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Abstract: The optimization of groundwater conditioning factors (GCFs), the evaluation of ground-
water potential (GWpot), the hydrogeological characterization of aquifer geoelectrical properties and 
borehole lithological information are of great significance in the complex decision-making processes 
of groundwater resource management (GRM). In this study, the regional GWpot of the Karak water-
shed in Northern Pakistan was first evaluated by means of the multi-influence factors (MIFs) model 
of optimized GCFs through geoprocessing tools in geographical information system (GIS). The dis-
tribution of petrophysical properties indicated by the measured resistivity fluctuations was then 
generated to locally verify the GWpot, and to analyze the hydrogeological and geoelectrical charac-
teristics of aquifers. According to the weighted overlay analysis of MIFs, GWpot map was zoned into 
low, medium, high and very high areas, covering 9.7% (72.3 km2), 52.4% (1307.7 km2), 31.3% (913.4 
km2), and 6.6% (44.8 km2) of the study area. The GWpot accuracy sequentially depends on the classi-
fication criteria, the mean rating score, and the weights assigned to GCFs. The most influential fac-
tors are geology, lineament density, and land use/land cover followed by drainage density, slope, 
soil type, rainfall, elevation, and groundwater level fluctuations. The receiver operating character-
istic (ROC) curve, the confusion matrix, and Kappa (K) analysis show satisfactory and consistent 
results and expected performances (the area under the curve value 68%, confusion matrix 68%, 
Kappa (K) analysis 65%). The electrical resistivity tomography (ERT) and vertical electrical sound-
ing (VES) data interpretations reveals five regional hydrological layers (i.e., coarse gravel and sand, 
silty sand mixed lithology, clayey sand/fine sand, fine sand/gravel, and clayey basement). The pre-
liminary interpretation of ERT results highlights the complexity of the hydrogeological strata and 
reveals that GWpot is structurally and proximately constrained in the clayey sand and silicate aqui-
fers (sandstone), which is of significance for the determination of drilling sites, expansion of drink-
ing water supply and irrigation in the future. Moreover, quantifying the spatial distribution of aq-
uifer hydrogeological characteristics (such as reflection coefficient, isopach, and resistivity mapping) 
based on Olayinka's basic standards, indirectly and locally verify the performance of the MIF model 
and ultimately determine new locations for groundwater exploitation. The combined methods of 
regional GWpot mapping and hydrogeological characterization, through the geospatial MIFs model 
and aquifer geoelectrical interpretation, respectively, facilitate decision-makers for sustainable 
GRM not only in the Karak watershed but also in other similar areas worldwide.  
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1. Introduction 
Increasing anthropogenic repression, climate change, and environmental problems 

are affecting the supply and demand of domestic and irrigation water. The efficient and 
innovative use of geospatial and geophysical datasets for understanding groundwater 
management and hydrological processes in various climatic and vegetation regimes un-
der topographical, geological, hydrological, and land-covered influence has become an 
important challenge, which offers a wide range of research opportunities [1–5]. There are 
several conventional geological, geophysical, and hydrogeological methods, and the most 
commonly used methods are geophysical, but they are time-consuming and mainly ap-
plicable on a small scale [6,7]. However, remote sensing (RS) and geographical infor-
mation system (GIS) provide spatial, temporal, and spectral data availability that can 
cover large and inaccessible areas within a short period and serve as a useful tool for as-
sessing and managing groundwater resources [8–12]. 

The groundwater potential (GWpot) is influenced by multiple geological, hydrologi-
cal, and land-covered processes [10,12,13]. Usually, the occurrence and movement of sur-
face water and groundwater could be assessed by optimized groundwater conditioning 
factors (GCFs), i.e., rainfall, lineament density, slope, soil types, drainage density, land 
use/land cover, lithology, elevation, and groundwater level fluctuation. [14,15]. GIS and 
RS analysis are useful for large-scale estimates of surface water and groundwater. Several 
methods have been employed to monitor GWpot, such as cumulative rainfall departure 
(CRD), Monte Carlo (MC) simulation, frequency ratio (FR), certainty factor (CF), weights-
of-evidence (WoE), fuzzy logic index models, logistic regression (LR) model, analytical 
hierarchy process (AHP), and multi-influence factors (MIFs) [8,16–23]. The CRD is a water 
balance method which defines groundwater level fluctuations in shallow aquifers as a 
function of rainfall. The statistical methods (e.g., FR, LR, WoE) estimates the coefficient 
for each GCF by defining the relationship between the dependent variable and independ-
ent variables, while the AHP assigns a score to each conditioning factor based on expert's 
opinion. The MC simulation is considered to be the main tool to quantify the uncertainty 
in groundwater predictions. To reduce the mathematical complexity by incorporating a 
decision-making reasoning process based on expert system judgment, the MIF technique 
has become a useful GWpot modeling approach, that can quickly, accurately, cost-effec-
tively, and consequently monitor GWpot [23–25]. MIFs constitute a GIS-based multi-crite-
ria decision-making (MCDM) technique that enumerates the spatial relationships be-
tween dependent and independent variables according to scores assigned based on major 
and minor GCFs influencing GWpot [24,26]. This method is economical as it relatively sim-
ple and useful for practical applications before starting an expensive field survey [3,9,20]. 
It helps in narrowing down the potential areas for conducting detailed hydrogeological 
and geophysical surveys and ultimately locating the drilling sites [7,27]. 

