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Abstract: Increasing water demand due to population growth, economic development, and changes
in rainfall patterns due to climate change are likely to alter the duration and magnitude of droughts.
Understanding the relationship between low-flow conditions and controlling factors relative to the
magnitude of a drought is important for establishing sustainable water resource management based
on changes in future drought risk. This study demonstrates the relationship between low-flow and
controlling factors under different severities of drought. I calculated the drought runoff coefficient for
six types of occurrence probability, using past observation data of annual total discharge and precipi-
tation in the Japanese archipelago, where multiple climate zones exist. Furthermore, I investigated the
pattern of change in the drought runoff coefficient in accordance with the probability of occurrence of
drought, and relationships among the coefficient and geological, land use, and topographical factors.
The drought runoff coefficient for multiple drought magnitudes exhibited three behaviors, corre-
sponding to the pattern of precipitation. Results from a generalized linear model (GLM) revealed that
the controlling factors differed depending on the magnitude of the drought. During high-frequency
droughts, the drought runoff coefficient was influenced by geological and vegetation factors, whereas
land use and topographical factors influenced the drought runoff coefficient during low-frequency
droughts. These differences were caused by differences in runoff, which dominated stream discharge,
depending on the magnitude of the drought. Therefore, for effective water resource management,
estimation of the volume of drought runoff needs to consider the pattern of precipitation, geology,
land use, and topography.

Keywords: drought; geology; land use; topography; occurrence probability; water resource management

1. Introduction

The causes of droughts and adaptations to natural disasters have been studied from
the perspectives of hydrology, environmental science, geology, meteorology, and agron-
omy [1]. The causes of droughts have been investigated in various regions by focusing
on rainfall patterns [2–4], temperature [5,6], wind [7], and humidity [8]. In addition to
the impacts of natural factors, intensification of drought is expected to occur because of
growing water demand associated with population growth, economic development [9–11],
and changes in the hydrological cycle associated with anthropogenic impacts, such as
land-use-change [12–14].

Droughts are generally categorized into four types [15]. First, drought resulting from
a lack of precipitation is defined as a meteorological drought [1,16]. Second, a shortage of
surface or subsurface water in relation to water utilization, as determined by established
water resource management, is defined as hydrological drought [17,18]. Stream water
discharge is often used as an indicator hydrological droughts and is used in management
and analyses of such droughts [19]. Third, agricultural drought indicates declining soil
moisture, regardless of surface water resources, causing crop failure [20,21]. Finally, socio-
economic drought occurs in cases of defectiveness and incompatibility of the water resource
system in relation to water demand [22,23].
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Prolonged droughts cause severe socio-economic losses [24,25]. Economic loss arising
from droughts has been estimated at USD 6–8 billion per year in the United States [26,27],
with the EU suffering loss of 100 billion over the past 30 years [28]. The human damage
caused by drought is even more serious. Droughts in Ethiopia/Sudan (1984) and the Sahel
region (1974) killed 450,000 and 325,000 people, respectively [29].

Changes in the hydrological cycle resulting from climate change are expected to
increase extreme drought events [1]. Unlike flood disasters, the influence of climate change
on drought remains poorly understood. However, predictions of an intensification of
drought due to climate change and population growth in central Africa [25] and increasing
drought duration and severity in the interior southwest of the United States [30] have
been reported. Furthermore, forecasts of drought using soil moisture as an indicator
have indicated increasingly frequent drought events in Europe, regardless of the emission
scenario applied [31].

Stream-flow discharge is an important indicator of hydrological drought because in
many regions, water resources are obtained from surface water. Previous studies of stream
discharge have focused on water resources, ecosystems, river channel formation, and flood
management. In particular, the effects of alterations to flow regime on ecosystems have
been studied [32–34], and the natural flow regime has been elucidated [35–38]. Research on
the factors that influence flow discharge has focused on rainfall amount or pattern [39,40],
land use [41,42], and watershed geology [43]. For research on flow regimes, the factors
influencing low flows that are strongly related to drought have been investigated by
focusing on watershed area, watershed elevation, ratio of urban area or forest cover, and
geology [44–48]. However, these studies mainly focused on mountainous watersheds or
a single factor. In addition, the low flows prevalent in these studies were not evaluated
probabilistically. Therefore, the relationship between the frequency of low flow and its
controlling factors remains unknown.

Increasing water demand, due to population growth and economic development
and/or changes in rainfall patterns due to climate change, alters the duration and magni-
tude of droughts. To establish sustainable water resource management based on changes
in future drought risk, it is important to understand the relationship between low flow and
its controlling factors, in relation to the magnitude of drought. Consequently, I formulated
the hypothesis that the factors controlling low surface flow vary according to the severity
of the drought. This study is a first attempt at revealing this relationship. The surface
water volume of each drought-occurrence probability was calculated based on long-term
observational data. The relationships among the drought water volume of each occurrence
probability and the controlling factors were analyzed. Multiple controlling factors related
to geology, land use, and topography were introduced. Since my results identified the
controlling factor of drought for each occurrence probability, they may contribute to the
development of effective water resource management strategies through prediction of
drought water volumes or the impact of climate change on surface water runoff.

