 spectral analysis. 

Hydrology 2002, 22, 19–23. (In Chinese with English Abstract) 
51. Hao, Z.X.; Zheng, J.Y.; Ge, Q.S. Precipitation cycles in the middle and lower Yellow River. Acta Geogr. Sin. 2007, 62, 

537–544. (In Chinese with English Abstract) 
52. Li, J.N.; Meng, W.G.; Wang, A.Y.; Liu, L.M.; Feng, R.Q.; Hou, E.B. Climatic characteristics of the intensity and 

position of the subtropical high in the Western Pacific. Trop. Geogr. 2003, 23, 35–39. 
53. Han, Y.Z.; Ma, L.H.; Yin, Z.Q. Time variation of periodic components of polar motion amplitude. Prog. Geophys. 

2006, 21, 798–801. (In Chinese with English Abstract) 
54. Stager, J.C.; Ruzmaikin, A.; Conway, D.; Verburg, P.; Mason, P.J.; Sunspots, El Niño, and the levels of Lake Victoria, 

East Africa. J. Geophys. Res. 2007, 112, D15106. 
55. Narasimha, R.; Bhattacharyya, S. A wavelet cross–spectral analysis of solar–ENSO–rainfall connections in the 

Indian monsoons. Appl. Comput. Harmon. Anal. 2010, 28, 285–295. 
56. Rossi, A.; Massei, N.; Laignel, B. A synthesis of the time–scale variability of commonly used climate indices using 

continuous wavelet transform. Glob. Planet. Change 2010, 78, 1–13. 
57. Sun, W.G.; Cheng, B.Y.; Li, R. Multitime scale correlations between runoff and regional climate variations in the 

source region of the Yellow River. Acta Geogr. Sin. 2009, 64, 117–127. (In Chinese with English Abstract) 
58. Groth, A.; Ghil, M. Monte Carlo singular spectrum analysis (SSA) revisited: Detecting oscillator clusters in 

multivariate datasets. J. Clim. 2015, 28, 7873–7893. 
59. Mann, M.E.; Lees, J.M. Robust estimation of background noise and signal detection in climatic time series. Clim. 

Change 1996, 33, 409–445. 



Water 2021, 13, 1265 23 of 23 
 

 

60. Sang, Y.F.; Xie, P.; Gu, H.T.; Li, X.X. Discussion on several major issues in the studies of hydrological 
nonstationarity. Chin. Sci. Bull. 2017, 62, 254–261. (In Chinese with English Abstract) 

61. Liavas, A.P.; Regalia, P.A. On the behavior of information theoretic criteria for model order selection. IEEE Trans. 
Signal Process. 2001, 49, 1689–1695. 