Hydro-stratigraphy and hydrogeology are essential for characterizing aquifer poten-
tiality and developing hydrological models to predict groundwater resources for future 
availability [28,29]. For geoscientists, finding and locating the source and availability of 
the groundwater in a complex area with multiple hydrogeological features is a vital task. 
Although surface geophysical measurements can provide effective spatial coverage ser-
vices [30,31], these measurements depend on the area extent to be investigated, cost, geo-
logical condition, and the acquired data readability. They contribute information on 
groundwater levels, hydrogeological behaviors, and corresponding lithology, ensuring a 
higher positioning accuracy for groundwater resources [32–34]. With the proper GWpot 

and hydrogeological evaluation, geophysical techniques can be combined to improve ef-
ficiency. Specifically, the electrical resistivity techniques are well established and com-
monly used to solve numerous geological and environmental problems [35,36], which are 
considered as the most effective geophysical methods for the characterization of GWpot 
and hydrologic stratigraphy. These methods are widely used to scrutinize high-resistance 
and low-resistance layers, and are, therefore, valuable tools for studying aquifer vulnera-
bility [32,37]. The quantification of the aquifer potential analyzed by VES-based reflection 
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coefficient, isopach, and resistivity mapping can directly verify the predicted result of the 
MIF model and its performance. The combination of vertical electrical sounding (VES) and 
electrical resistivity tomography (ERT) methods produces a high ratio of 90% compared 
to 82% for the VES method and 85% for the ERT method [33,38]. The spatial distribution 
of aquifer hydrologic characteristics, such as resistivity, reflection coefficient, overburden 
thickness, hydraulic conductivity, and specific productivity, plays an essential role in as-
sessing and managing GWpot [39,40]. Apparent resistivity and reflection coefficients are 
the most critical hydrogeological data needed to manage groundwater resources [41]. 
These parameters also outline variances in the hydrological strata that help to explain aq-
uifer models for GWpot modeling. In addition, geophysical well logging also generates 
useful information about the geological structure and the formations’ lithology [22]. The 
feasibility study of resistivity surveys through boreholes has been used worldwide and is 
supported by general hydrogeological studies. Drilling (machinery type deployed sub-
surface soil/rock conditions) and electrical logs record the true location of the aquifer and 
corresponding lithology. 

The phenomenon of surface water resource depletion and irregular spatial-temporal 
distribution of precipitation have made groundwater a vital natural resource for the reli-
able and economic provision of potable water supply in low- and mid-income regions of 
the Karak watershed, Northern Pakistan. In this context, this study addresses the applica-
bility of comprehensive MCDM-MIFs model with optimized GCFs for GWpot assessment 
and hydro-geophysical investigation for hydrogeological characterization. As the GWpot 
mapping depends on the suitable GCFs and the weights assigned to them, various GCFs, 
such as geology, lineament density, land use/land cover, drainage density, slope, soil type, 
rainfall, elevation, and groundwater level fluctuations, were processed and optimized 
through geospatial analysis in GIS environment. The predicted GWpot results using the MIF 
model were then analyzed by the receiver operating characteristic (ROC) curve and the 
confusion matrix, and Kappa (K) analysis. However, groundwater is an invisible resource 
that is difficult to measure or quantify directly. Therefore, the interpretation of VES and 
ERT data was employed to predict hydrogeological properties, aquifer hydraulic charac-
teristics and GWpot zones for future exploitation and installing tube wells for its utilization. 
Moreover, our methodology not only improves the reliability of the integrated geospatial 
and geoelectrical modeling and bridges the gap of GWpot evaluation and hydrogeological 
characterization in the Karak watershed, but also provides an optional solution of ground-
water assessment in other similar areas worldwide.  

2. Study Area 
2.1. Physical Geographical Background 

The study area is located at geodetic coordinates between the latitudes of 32°46’ and 
33°22’ N and between the longitudes of 70°43’ and 71°33’ E, covering an area of approxi-
mately 2372 km2 (Figure 1b). A 123 km road from Peshawar on the Indus Highway leads 
to Karachi and is easily accessible from various parts of the country via mettled roads 
(Figure 1a). Geographically, the Karak watershed is located in the southern part of the 
Kohat Plateau of the upper Indus basin Pakistan. The Kohat Plateau itself lies between 
70°–74°E and 32°–34°N, covering an area of approximately 10,000 km2. Most of the re-
gion's climate is semi-arid, with two major seasons, i.e., the rainy season and the dry sea-
son. Precipitation is the primary source of groundwater replenishment where the average 
precipitation is 450 mm/year, and the minimum and maximum average temperatures in 
the Karak (at an altitude of 706 m) are 10.3 °C and 43.5 °C, respectively, varying by alti-
tude. The harvest depends on the amount of precipitation or pipeline well supply. Annual 
precipitation in the northeast ranges from 500 to 750 mm. In the study area, rainfall from 
June to November is 68% and is 32% from December to May. During the short rainy sea-
son, rainfall is scarce, unstable, and concentrated, and it is relatively or absolutely dry for 
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the rest of the time. High temperature and rainfall intensity cause large amounts of pre-
cipitation loss due to evaporation and runoff, respectively [42]. The highest elevation area 
of the Karak watershed is in the eastern Surghar Shinghar ranges (Figure 1b), where ele-
vations typically exceed 1415 m above sea level. The lowest elevation area is associated 
with the Bannu boundary, where the river level is below 305 m. 

 
Figure 1. (a) Generalized physical geographical features of the Potwar region; and (b) Location map of the Karak watershed with 
the surveyed boreholes and vertical electrical sounding (VES) and electrical resistivity tomography (ERT) measurements. 

2.2. Geological Background 
A regional geological map of the study area was prepared to plot major geological 

structures and lithological units (Figure 2). The Karak watershed is part of a large inter-
montane basin where sedimentation has taken place from weathering and erosion of the 
surrounding Bannu mountain belts [43,44]. The Bannu basin is located in a depression 
behind the Trans-Indus current uplift boundary, which leads to the formation of the Bhit-
tani, Khisor/Marwat, and Shinghar mountains. The basin is formed by the uplift boundary 
from the Kohat mountain range to the Bhittanni and Marwat/Khisor mountain ranges 
[43], as shown in Figure 2. In the Potwar Plateau and the adjacent Kohat Plateau, the ex-
posed sedimentary formations are Eocene limestone, evaporite, and red beds [45]. Sub-
surface deposits of the area widely vary from very coarse sediments (such as gravel and 
boulders) to very fine sediments (such as silt and clay). There are three types of sediments 
in this region, including alluvial fans, floodplains, and basin-filled sediments [46,47]. An 
alluvial fan is composed of various proportions of boulders, gravel, sand, silt, and clay. 
The sediments in the floodplain are mainly clay and silt, with minor amount of sand. 
Sandy sediments were primarily formed in the Marwat range, mainly due to erosion [48]. 
The ages of the exposed strata in the study area range from the Precambrian to the Qua-
ternary. The lithological distributions of the Karak watershed are illustrated in Table 1. 