2. Materials and Methods
2.1. Location of the Study Area

In this study, 44 watersheds across the Japanese archipelago, where discharge observa-
tions have been conducted over 30 years, were used. Only stations where the impact of flow
regime regulation is small due to a dam were used in this study. Thus, observation stations
whose watershed included a sub-catchment in which a dam is located were excluded if the
sub-catchment exceeded 10% of the total area of the watershed. (Figure 1). Information
about the sub-catchment areas of dams was obtained from the Japan Dam Foundation [49].
Watershed areas ranged from 47 to 8208 km2.

2.2. Calculation of the Hydrological Data

The runoff coefficient (calculated by dividing the depth of runoff by the amount of
rainfall) has a clear relationship with controlling factors, including topography, land use,
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and geology [50,51]. Therefore, various analyses were conducted in this study, using the
runoff coefficient during drought conditions.
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Figure 1. Location of the study site. In this study, I included watershed areas of 44 observation
stations across the Japanese archipelago.

Although various time-scale indices have been used in the assessment of drought,
propagation of a precipitation anomaly to streamflow was explained at the annual time-
scale [52,53], and annual discharge was frequently used as an evaluation indicator of
drought [54–57]. Therefore, I used annual total discharge as an indicator to calculate the
drought runoff coefficient. To investigate the relationship between the various frequencies
of droughts (from low to high) and the controlling factors, the drought runoff coefficients
for six different probability years of occurrence (1/2, 1/10, 1/30, 1/50, 1/100, and 1/400)
were calculated. Further, I defined the runoff coefficient for six different probability of
years of occurrence as the drought runoff coefficient.

The drought runoff coefficient of each occurrence probability for the 44 watersheds
was calculated using the following equation:

Qn / (Pn * A) (1) (1)

where Qn is the estimated total discharge of each occurrence probability, Pn is the estimated
precipitation amount of each occurrence probability, n = 2, 10, 30, 50, 100, and 400; and A is
the watershed area. The annual total discharge of each watershed was obtained from the
Water Information System (http://www1.river.go.jp/ access on 10 April 2019). Annual
precipitation data were obtained from the database of the Japan Meteorological Agency
(http://www.jma.go.jp/jma/index.html access on 10 April 2019). Data from observation
stations with an observation period exceeding 30 years were used based on the research
results, which indicates that the stability of reproduction statistics increases if the samples
exceed approximately 30 [58]. A sample of the average depth of rainfall over the watershed
area was calculated using a Voronoi diagram to objectively consider the effect of area on
the amount of rainfall at the watersheds.

A sample of annual total discharge and the average depth of rainfall over the water-
shed of each observation point were calculated to estimate the total discharge and annual
precipitation for occurrence probabilities of 2, 10, 30, 50, 100, and 400 years. The hydrologi-
cal statistics utility (ver. 1.5.) was used for the statistical analysis. I calculated the estimated
design magnitude using 13 probability distributions, including the exponential distribution

http://www1.river.go.jp/
http://www.jma.go.jp/jma/index.html
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(EXP), Gumbel distribution (Gumbel), exponential-type distribution of maximum (SqrtEt),
generalized extreme value distribution (Gev), log-Pearson type III distribution (real coordi-
nate space) (LP3Rs), log-Pearson type III distribution (log coordinate space) (LogP3), Iwai
method (Iwai), Ishihara Takase method (IshiTaka), the logarithmic normal distribution
with three parameters (quantile method) (LN3Q), the logarithmic normal distribution
with three parameters (Slade II) (LN3PM), the logarithmic normal distribution with two
parameters (Slade I, L-moments method) (LN2LM), the logarithmic normal distribution
with two parameters (Slade I, moments method) (LN2PM), and the logarithmic normal
distribution with four parameters (Slade IV, moments method) (LN4PM) [59–68]. Among
the 13 probability distributions, the estimated design magnitude was selected based on the
standard least-squares criteria [69].

Numerous definitions of hydrological droughts have been proposed [15,70]. In this
study, with reference to Whipple [71] and Changnon [72], low flow discharge was defined
as being less than the average annual total discharge, and drought was defined as being less
than 75% of the average annual total discharge. Furthermore, a discharge of 50%–75% of
the average annual total discharge was defined as high-frequency drought, and a discharge
of less than 50% was defined as low-frequency drought.

2.3. Collecting Data for Controlling Factors

Twelve indicators were assessed and classified into three categories (geological, land-
use, and topographic factors) as controlling factors of the drought runoff coefficient.

As a geological factor, I focused on surface geology. Surface geology was classified
into four groups (volcanic rock, plutonic rock, metamorphic rock, and sedimentary rock),
based on geological creation processes, using a subsurface geological map at a scale of
1:200,000 (http://nrb-www.mlit.go.jp/kokjo/inspect/landclassification/download/ ac-
cess on 12 April 2019). The ratio of each surface geology was calculated using a geographic
information system (GIS). In addition, metamorphic rock was excluded from the analysis
because the composition ratio was less than 5% for all target watersheds.

Land-use data were obtained from the National Survey on the Natural Environment,
conducted by the Japan Ministry of Environment (http://www.vegetation.biodic.go.jp/
legend.html access on 12 April 2019). Five classes of land use were recognized in this study
(coniferous forest, broadleaf forest, mixed coniferous–broadleaf forest, cropland, and urban
areas), and each class was considered to have different effects on runoff. The proportion of
land use for each of the 44 watersheds was calculated using GIS.

I calculated the inverse of the channel slope and topographical gradient, form ratio,
and roundness, as topographic factors. Channel slope was defined as the difference
in elevation between the observation station and headwater divided by the length of
the stream channel. Topographic gradient was obtained by averaging the slope angles
calculated using the average maximum method in the watershed [73]. The form ratio
was calculated by dividing the watershed area by the square of the length of the stream
channel [74]. The form ratio approaches 1.0 if the shape of the basin is almost square or
circular. Roundness was calculated by dividing the circumference of the watershed area by
the watershed boundary length [75]. Topography data were obtained from the Global 3D
Map Service (ALOS World 3D-30 m).

2.4. Statistical Analyses

To investigate the characteristics of the drought runoff coefficient and its relation-
ship with the controlling factors, an analysis using nonmetric multidimensional scaling
(NMDS) [76] was conducted. NMDS refers to a family of related ordination techniques,
all of which use rank order information in a (dis) similarity matrix [77–79]. Similarity in
the drought runoff coefficient between watersheds was calculated using the Bray–Curtis
similarity [80]. From the permutation test (n = 999), controlling factors closely related to
the classification of the drought runoff coefficient (p < 0.01) were presented as vectors.
Of the indicators used as controlling factors, topographical gradient was excluded from

http://nrb-www.mlit.go.jp/kokjo/inspect/landclassification/download/
http://www.vegetation.biodic.go.jp/legend.html
http://www.vegetation.biodic.go.jp/legend.html
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the analysis because of the strong positive correlation (r > 0.07) between it and cropland.
In addition, to investigate the difference in controlling factors among groups classified
by similarity of the drought runoff coefficient, the controlling factors of each group were
analyzed using one-way analysis of variance and the Kruskal–Wallis test. Further, Tukey’s
honestly significant difference (Tukey’s HSD) and the Steel–Dwass test were conducted to
reveal differences between groups if a significant difference was confirmed among groups.

A generalized linear model (GLM) was subsequently developed to formulate a predic-
tive model for the drought runoff coefficient for each occurrence probability. Ten controlling
factors were used as explanatory variables, similar to the NMDS. The GLM is an extinction
model of a linear model that allows the incorporation of non-normal distributions of the
response variables and linear transformations of the dependent variables [81]. I compared
the obtained Akaike information criteria (AIC) [82] for each model using the stepwise
selection method [83]. Finally, the lowest AIC model was adopted as the best model for
each species. GLM was conducted using MASS (version 7.3-50).

3. Results
3.1. Annual Precipitation and Drought Water Volume for Each Occurrence Probability

The results for annual precipitation, volume of drought runoff, and drought water vol-
ume per unit drainage area for each occurrence probability are presented in Tables 1 and 2.
The depth of precipitation and drought water volume per unit drainage area tended to
be high in southwest Japan and low in north Japan. In addition, the differences in depth
of precipitation and drought water volume per unit drainage area between observation
stations decreased with an increasing probability of occurrence. Eight types of probability
distributions were selected to calculate the drought water volume. The probability distri-
butions indicated the highest adaptability for Gev, which was selected at 23 stations. LN3Q
had the second highest adaptability and was selected at seven stations. In the calculation
of precipitation depth, 10 types of probability distributions were selected. Adaptability
followed the order: Gev (16 stations) > Gumbel (7 stations) > LN3Q (6 stations). From
the calculation of the total discharge of each probability of occurrence, the percentages of
the average annual discharge were 96%, 67%, 56%, 53%, 48%, and 42% for probability of
occurrences of 2, 10, 30, 50, 100, and 400 years, respectively. Therefore, the total discharge
of the occurrence probability of 2 years corresponded to low-flow; 10, 30, and 50 years
corresponded to the high-frequency drought; and 100 and 400 years corresponded to the
low-frequency drought.

Table 1. The calculation result of precipitation amount for each occurrence probability.

No Observation
Station

Basin Area
(km2)

Precipitation Amount for
Each Occurrence Probability (mm) N Model

1/2 1/10 1/30 1/50 1/100 1/400

1 Bihoro 824 925 731 659 633 602 554 31 Gev
2 Kitami 1394 794 601 515 481 439 370 31 Gev
3 Kaisei 1335 832 646 569 539 504 445 31 Gev
4 Kamishokotsu 1051 929 701 595 552 500 411 31 Gev
5 Makunbetsu 695 961 781 702 672 634 570 31 Gumbel
6 Ponpira 4029 1161 964 864 822 769 673 31 Gev
7 Uryuubashi 1661 1439 1199 1085 1038 980 880 31 Gev
8 Nakoma 1402 1245 1035 936 897 847 762 31 LN3Q
9 Mukawa 1228 1192 907 767 711 641 520 31 Gev

10 Moiwa 8208 1041 813 709 668 617 532 31 LN3Q
11 Takanosu 2109 1595 1285 1164 1120 1067 982 31 Gev
12 Tsubakikawa 4305 1957 1642 1522 1477 1422 1332 31 LN2LM
13 Todorokibashi 937 2155 1815 1684 1634 1575 1477 31 LN2LM
14 Sanbongibashi 551 1387 1147 1054 1018 977 906 31 Iwai
15 Teratsu 661 1195 972 890 861 826 772 31 Gev
16 Kodaiji 180 1199 913 793 747 691 598 31 Gev
17 Shirakawa 172 1957 1447 1200 1101 978 772 31 Gev
18 Kurogo 580 977 774 685 651 608 536 31 LN3Q
19 Otome 760 1381 1117 988 935 870 756 31 Gev
20 Nakazato 205 1629 1285 1103 1026 929 755 31 Gev
21 Takatsudo 472 1684 1323 1149 1080 994 847 31 LN3Q
22 Iwahana 1228 1282 970 845 799 743 653 31 Gumbel
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Table 1. Cont.