Table 1. Lithological characteristics of the Karak watershed. 

Product Formation Names Lithology Characteristics 
(C Fm) Chinji formation Sandstones and shales (abundant quartz with subordinate feldspars) 

(DS) Darzinda shale Dark-brown to gray claystone and subordinate fossiliferous marl beds 
(K Fm) Kamlial formation Mainly composed of sandstone (subordinate feldspars, lithic grains, micas) 

(J/T) Jurassic or Triassic rocks Sandstone, siltstone, shale and dolomite 
DP Fm Dhok Pathan formation Equal amount of sandstone and clay 
(K Fm) Kohat formation Mainly composed of limestone and divided into three members 
(N Fm) Nagri formation Primary sandstone and minor number of clays 

(Q) Quaternary alluvium Mainly composed of sand, gravel, silt and clay 
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Figure 2. Regional geology map of the study area illustrates main structural and lithological units. 

2.3. Hydrological Background 
In the study area, the estimated thickness of semi-confined aquifers ranges from 10 

to 30 m. The groundwater quality in the northeastern part of the northwest catchment is 
inferior [42]. This situation occurs due to the salt rock in the northern mountainous region, 
which is dissolved by runoff water and polluted groundwater due to deep infiltration. 
Under diving conditions, groundwater flows through weathered layers and fault zones. 
The alluvial filling is very uneven and contains high level of silt and clay. Locally, sand 
and gravel beds were encountered in boreholes. The flow rate through the open wells is 
calculated to be 0.035 mm3/year. The alluvial aquifer's average annual recharge is approx-
imately equal to the average annual discharge, which is 2.7 mm3/year. The groundwater 
level is between 29.03 and 238.66 m. This indicates that a fuzzy groundwater boundary 
exists corresponding to a surface water boundary [49]. A small dam (Chambia dam) was 
constructed to maintain the groundwater level in the Karak watershed. The soil texture of 
the study area is predominantly medium clay, pure sand, cultivable soil and crops. 

3. GCF Analysis and Optimization 
The evaluation of groundwater condition factors (GCFs) is essential to effectively de-

termine an accurate groundwater potential (GWpot) index [50]. GCFs should be considered 
in terms of regional topographical, geological, hydrological, and land use/land cover char-
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acteristics influencing the GWpot [15]. Therefore, the identification of the GWpot spatial dis-
tribution was performed by multi-criteria decision-making (MCDM) analysis of nine fac-
tors, i.e., drainage density, geology, lineament density, slope, soil type, rainfall, elevation, 
land use/land cover, and groundwater level fluctuations. These GCFs were extracted in-
dependently from appropriate remote sensing, geological, and conventional map datasets 
(Table 2).  

Table 2. GCFs used for mapping groundwater potential of the Karak watershed. 

GCFs Data sources Format Product 
Drainage density Digital elevation model (DEM) (ASTER 30 m) Digital (Dd) 

Slope Digital elevation model (DEM) (30 m spatial resolution) Digital (SL) 

Elevation 
Shuttle Radar Topography Mission (SRTM) data from United States Geological Sur-

vey (USGS), resolution: 30 m 
Digital (EL) 

Rainfall Annual rainfall data from Pakistan Meteorological Department (PMD) numbers (RF) 
Land use/cover Forest Management Center Peshawar (FCMP), KPK, Pakistan Digital (LULC) 

Geology 
Geological map from National Centre of Excellence in Geology (NCEG), University 

of Peshawar 
Digital (GEO) 

Lineament density Landsat 8 OLI imagery and Shuttle Radar Topography Mission (SRTM) Digital (LD) 

Soil type 
GW fluctuation 

Directorate General Soil and Water Conservation (DGSC), Khyber Pakhtunkhwa 
(KPK), Pakistan 

Pre-monsoon and post-monsoon groundwater table data (onsite survey) 

Digital 
Points 

(ST) 
(GLF) 

 
The drainage density (Dd) is a measure of the total length of all streams per unit area, 

regardless of the stream networks [51]. The hydrology toolkit in ArcGIS 10.4 was used to 
extract stream networks from a digital elevation model (DEM). Accordingly, Dd was cal-
culated as the stream's total length divided by the total drainage using Equation (1) [14]. 
Subsequently, the drainage frequency was classified into five categories using a natural 
break classification scheme [16]. High drainage frequency is associated with high perme-
able lithology and accordingly high GWpot. The groundwater favorability is indirectly re-
lated to Dd, which is related to surface runoff and permeability [52]. DD = 𝐷 (km)𝐴(km) (km ) (1) 

where DD represents drainage density, Dl is the stream’s length, and A is the watershed 
area (km2). 

Lineaments are surface manifestations of linear or curvilinear features, such as joints, 
straight streams, and regional vegetation placement, reflecting potential topographical or 
geological structure [15]. The seven bands of the Landsat 8 image were stacked using 
ENVI 4.8 (Harris Geospatial, Broomfield, CO, USA), and principal component analysis 
(PCA) was performed on the stacked image in QGIS (Open Source Geospatial Foundation, 
Bern and Chur, Switzerland). The thematic layer for Ld can be defined as the total length 
of all recorded lineaments divided by the catchment area under consideration, as shown 
in Equation (2) [53]. The higher the Ld, the higher the favorability of GWpot. 

LD = 𝐿  (km)𝐴 (sq. km) (km ) (2) 

where LD represent the lineament density, Li is the lineament’s length in km, and A is the 
grid area in square kilometer. 