No Observation
Station

Basin Area
(km2)

Precipitation Amount for
Each Occurrence Probability (mm) N Model

1/2 1/10 1/30 1/50 1/100 1/400

23 Kitamatsuno 3540 1488 1107 973 923 865 772 31 Iwai
24 Iwakura 501 1634 1266 1117 1060 992 877 31 Iwai
25 Hota 163 1337 907 717 646 564 434 31 LN3Q
26 Banjou 105 1372 1037 862 790 700 544 31 Gev
27 Kashiwara 962 1397 1035 866 800 720 589 31 LN3Q
28 Hirohara 195 1869 1616 1520 1484 1443 1381 31 Gev
29 Huichiba 837 1721 1412 1287 1239 1181 1082 31 LogP3
30 Mitani 1049 1818 1435 1307 1261 1208 1122 31 LP3Rs
31 Otsu 911 1866 1536 1401 1348 1282 1172 31 LogP3
32 Miyatabashi 123 1475 1112 950 886 808 677 31 Gev
33 Natsuyoshi 47 1890 1404 1178 1087 977 791 31 Gev
34 Nakashima 326 2262 1664 1379 1264 1125 891 31 Gev
35 Akimatsubashi 113 1835 1368 1144 1055 944 756 31 Gev
36 Hinodebashi 695 1751 1309 1101 1018 917 745 31 Gev
37 Tokusuebashi 71 2252 1531 1256 1159 1049 883 31 Exp
38 Kawanishibashi 120 2252 1618 1323 1205 1063 824 31 Gev
39 Myokenbashi 95 1825 1342 1115 1024 912 725 31 Gev
40 Ikemori 231 1748 1271 1037 943 826 632 31 Gev
41 Tateno 386 2688 1992 1727 1629 1511 1316 31 LogP3
42 Itsukimiyazono 227 2217 1639 1414 1330 1232 1068 31 LN3Q
43 Shiratakibashi 1381 1942 1441 1247 1174 1087 943 31 LogP3
44 Banjyoubashi 278 2165 1548 1321 1238 1142 989 31 Gumbel

Table 2. The calculation result of drought runoff volume, and drought water volume per unit drainage area for each
occurrence probability.

No
Drought Water Volume for

Each Occurrence Probability (106 M3) N Model
Drought Water Volume Per Unit Drainage

Area for Each Occurrence Probability

1/2 1/10 1/30 1/50 1/100 1/400 1/2 1/10 1/30 1/50 1/100 1/400

1 435 299 254 240 222 196 60 Gev 0.53 0.36 0.31 0.29 0.27 0.24
2 699 521 461 441 415 373 60 LN3PM 0.50 0.37 0.33 0.32 0.30 0.27
3 962 709 637 613 585 541 52 LogP3 0.72 0.53 0.48 0.46 0.44 0.40
4 909 680 610 588 565 532 60 Gev 0.86 0.65 0.58 0.56 0.54 0.51
5 833 588 500 476 435 385 49 LN3Q 1.20 0.85 0.72 0.69 0.63 0.55
6 5882 4762 4348 4167 4000 3704 46 Gev 1.46 1.18 1.08 1.03 0.99 0.92
7 2326 1852 1667 1587 1515 1370 40 LN3Q 1.40 1.11 1.00 0.96 0.91 0.82
8 2082 1724 1613 1563 1515 1449 52 Gev 1.49 1.23 1.15 1.11 1.08 1.03
9 1250 833 667 625 556 438 42 LogP3 1.02 0.68 0.54 0.51 0.45 0.35
10 7143 5263 4545 4348 4000 3448 47 LogP3 0.87 0.64 0.55 0.53 0.49 0.42
11 3226 2632 2381 2283 2174 2000 55 Iwai 1.53 1.25 1.13 1.08 1.03 0.95
12 8333 6667 5882 5882 5556 5263 71 Gev 2.07 1.65 1.46 1.46 1.38 1.30
13 1961 1538 1389 1333 1266 1149 43 LN3PM 2.09 1.64 1.48 1.42 1.35 1.23
14 877 676 610 585 559 513 41 Iwai 1.59 1.23 1.11 1.06 1.01 0.93
15 833 625 526 500 476 400 42 Gumbel 1.26 0.95 0.80 0.76 0.72 0.61
16 137 95 83 78 72 65 36 Gev 0.76 0.53 0.46 0.43 0.40 0.36
17 196 137 116 110 101 88 48 Gev 1.14 0.80 0.68 0.64 0.59 0.51
18 714 526 455 435 400 357 55 Gumbel 1.23 0.91 0.78 0.75 0.69 0.62
19 1064 690 524 461 388 274 36 Gev 1.40 0.91 0.69 0.61 0.51 0.36
20 217 141 110 98 84 62 37 Gev 1.06 0.69 0.53 0.48 0.41 0.30
21 588 370 286 263 227 182 51 LN3Q 1.25 0.78 0.61 0.56 0.48 0.39
22 901 592 478 439 392 318 42 Gev 0.73 0.48 0.39 0.36 0.32 0.26
23 2174 1163 885 794 699 552 49 LN3Q 0.61 0.33 0.25 0.22 0.20 0.16
24 500 314 240 214 182 133 42 Gev 1.00 0.63 0.48 0.43 0.36 0.27
25 200 118 94 86 78 65 24 Gumbel 1.23 0.72 0.58 0.53 0.48 0.40
26 102 64 52 48 43 36 29 Gumbel 0.97 0.61 0.49 0.46 0.41 0.35
27 840 552 446 410 369 308 29 Exp 0.87 0.57 0.46 0.43 0.38 0.32
28 278 213 189 180 169 154 35 Iwai 1.42 1.09 0.97 0.93 0.87 0.79
29 1205 943 855 820 781 719 32 LP3Rs 1.44 1.13 1.02 0.98 0.93 0.86
30 1282 862 704 649 581 474 28 Gev 1.22 0.82 0.67 0.62 0.55 0.45
31 1389 1064 935 885 826 730 23 Gumbel 1.52 1.17 1.03 0.97 0.91 0.80
32 141 93 79 74 68 60 58 LogP3 1.15 0.76 0.64 0.60 0.56 0.49
33 76 46 35 31 26 19 30 Gev 1.61 0.98 0.74 0.65 0.55 0.39
34 412 260 207 188 167 134 62 SqrtEt 1.26 0.80 0.64 0.58 0.51 0.41
35 156 102 84 78 71 60 38 Gumbel 1.38 0.90 0.74 0.69 0.63 0.53
36 952 595 469 426 376 300 55 SqrtEt 1.37 0.86 0.68 0.61 0.54 0.43
37 96 58 45 41 36 28 41 SqrtEt 1.35 0.82 0.64 0.57 0.50 0.40
38 185 106 81 71 61 46 38 Gev 1.54 0.89 0.67 0.60 0.51 0.38
39 133 78 56 48 38 25 27 Gev 1.40 0.82 0.59 0.50 0.40 0.26
40 222 133 109 101 93 80 25 Gev 0.96 0.58 0.47 0.44 0.40 0.35
41 714 500 435 400 370 323 24 Gumbel 1.85 1.30 1.13 1.04 0.96 0.84
42 526 345 278 256 233 192 35 LN3Q 2.32 1.52 1.22 1.13 1.02 0.85
43 1818 1282 1124 1064 1000 893 66 LN3PM 1.32 0.93 0.81 0.77 0.72 0.65
44 357 209 165 150 133 108 57 LN3Q 1.28 0.75 0.59 0.54 0.48 0.39
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Figure 2. Result of NMDS using drought runoff coefficient of each occurrence probability. NMDS,
nonmetric multidimensional scaling.

Group A (N = 16) was located in the second and third quadrats and was composed
of watersheds dominated by a mixed coniferous and broadleaf forest. The watersheds be-
longing to Group A were also characterized by low ratios of urban area and plutonic rocks.
Group B (N = 16) was located in the first and fourth quadrats, composed of watersheds
dominated by urban areas or croplands. The surface geology of the watersheds belonging
to Group B was dominated by plutonic rocks. Group C (N = 12) was located in the third
and fourth quadrats, and was composed of watersheds characterized by a high proportion
of coniferous forest.

The average runoff coefficient was largest in group A and smallest in group C in all
occurrence probabilities. In addition, the difference in the drought runoff coefficient be-
tween occurrence probabilities was smaller in Group A than in the other groups, exhibiting
a slight difference between the occurrence probabilities of 2 and 400 years. However, in
Group C, the drought runoff coefficient tended to decrease with increasing occurrence prob-
ability. In Group B, the change in drought runoff coefficient with occurrence probability
indicated an intermediate behavior between Groups A and C. Although the drought runoff
coefficient decreased to an occurrence probability of 30 years, it had an almost constant
value at occurrence probabilities exceeding 30 years (Figure 3). A significant difference
between groups A and C was confirmed in all occurrence probabilities (p < 0.01). In ad-
dition, a significant difference between groups A and B was confirmed in the occurrence
probabilities of 10, 30, 50, 100, and 400 years (p < 0.01).

3.2. Characteristics of Controlling Factors in Each Group

Figure 4 presents a boxplot of the controlling factors for each group. The geological
factors VR and SR yielded similar results. The highest values for both indicators were
observed in group A, followed by those in groups C and B. One-way analysis of variance
indicated a significant difference among the three groups (p < 0.01). Tukey’s HSD test
revealed a significant difference between Group B and the other two groups (p < 0.01)
for both factors. However, the PR exhibited the opposite trend. The average value for
PR was highest in group B (41%), followed by those in groups C (7.2%) and A (2.7%).
The Kruskal–Wallis test revealed significant differences among the groups (p < 0.01). In
addition, the Steel–Dwass test revealed that the PR of group B was significantly higher
than that of groups A (p < 0.01) and C (p < 0.01).
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MCBF was the only land-use factor confirmed in watersheds belonging to Group A.
The average value for UA was highest in group B (12%), followed by groups C (6.4%) and
A (2.9%). The Kruskal–Wallis test revealed significant differences among groups (p < 0.01).
In addition, the Steel–Dwass test revealed that the UA of group A was significantly lower
than that of groups B (p < 0.01) and C (p < 0.05).