Data from 17 metrological stations were processed using simple arithmetic mean, 
isometric, and Thiessen polygon interpolation methods to obtain sufficient uniform pre-
cipitation in the catchment area. After these three interpolation methods were used for 
comparison, isometric interpolation (Equation (3)) was considered the best technical in-
terpolation method. The flat and gentle areas, with less runoff, are more favorable for 
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GWpot than steep slopes [54]. In addition to rainfall quantity, other precipitation charac-
teristics (such as duration and intensity) are also important. For example, a 20 mm rainfall 
in a long period may have a more significant impact on groundwater recharge than a 50 
mm rainfall in a short period. P = ∑ 𝑝𝑁  (3) 

where P is the average precipitation depth, with p1, p2, p3 up to pn being the rainfall rec-
ords of measurement stations 1, 2, 3, up to n, respectively. 

The slope is an important factor that directly controls the infiltration of surface water. 
A 30-m resolution DEM was processed to generate a slope map in the ArcGIS 10.4 spatial 
analyst toolkit. The slope gradient was reclassified into five classes using the quantile clas-
sification scheme presented by [18]. A higher slope is more conducive to runoff but has a 
smaller impact on groundwater recharge. Elevation or altitude can have an indirectly in-
verse effect on GWpot, which relates primarily to the occurrence of rainfall and the result-
ing recharging. However, high altitudes favor more recharge and ensure groundwater 
availability in low land areas in a watershed. Mountainous regions are often favorable for 
the recharge of deep-seated confined aquifers situated at low land areas [55]. 

Stratum lithology influences the porosity and permeability of aquifers and directly 
affects the GWpot. The porosity of rocks, alluvial/sedimentary layers, sand, silt, and clay 
beds determine water infiltration and percolation [56]. Therefore, the lithology factor was 
also considered concerning groundwater characteristics. The lithology map was extracted, 
digitized, and reclassified from the geological map of Northern Pakistan. Accordingly, 
different weights were assigned to rock units depending on the infiltration capacity and 
GWpot as per multiple influence factor criterion. 

Vegetation cover areas, such as forests and agriculture traps, retain water by the 
roots of plants. In contrast, the built-up and rocky land cover decreases groundwater re-
charge by increasing the runoff during rainfall [24]. Therefore, to conduct GWpot studies, 
it is necessary to investigate the land use land cover (LU/LC) characteristics of the study 
area. Therefore, the LU/LC map from the Forest Management Center Peshawar (FCMP) 
was reclassified with different score values assigned to several subclasses. 

The water retention capacity of an area depends on the type of soil and its permea-
bility. Permeability is directly related to the soil effective porosity which is greatly influ-
enced by the particle shape, size, adsorbed water, porosity, saturation, and the presence 
of impurities in the soil [57]. The soil type map was primarily derived from the Directorate 
General Soil and Water Conservation (DGSC), KPK, and updated through onsite inspec-
tions. Soil mainly influences infiltration and percolation processes that eventually affect 
the groundwater recharge and then the GWpot of a given area. 

4. Methods 
In this study, the application of remote sensing (RS) and geographic information sys-

tem (GIS)-based spatial data and geoelectric data assisted hydrogeological assessment to 
distinguish the sediments and rock units of groundwater significance. The flowchart de-
veloped in this study is shown in Figure 3, which contains four steps: 
1. Using RS and GIS toolkits, the database is ready to be input data for the MIF model, 

after the GCF’ analysis and optimization described in Section 3. 
2. Once the GCFs are to be optimized, the weights and ranks of each GCFs are assigned 

for the multi-criteria decision-making (MCDM) MIF model, and the 
weighted/ranked GCFs are integrated through the weighted overlay analysis 
(WOA), based on the principle of superposition in a GIS environment to identify re-
gional GWpot zones of the Karak watershed. 

3. The hydrogeological characteristics of the aquifers are evaluated by the interpreta-
tion of electrical resistivity tomography (ERT) and vertical electrical sounding (VES) 
data. Furthermore, the aquifer potential is further quantified through quantitative 
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analysis of the resistivity mapping, overburden thickness mapping, and reflection 
coefficient mapping. 

4. To evaluate the accuracy of GWpot mapping, the performance of the MIF model is 
assessed based on groundwater level (GWL) data through a confusion matrix, Kappa 
(K) analysis, and a Receiver Operating Characteristics (ROC) curve. In addition, the 
quantitative aquifer potential interpreted by VES data indirectly verifies the MIF 
model’s predictive performance. Meanwhile, the hydrologic stratigraphic prediction 
derived from ERT and VES numerical models is correlated with known boreholes 
lithological information. 

 
Figure 3. Framework to delineate groundwater potential and to identify hydrogeological characteristics. 
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4.1. Multi-Influence Factors (MIF) Model 
4.1.1. Assigning of Weights and Ranks 

The GWpot index is influenced by several hydrological, geological, topographical, en-
vironmental, and climatic variables [2]. By means of GCFs analysis and optimization, ge-
ology (GEO), lineament density (LD), drainage density (DD), slope (SL), soil type (ST), rainfall 
(RF), elevation (EL), land use/land cover (LULC), and groundwater level fluctuations (GLF) 
were identified as the input data of the MIF model. The MIF model involves drawing a 
graph with correlations between conditioning factors and assigning weights based on the 
strength of the interrelationships (Figure 4) [2]. In Figure 4, a continuous arrow shows a 
major influence, and a dashed arrow indicates a minor influence on the other GCFs. The 
weights and ranks were assigned to each GCFs and different classes based on their relative 
contribution to GWpot using the heuristic approaches/knowledge-driven method 
[11,58,59]. Weights of 1.0 and 0.5 were allocated to each major and minor effective variable, 
respectively. The combined weights of both major (CFh) and minor (CFl) were considered 
for calculating the comparative ranks (Table 3). Since the estimated weight of each GCF is 
equally distributed and applied to each GCF’ category, the final GWpot map is a weighted 
average. The estimated weight for each conditioning factor was obtained as a percentage 
using Equation (4). Score = (𝐶𝐹 + 𝐶𝐹 )∑(𝐶𝐹 + 𝐶𝐹 ) × 100  (4) 

where, CFh is the major weight of the condition factor, and CFl is the minor weight. 

Table 3. Effect of GCFs, relative weight and score for each GCFs. 

Groundwater Condi-
tioning Factors (GCFs) 

Major Ef-
fect (GCFh) 

Minor Ef-
fect (GCFl) 

Relative Weights 
(GCFe + GCFm) 

Proposed Score 
of GCFs 

Rainfall 1 0.5 1.5 06 
LU&LC 1 0.5 + 0.5 2 08 
Geology 1 + 1 + 1 0.5 + 0.5 5 24 

Lineament density 1+1 0.5 2.5 10 
Drainage density 1+1 0.5 2.5 10 

Slope 1 0.5+0.5+0.5 2.5 10 
Soil type 1 0.5 + 0.5 2 08 
Elevation 1+1 0 2 08 

GWL fluctuation 1+1 0.5+0.5 3 16 
Total   Σ20.5 100 

 
Figure 4. Interrelationship between the GCFs concerning the GWpot index. 
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4.1.2. Weighted Overlay Analysis (WOA) 
The GWpot index quality is influenced by the quality and quantity of the input data 

and the predictive models used [2]. Weighted overlay analysis [60,61] in ArcGIS 10.4 (En-
vironmental System Research Institute, Redlands, California, United States) was used to 
outline the spatial distribution of the groundwater potential index based on nine GCFs’ 
superimposition and their corresponding percentage effects on the groundwater potential. 
This work was done by multiplying each factor’s category cell value by the factor’s weight 
and summing the resulting cell values to generate a GWpot map, as summarized in Equa-
tion (5). A GWpot index is a calculated dimensionless number considering the weight as-
signed for each GCF and its categories [3]. After the WOA analysis had been completed, 
the natural break method was used to categorized GWpot into four levels of potentiality 
(i.e., low, medium, high, and very high).                                  GW = W × R= DD DD + LD LD + RF RF + SL SL  + EL EL + GEO GEO + LULC LULC  + ST 𝑆𝑇 + GLF GLF  

(5) 

where GWpotz is the groundwater potential index, Wi is the weight of each condition factor, 
Ri is the rank of each GCF’s category, DD is the drainage density, LD is the lineament 
density, RF is the rainfall, SL is the slope variation, EL is the elevation, GEO is the lithology, 
LULC is land-use/land-cover, ST is the slope type, and GLF is the groundwater level fluc-
tuation. The subscripts c and w indicate a category of a GCF’s thematic layer and its cor-
responding percent influence on GWpot, respectively. This overlay analysis was done by 
multiplying the rank of each GCF’s category (each individual category has a rank) with 
the weight of each condition factor (each GCF has a unique weight) to obtain the GWpot 
index at the corresponding position of GCFs. 

4.2. Accuracy Assessment of the MIF Model 
The pre-monsoon and post-monsoon groundwater table (GWT) data from 32 ob-

served boreholes with global positioning system (GPS) positions were collected for vali-
dation purposes. The area under the curve (AUC) based receiver operating characteristic 
(ROC) curve, the confusion matrix, and Kappa (K) analysis were used to test the perfor-
mance of the MIF model. The ROC is a mathematical technique developed to explain the 
efficiency of probabilistic deterministic detection and prediction systems [62,63]. In this 
study, ROC was used to assess the spatial consistency between real events and to predict 
the model probability. In the validation phase, pre-monsoon and post-monsoon GWT 
data of 32 observed boreholes/tube wells were compared with the GWpot result obtained 
by the MIF model. The ROC curve provides a quantitative evaluation that can determine 
the uncertainty of modeling and evaluate the spatial model effectiveness. The confusion 
matrix and Kappa (K) analysis [26] were also used for accuracy evaluation by correlating 
the GWpot map with the observed GWT data. The overall accuracy was calculated using 
the following formula [64]. OA = ∑ 𝐶∑ 𝑂𝑊𝐿 (6) 

where, OA is the overall accuracy, 𝐶  represent the number of correct observation 
boreholes/well’s locations and OWL is the number of observation boreholes/well’s loca-
tions.  

The Kappa (K) analysis is a multivariate approach for MIF accuracy evaluation. It 
was calculated by the following formula [65]. K = ∑ CV % − CAOV%∑ TC − CAOV%  (7) 
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where, CV % is the percentage of the correct values, CAOV% is the percentage of the cor-
rect agreement to observed values, TC is the total number of class. 

4.3. Interpretation of Geoelectrical Data 
The geophysical techniques have typically been used to assess hydrogeological struc-

tures, hydro-stratigraphic characteristics and the spatial distribution of aquifers [34]. Fun-
damentally, an electrical current is injected into the ground by two current electrodes and 
measures the potential difference between the other two pairs of electrodes. In this study, 
two-dimensional electrical resistivity tomography (ERT) based on dipole–dipole configura-
tion and vertical electrical sounding (VES) based on Schlumberger configuration measure-
ments were performed using essential field equipment (Terameter SAS 100 and SAS 1000 
Lund imaging systems and their accessories, ABEM, Sundbyberg, Sweden) (Figure 5). 

 
Figure 5. Schematic diagram of (a) the Schlumberger array configuration for vertical electrical 
sounding (VES), and (b) dipole–dipole array configuration for electrical resistivity tomography 
(ERT) techniques. 