By contrast, one-way analysis of variance and the Kruskal–Wallis test indicated no
significant difference for land-use factors BF, CF, and CL, and all topographical factors.

4. Discussion
4.1. Difference in Drought Runoff Coefficient between Areas

Observation stations located on the Japanese archipelago were classified into three
groups, A, B, and C, on the basis of their drought runoff coefficient. Furthermore, as a
result of this classification, geographically close rivers tend to be classified into similar
groups. The tendency of geographically adjacent rivers to show similar hydrological
characteristics has been confirmed in previous studies [84]. Sawicz et al. [85] explained
that this tendency was caused by climatic and landscape characteristics changing slowly
in space. The drought runoff coefficient of Group A exhibited high values, regardless of
changes in occurrence probability. However, the drought runoff coefficient of Group C
decreased with increasing occurrence probability. Catchment classification using runoff
characteristics is important from the standpoint of prediction in ungauged basins or the
creation of a common language [86]. Carely et al. [87] analyzed the runoff coefficient of
rivers in Sweden, Scotland, Canada, and the United States, and divided rivers into two
groups (catchments that rapidly generate precipitation runoff and catchments that more
readily store water and exhibit a more delayed release). In addition, Laaha and Blosch [48]
demonstrated that seasonality of rainfall was the optimal parameter for the classification
of watersheds using low-flow data. The change in the drought runoff coefficient with
increasing probability of occurrence for Group B exhibited a trend intermediate between
Groups A and C. In this study, I used the drought runoff coefficient as the indicator, which
was calculated by dividing total river runoff by total rainfall in each area. The drought
runoff coefficient was calculated annually and therefore, the difference in the trend of
the drought runoff coefficient of occurrence probability among groups was thought to
be partly caused by the seasonality of rainfall across different time-scales. However, it is
clear that watershed factors exerted a strong influence on the drought runoff coefficient
because the characteristics of the watershed indicator differed for each classification, based
on the NMDS results. The stable and high drought runoff coefficient of Group A, which
was composed of watersheds in regions experiencing heavy snow, can be attributed to
its specific pattern of precipitation, compared to those of other areas. This is also due to
low evapotranspiration in high-latitude areas [88,89]. Takahashi et al. [90] investigated the
drought water volume of this water source area and concluded that the large drought water
volume of north Japan results from the stable water supply induced by spring snowmelt,
and associated runoff and intermittent rainfall in fall. This water supply contributes to
the maintenance of groundwater during the drought season. In addition, the drought risk
of the area influenced by spring snowmelt runoff will increase owing to the decreasing
depth of precipitation in winter and spring as a result of climate change. This confirms the
importance of snowmelt runoff in water resource recharge [91].

A trend of decreasing drought runoff coefficient with increasing occurrence probability
was found in Group C, which is composed of watersheds within the southwest Japanese
archipelago. In these watersheds, the depth of precipitation largely depends on the intense
rainfall of a typhoon or rainy season [92]. Therefore, the low supply of water into the
ground during drought results in a low drought runoff coefficient when the probability
of occurrence is high. In addition to the influence of the pattern of precipitation, the
geology of the watersheds belonging to Group C also influenced the low drought runoff
coefficient. Group C was composed of watersheds with a high proportion of sedimentary
rock (Figure 4). Furthermore, the geological age of the sedimentary rock of these watersheds
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(the Mesozoic and Paleozoic ages) is older than that in other areas [93]. The low drought
runoff coefficient was thought to be caused by the high degree of agglomeration of the rock,
which is a result of the high geological age influencing the deep percolation of precipitation.
Group A is also an area with a large proportion of sedimentary rock, but it is thought
that the difference in geological age and the influence of rainfall patterns was dominant,
resulting in a difference in the rate of drought outflow from Group C.

4.2. Controlling Factors and the Drought Runoff Coefficient
4.2.1. Occurrence Probability of Drought and Controlling Factors

Hydrologic units reflect the characteristics of climate, geology, topography, and land
use of watersheds [86,94]. Therefore, in this section, I describe the relationship between
the watershed characteristics (geology, land use, and topography) and the drought runoff
coefficient for each occurrence probability. The GLM investigated the relationships between
the drought runoff coefficient and controlling factors, and demonstrated that geological
factors and land-use factors (vegetation) influenced the drought runoff coefficient in high-
frequency drought. In contrast, land-use factors and topographic factors were selected as
influencing factors in low-frequency drought. Comparing the standard partial regression
coefficient obtained from the GLM as a function of the occurrence probability, the value of
MCBF of land-use factors was higher than that of geological factors in the high-frequency
drought. In the drought with an occurrence probability of 30 years, the value of land-use
factor exceeded that of the geological factor, and CF was selected as the most influential
indicator. Furthermore, CS was selected as an important factor in low-frequency drought,
in addition to CF. This is considered to be due to the fact that the runoff components
that control flow discharge differ, depending on drought frequency. Geological factors
and land-use factors were selected as the controlling factors in the total discharge of
occurrence probability of 2 and 10 years. These factors are closely related to surface runoff
or subsurface flow. In contrast, for the low-frequency drought, factors related to a longer
time-scale hydrological cycle, such as ground-water level, were selected. Previous research
investigating the relationship between flood discharge and controlling factors for multiple
occurrence probabilities demonstrated that a coniferous forest increases discharge in low-
frequency floods, whereas topographical factors increase discharge in high-frequency
floods [51]. In addition, the controlling factor for stream discharge changes from rainfall to
geological factors with the threshold of ordinary water discharge [44]. From these results,
it is clear that the controlling factors change according to the frequency of both flood and
drought events.