4.3.1. Electrical Resistivity Tomography (ERT) 
The ERT technique was effectively applied in the surveyed area to provide infor-

mation about subsurface hydrogeological characteristics to fully understand the GWpot 
and hydro-stratigraphy through vertical and horizontal two-dimensional sections capable 
of reaching lengths and depths up to 176 m and 30.2 m, respectively. A multi-electrode 
2D device (Terameter SAS 100) along a dipole–dipole configuration including electrodes 
connected to a transmitter/receiver system via a multi-core cable was used to acquire data 
(Figure 5b). The dipole–dipole configuration exhibits an excellent vertical and horizontal 
resolution of subsurface geological features, which has great horizontal coverage and pen-
etration depth [66]. The apparent resistivity was calculated for every electrode quadrupole 
by Equation (8) [34]. 𝜌 = 𝐾 𝑉𝐼  (8) 

where V is the voltage, I is the current, and K is a geometric factor. 
The dipole–dipole configuration data were concatenated to obtain combined appar-

ent resistivity pseudo-sections. The degree of consistency between resistivity and actual 
subsurface resistivity distribution depends on the combination of acquisition parameters 
and inversion strategy. The smoothness constrained least-squares technique in the 
RES2DINV (Landviser, League, Texas, United States) program was used to process the 
apparent resistivity data [67,68]. This process automatically creates 2D models in a rectan-
gular block by selecting the optimal data inversion parameters (e.g., the damping coeffi-
cient, and the vertical and horizontal flatness filter ratio, convergence limit, number of 
iterations). We used the finite difference method to calculate the module's apparent resis-
tivity and compared it to the measured data. Iteratively, we adjusted the resistivity of the 
model block until the calculated apparent resistivity value of the model matched the ac-
tual measurement. Finally, the program produces a pseudo section (a qualitative method 
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for measuring or calculating resistivity changes) and an inverse model section (slice depth 
and resistivity tomography image) [68]. As a follow-up to the observation results of ERT 
lines L1, L2, L3, L4, L5, and L6 were acquired in the E-W, S-W, N-E, E-W, E-W, and E-W 
directions, respectively. In this study, the ERT technique estimated the spatial subsurface 
resistivity caused by the lateral and longitudinal inhomogeneities of petrophysical prop-
erties. The distribution of petrophysical properties indicated by the measured resistivity 
fluctuations were generated to guide GWpot and hydro-stratigraphy in the study area. 
4.3.2. Vertical Electrical Sounding (VES) 

The VES method was used in the surveyed area to evaluate the hydro-stratigraphic 
structure of the sedimental layer (i.e., the structure of the subsurface sediments), aquifer 
characteristics (e.g., thickness, resistivity (ρ), overburden thickness, and reflection coeffi-
cient), and GWpot. The VES technique is one of the most commonly used conventional resis-
tivity methods to determine the vertical variation of subsurface resistivity parameters [34]. 
In the surveyed area, 26 VES measurement stations were operated at different positions us-
ing the Schlumberger electrode configuration with half-current electrode spacing (AB / 2) 
ranging from 1.5 to 1000 m in each successive electrode probe to determine the depth to the 
sediments and apparent resistivity (ρ ). Meanwhile, using the Schlumberger array (Figure 
5a), the adequate penetration depth is typically 20–40% of the external electrode spacing 
(AB), depending on the subsurface resistivity structure [69]. In this study, we first plotted 
all resistivity data collected to confirm qualitive and qualitative characteristics. The statis-
tical apparent resistivity (ρ ) values of the Schlumberger array for each sounding were cal-
culated using Equation (9). 

ρ = π AB2 − MN2MN Ra (9) 

where, AB represent the distance between two current electrodes, MN is the distance be-
tween the potential electrode, and Ra is the apparent electrical resistance. 

The preliminary interpretation was performed using Partial Curve Matching (PCM) 
and auxiliary tools to summarize VES values, i.e., the relationship between the apparent 
resistivity and corresponding half current electrode spacing (AB/2) on the double logarith-
mic graph. The results obtained from the exercises were used as an input model for com-
puter-assisted iterations using the WinResist™ (Geotomo Software, Gelugor, Penang, Ma-
laysia) program. The preliminary interpretation of VES data was quantitative, determining 
the thickness (h) and resistivity (ρ) of different layers, and qualitative inferring lithology was 
based on the resistivity and reflection coefficient (RC) values of each sounding station. For 
better depiction, six VES measurements were performed in the two boreholes’ immediate 
vicinity (BH06/BH09) and correlated with known lithological information. The Schlum-
berger configuration was characterized by tracking and tracing each VES subsurface layer, 
the vertical changes, and the geoelectric profile with a known borehole/well lithology to 
horizontally correlate the measured VES to perceive a unified layer model applicable to 
all field curves. Moreover, geological information of known borehole/wells can improve 
interpretations that lead to lithological results from VES data, while software analysis can 
only provide resistivity distinction by depth. The statistical apparent resistivity values of 
each VES measurements were outlined to create an iso-resistivity map. The RC values for 
the surveyed area were calculated using the following expression [70]. RC = (𝜌𝑛 − 𝜌(𝑛 − 1)(𝜌𝑛 + 𝜌(𝑛 − 1)  (10) 

where RC represents the reflection coefficient, 𝜌𝑛 is the resistivity of the n-th layer, and 𝜌(𝑛 − 1) is the resistivity overlying the n-th layer. 
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4.4. Geophysical Well Logging  
Hydrogeological characterization of aquifers using geophysical well/borehole logs 

has been emphasized in many studies [5,71]. Effective groundwater exploration and 
well/borehole lithology evaluation require a complete understanding of aquifer hydroge-
ological characteristics and well/borehole design. In the study area, the drilling sites were 
selected based on the experience of the MIF model to determine prerequisites for the suc-
cessful construction of the tube well and evaluate the availability of groundwater supply 
that can meet the demand for domestic and irrigation water. The GeoLog International 
(GLI) groundwater and engineering services with reference to Ms. Manahil Engineering 
& Cons conducted St. Rotary (SR) drilling and geophysical logging in Marwatan Banda, 
Karak. The borehole's logging survey was conducted using multi-parameter methods, i.e., 
normal resistivity logs (NRLs) (short and long configuration) and spontaneous potential 
logs (SPLs). The Geo logger 3030/Mark-2 3433 (GLI, Peshawar, Pakistan) was used for 
petrophysical property measurements. Through these significant hydrogeological prop-
erties, e.g., the formations’ lithology, depth, thickness, groundwater water table level, and 
groundwater quality in total dissolved solids (TDS) were evaluated. 

5. Results 
5.1. Evaluation of GCFs 

The MIF model is an MCDM technique widely used for environmental management 
and has proven to effectively explain the GWpot influential factors. It can effectively deter-
mine GCF weights. Table 4 illustrates the weights and qualitative ranks assigned to each 
influencing factor described below. 