4.2.2. Geological Factors and the Drought Runoff Coefficient

Some studies have demonstrated that geology is one of the factors controlling the flow
regime [95–97]. The reasons for differences in drought runoff or base flow as a function of
geology are that (i) the retention capacity of groundwater differs based on geology; and (ii)
the infiltration capacity of soils differs as a function of geology [98,99]. From the GLM, PR
and SR (among the geological factors) were selected as controlling factors that decreased
the drought runoff coefficient in high-frequency drought (Table 3). This is incompatible
with the results of Mushiake et al. [44], who noted that granite (classified as a plutonic
rock) is a factor in increasing drought discharge. This contrast in results was caused by
the location of the study area and the observation period of the data. Mushiake et al. [44]
used the average drought value based on a relatively short-term period. In steep mountain
rivers with a small watershed area, rainfall rapidly flows out, and the ratio of surface
and intermediate runoff to drought discharge is thought to be larger. In addition, the
influence of local deep percolation in bedrock cracks appears to be highly significant in
small watersheds. Therefore, a minimum basin area is necessary to evaluate the effect
of geological factors on the drought runoff coefficient. In contrast, Yokoo and Oki [100]
demonstrated that geological age exerts an influence on drought runoff. In particular, based
on an investigation of watersheds with an area exceeding 100 km2, quaternary geology was
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found to be an increasing factor for drought runoff. Rocks of different geological ages differ
in the degree of consolidation and result in a difference in the degree of deep percolation.
Furthermore, as diagenesis progresses, water exchange between an aquifer and a river is
less likely to occur. Therefore, geological age is an important factor for characterizing the
drought runoff coefficient. Therefore, it is necessary to consider both geological type and
geological age as indicators for predicting drought runoff.

Table 3. Analysis of the relationship between drought runoff coefficient of each occurrence probability and controlling
factors by GLM

Controlling Factors Occurrence Probability

1/2 1/10 1/30 1/50 1/100 1/400

Geological factor
VR −0.065
PR −0.135 ** −0.087 * −0.072 −0.076 −0.068
SR −0.158 ** −0.107 ** −0.091 −0.097 −0.094

Land use factor
BF 0.098 * 0.087 ** −0.047 −0.047 −0.059
CF −0.120 ** −0.159 *** −0.155 ** −0.205 ***

MCBF 0.122 ** 0.117 **
CL −0.078 −0.106 * −0.103 −0.083
UA −0.078 * −0.079 * −0.087 * −0.084 *

Topographical factor
CS 0.049 0.098 ** 0.105** 0.105 ** 0.073 * 0.118 *
FR 0.047 0.047
RO −0.052 −0.089

R2 0.377 0.441 0.435 0.444 0.421 0.430

AIC −23.013 −24.676 −20.005 −17.291 −12.615 −4.9517

p-value < 0.05 = *, p-value < 0.01 = **, p-value < 0.001 = ***.

In addition to plutonic rock, sedimentary rock was selected as a factor causing a
decline of the drought runoff coefficient for occurrence probabilities of 2 and 10 years. The
infiltration capacity of sedimentary rocks appears to change with the degree of agglomera-
tion. However, flysch (classified as a sedimentary rock), is a factor for increasing drought or
flood [101]. The GLM results support the finding that the low permeability of sedimentary
rock is a controlling factor in high-frequency drought.

While much research has revealed the relationship between geology and drought
discharge, some researchers have claimed a stronger influence of topography than that
of surface geology on groundwater level [102]. To clarify the more precise influence of
geology, it is important to analyze the relationship between drought and geology under
the same conditions of watershed area, topography, land use, and drought magnitude. In
addition, the degree of agglomeration of the rock is closely related to runoff phenomena, as
discussed above. Further research is needed to quantify the relationship between drought
runoff discharge and geology in various regions.