Drainage density (Dd) is a measure of the total length of all streams per unit area, 
regardless of the stream networks [51]. Subsequently, the drainage frequency was classi-
fied into five categories, i.e., very low (1.08–1.61 km/km2), low (1.61–1.86 km/km2), mod-
erate (1.86–2.11 km/km2), high (2.11–2.38 km/km2), and very high (2.38–3.08 km/km2) (Fig-
ure 6a), according to a natural break classification scheme. The groundwater favorability 
is indirectly related to drainage density, as are surface runoff and permeability. Therefore, 
the highest score was assigned to the 1.08–1.61 km/km2 category, indicating high infiltra-
tion and low runoff, and the lowest score was assigned to the 2.38–3.08 km/km2 category 
(Table 4). 

Lineament density (Ld) of the Karak watershed indirectly indicates the GWpot, as the 
presence of lineaments usually means a porous zone. The lineaments are spatial distrib-
uted in the study area aligned in the directions of E-SW, NNE-SSW, NW-SE, and E-W, 
and their density was classified into five frequency categories (Figure 6b). The higher the 
Ld, the higher the probability of GWpot. Therefore, the highest rank was assigned to the 
1.46–1.78 km/km2 category and the lowest was assigned to the 0.17–0.45 km/km2 category. 

Rainfall (RF) interpolated data were reclassified into five categories, i.e., very low (13–
281 mm), low (282–577 mm), moderate (578–604 mm), high (605–629 mm), and very high 
(630–663 mm) (Figure 6c). In addition to the quantity of RF, other precipitation character-
istics, such as duration and intensity, are also important. For example, a long period of 20 
mm RF has a more significant impact on groundwater recharge than a short period of 50 
mm RF. 
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Table 4. Classification of weight and ranks of GCFs. 

Groundwater Condi-
tioning Factor (GCF) 

Categories within the 
GCF 

Qualitative Rank Ranks Weight of GCF 
 

Rainfall 

629–664 Very high 06 

06 
604–628 High 04 
577–603 Moderate 03 
281–576 Low 02 
13–280 Very low  01 

Land use/ 
land cover 

Agriculture, Rivers/stream Very high 08 

08 

Barren land High 06 
Dam/pond Moderate 05 
Shrub land Low 04 

Built-up Low–Very low 03 
Forest Very low 02 

Range land Very low 01 

Geology 

QA Very high 24 

24 
K Fm, N Fm High 18 

DP Fm, K Fm Moderate 12 
J/T rocks Low 08 
C Fm, DS Very low 04 

Lineament density  
(km/km2) 

1.47–1.78 Very high 10 

10 
1.15–1.46 High 08 
0.82–1.14 Moderate 06 
0.50–0.81 Low 04 
0.07–0.49 Very low  02 

Drainage density 
(km/km2) 

1.08–1.61 Very high 10 

10 
1.62–1.86 High 08 
1.87–2.11 Moderate 06 
2.12–2.38 Low 04 
2.39–3.08 Very high  02 

Slope  
(degree) 

0.0–5.78 Flat 10 

10 
5.79–13.5 Gentle 08 
13.6–23.4 Moderate 06 
23.5–35.3 Steep 04 
35.4–81.7 Very steep 02 

Soil type 
Loamy High 06 

08 Loamy clay Moderate 04 
Mainly loamy Low 02 

Elevation  
(meter) 

1419 High 06 
08 706 Moderate 04 

303 Low 02 

Groundwater level 
fluctuation (meter) 

1.57–5.29 High 14 

16 
5.3–1.08 Moderate 10 

1.09–14.6 Low 06 
14.7–19.3 Very low 02 

 
The slope (SL) map was reclassified into five categories, i.e., flat (0–5.78°), gentle 

(5.78°–13.5°), moderate (13.5°–23.1°), steep (23.1°–35.0°), and very steep (35.0°–81.9°) us-
ing the quantile classification scheme presented in [18]. The flat and gentle areas are more 
suitable for GWpot than steep slopes, as a gentle and flat slope allows for less runoff, and 
a steep slope is more conducive to runoff [54]. The highest rank was assigned to flat area 
(0–5°.780°), and the lowest was assigned to a very steep area (35.0°–81.9°), which has a 
smaller impact on recharge in the study area (Figure 6d). 

The elevation (EL) map in Figure 6e shows three elevation categories, i.e., high (707–
1419 m), moderate (304–706 m), and low (0–303 m).  
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Geology (GEO) characteristics govern the porosity and permeability of the hydrogeo-
logical layer, which in turn influences the formation and distribution of GWpot through 
physio-mechanical properties that control the water transmitting ability of the hydrogeo-
logical layer materials and the rate of groundwater flows. Therefore, the GEO factor was 
also considered concerning groundwater characteristics. The study area consisted of eight 
lithological units of formation types and geological ages. The confirmed lithology out-
crops are the Quaternary alluvium (Q), Dhok Pathan formation (DP Fm), Chinji formation 
(C Fm), Jurassic-Triassic rocks (J/T), Kohat formation (K Fm), Nagri formation (N Fm), 
Kamlial formation (K Fm), and Drazinda shale (DS) (Figure 6f). 

Land use/land cover (LULC) greatly influences groundwater occurrence and exploi-
tation. The major portion of the study area is agriculture (62%; 1345 km2), followed by 
forest area (15%; 576 km2), barren land (12%; 292km2), rangeland (4%; 58.3 km2), shrubland 
(3%; 40.7 km2), built-up (2%; 30 km2), river/stream (1%; 22 km2), and dam/pond (1%; 8 
km2) (Figure 6g). 

Soil type (ST) and its permeability decides the water retention capacity of an area. The 
soil types of the study area include loamy soil, loamy clay, and mainly loamy (Figure 6h). 
The dominant soil type in the study area is loamy soil. The coverage of the other two soil 
types (i.e., loam and mainly loam) are relatively low. According to composition and soil 
water holding capacity, the loam is regarded as the highest grade, and mainly loam is 
regarded as the lowest grade. 