4.2.3. Land Use Factors and the Drought Runoff Coefficient

Changes in the number of available water resources due to an alteration in the rainfall–
runoff relationship caused by vegetation changes have long been recognized [103]. In
addition, runoff volume differs between coniferous and broadleaf forests, owing to the
dissimilarities in evapotranspiration (ET) [104–106]. My research results also indicate the
different functions of coniferous and broadleaf forests. Based on the GLM, the broadleaf
forest was selected as an increasing factor for the drought runoff coefficient for high-
frequency drought, whereas coniferous forest was a decreasing factor for low-frequency
drought (Table 3). This is thought to be due to differences in ET. Previous research has
indicated that the change in runoff volume is larger for a coniferous forest when a coniferous
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forest and a broadleaf forest are cleared [107]. Furthermore, the drought runoff volume
increases because of the clearing of the coniferous forest [103,108–110]. These results
support the GLM results. Moreover, I presume that the reason for the coniferous forest
decreasing the drought coefficient in low-frequency drought is as follows: Since ET and
canopy interception occur constantly regardless of drought magnitude, the amount of
precipitation available to generate surface runoff decreases as the depth of precipitation
decreases, and the effects of coniferous forests become dominant. In contrast, ET and
runoff volume are altered by the management status of the forest, the condition of the
forest floor, and tree age [111–113]. This study examined the relationship between the
runoff coefficient and vegetation type as land-use factors for relatively large watersheds.
Therefore, the differences between broadleaf and coniferous forests have become clear.
However, it should be noted that the runoff coefficient could change, even within the same
forest type, if the targeted watershed is smaller.

Land use changes significantly alter the mechanism of runoff [114]. Among land-
use changes, urbanization increases flood peak discharge [115] and decreases minimum
flow [116]. The main cause of urbanization decreasing the minimum flow is a decrease
in the infiltration area and a decline in the base flow due to the consolidation of pipe
systems [117,118]. The GLM results indicate that urban areas are a decreasing factor for the
drought runoff coefficient in low-frequency droughts. The composition of tree species in
the forest is an important controlling factor for high-frequency drought because the source
of surface water mainly depends on rainfall in the upstream area. Therefore, the impact
of urbanization is assumed to be relatively low in high-frequency droughts. In contrast,
surface water from the upstream area is decreased in low-frequency drought and therefore,
the influence of urbanization, including the limitation of rainfall infiltration or supply of
surface water from groundwater, is assumed to be dominant. In contrast to this study, Ralf
and Bloschl [119] demonstrated that land use, soil type, and geology do not exert strong
influences on the volume of runoff in the normal stage in 459 rivers in Austria. Based on
the results of my analysis, the magnitude of the impact of land use on the runoff coefficient
varied, depending on the scale of runoff.

4.2.4. Topographic Factors and the Drought Runoff Coefficient

To determine the relationship among topographic factors and drought runoff, the
influence of river length, watershed gradient, average watershed width, and altitude on
base flow were examined [100,120–123]. The GLM indicated that channel slope is an
increasing factor for the drought runoff coefficient at occurrence probabilities of 10 years or
more (Table 3). This result supports the research of Moliere et al. [120], who demonstrated
that zero flow days increase in high-gradient rivers. However, topographic factors were not
selected as controlling factors for the drought runoff coefficient at an occurrence probability
of 2 years. Runoff discharge in high-frequency droughts is mainly governed by surface
runoff. Therefore, the geological or land-use factors closely related to surface runoff were
dominant, rather than topographical factors. However, the ratio of groundwater appeared
to increase with increasing river discharge during low-frequency drought. Therefore,
the topographic factor most closely related to groundwater was selected. Moreover, this
study focused on observation stations in various basins, including both mountainous and
alluvial areas. The interaction between groundwater and surface water is considered to
be more active in alluvial channels; therefore, the drought runoff coefficient was higher in
low-gradient watersheds.

5. Conclusions

This manuscript reports relationships among drought runoff and controlling factors
(geological, land-use, and topographical factors) as a function of occurrence probability.

Classification results of the drought runoff coefficient across multiple drought magni-
tudes indicated three types of behavior for the drought runoff coefficient. The group with
watersheds influenced by snowmelt runoff had a high drought runoff coefficient, regardless
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of drought magnitude. However, the drought runoff coefficient of the group influenced
by rainfall intensity decreased with increasing drought magnitude. The drought runoff
coefficient of the remaining group exhibited intermediate behavior between these two
groups. In addition, this classification result indicated a significant relationship between
the proportion of plutonic rock, sedimentary rock (geological factors), urban areas, and a
mixed coniferous–broadleaved forest (land-use factors).

The GLM revealed that the controlling factors differed depending on the magnitude
of drought. In high-frequency drought, the drought runoff coefficient was influenced by
geological and vegetation factors, whereas land use and topographical factors influenced
the drought runoff coefficient in low-frequency drought. These differences were caused by
the differences in the runoff component, which dominated stream discharge in relation to
drought magnitude.

This research clarified that a change in the drought runoff coefficient due to occurrence
probability differs depending on the precipitation pattern or climatic zone, and the control-
ling factors of the drought runoff coefficient changed in accordance with the occurrence
probability. Therefore, for effective water resource management, estimation of the drought
runoff volume needs to consider precipitation pattern, geology, land use, and topography
to correspond to the magnitude of the drought. Because the results clarify the controlling
factors of drought runoff for each occurrence probability, this study contributes to effective
water resource management by estimating the drought volume for climatic zones and by
predicting changes in drought volume due to climate change. Further research is needed
to investigate applicable climate zones and the influence of catchment scale on the rela-
tionship between drought and the controlling factors. Although not included in this study,
dimensionless numbers describing the geomorphological characteristics of catchments,
including stream order [124,125], bifurcation or ratio hillslope form [126], were revealed
to explain the hydrogeomorphological characteristics of the catchment. Therefore, I can
improve my model by using these factors.
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