Groundwater level fluctuation (GLF) is of significance in the successful management 
of GWpot. Pre-monsoon and post-monsoon groundwater levels (GWLs) indicate the de-
gree of saturation and the extent of recharge aquifers. In this study, hydrogeological data 
of 32 boreholes/wells over 10 years 2009–2019 (from Pakistan Water and Power Develop-
ment Authority (WAPDA)) was collected through onsite investigation. During the period 
2009–2019, the pre-monsoon and post-monsoon water level varies from 5.9 to 15.4 mbgl 
and from 7.3 to 32.6 mbgl, respectively (Figure 6i). The groundwater fluctuation levels 
were calculated for the period of 2009–2019, with a minimum of 1.57 m and a maximum 
of 19.3 m. In the study area, the aquifer is partially saturated due to the inadequate pre-
cipitation and other influencing factors. In the northern region, slight fluctuations of 
groundwater level (about 6 m) were observed, which may have been due to groundwater 
recharge by surface irrigation. However, groundwater levels fluctuated significantly in 
the southern and central regions, which may have been caused by topographical influence 
and the excessive exploitation of groundwater. 
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Figure 6. GCFs considered in this study: (a) drainage density; (b) lineament density; (c) rainfall; (d) slope; (e) soil type; (f) 
land use land cover; (g) geology/lithology; (h) elevation; (i) groundwater level fluctuations. 
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5.2. Assessment of GWpot 
Using the weighted overlay analysis in the GIS environment, the GWpot zones were 

evaluated by integrating several conditioning factors (i.e., rainfall, slope, geology, soil type, 
drainage density, lineament density, land use/cover, elevation and groundwater fluctua-
tion). Based on natural breaks in the histogram of the GWpot index, the GWpot map was 
categorized into four levels of potentiality, i.e., low, medium, high, and very high (Figure 
7a), with the distribution ranges of 9.7% (72.3 km2), 52.4% (1307.7 km2), 31.3% (913.4 km2), 
and 6.6% (44.8 km2) of the total area, respectively (Figure 7b,c). The spatial distribution of 
the various GWpot zones typically shows a mirror reflection of key factors. High and very 
high GWpot zones confirm their excellent capacities as sedimentary groundwater aquifers. 
The GWpot map demonstrates that the excellent groundwater is concentrated due to the 
distribution of Quaternary alluvial and agricultural land with high infiltration ability. 
Moreover, high drainage densities and low slope gradients can increase groundwater infil-
tration capacity, which may be related to the evaluated high GWpot. The northwestern, 
southeastern, and the central part limited regions typically have a low to medium GWpot, 
accounting for approximately 12.7% of the study area. 

 
 

Figure 7. (a) GWpot zones and groundwater level depths of boreholes/wells; (b) groundwater potentiality in square kilo-
meters and (c) in percentage of the Karak watershed. 

5.3. MIF Model’s Performance 
The ROC curve, the confusion matrix, and Kappa (K) analysis were used to evaluate 

the accuracy of the assessment result and the performance of MIF the model.  
ROC graphs are useful tools for visualizing a classifier’s performance and for deter-

mining the area under the curve (AUC) value to evaluate an algorithm [62]. The ROC 
curves were implemented in the present study as a goodness of fit, and the success rate can 



Water 2021, 13, 1255 18 of 33 
 

 

be distinctly visualized. In this study, the predicted GWpot map was examined and com-
pared with 32 pre-monsoon and post-monsoon groundwater level (GWL) fluctuations to 
evaluate the spatial coincidence between the favorability values (from GWpot) and the actual 
GWL fluctuation events (Figure 8a). The GWL fluctuations range from 1.57 to 19.3 m (Figure 
8b). Since a larger area under the ROC curve indicates that the spatial GWpot mapping is 
more effective, an AUC value of 1 shows a perfect prediction of the model and indicates that 
the highest ranked probabilities coincide with the groundwater fluctuation [63]. The result 
of the ROC chart analysis shows that the AUC value of the presented MIF performance is 
68% (Figure 8c) which is consistent with GWL fluctuation. 

The confusion matrix and Kappa (K) analysis were performed using the 32 actual 
groundwater depths from boreholes/wells. The groundwater depth in the study area is be-
tween 6.7 and 190 m. These 32 depths were divided into four categories, i.e., 6.7–36 m, 36–
80.76 m, 80.76–130 m, and 130–190 m. The groundwater depth data were used to calculate 
classification accuracy by the confusion matrix and Kappa (K) analysis. Overlay analysis 
shows that most of the boreholes/wells with higher groundwater levels are located in areas 
with demarcated higher groundwater potential. The performance evaluation of the MIF 
model shows that the overall accuracy is 68%, and the Kappa coefficient is 0.65 or 65% (Table 
5), which indicates that the estimated potential of groundwater is consistent with the inves-
tigated groundwater depths in the study area.  

 
Figure 8. (a) The pre-monsoon and post-monsoon groundwater level (mbgl) fluctuations; (b) aver-
age groundwater level fluctuation (m) of the Karak watershed; (c) receiver operating characteris-
tics (ROC) curve of the MIF model. 

Table 5. Error matrix of the GWpot zone-based confusion matrix and Kappa (K) analysis. 

S. No GWpot zones Very High High Moderate Low Total CS 1 
1 very high 0 0 0 01 1 1 
2 high 12 04 06 02 24 16 
3 moderate 04 0 01 01 6 4 
4 low 1 0 0 0 1 1 
 Total 17 04 07 04 32 22 

1.CS refer to the correct sample. 

5.4. ERT Interpretation 
In this study, the ERT approach with an optimal compromise between the electrode 

distance and profile length produced a deep characterization of the hydro-stratigraphical 
layers and groundwater potentiality. The smoothness constrained least-squares outputs by 
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the RES2DINV software show an apparent lateral homogeneity with a gradual increase in 
resistivity, with depth caused by lateral and longitudinal inhomogeneities of rock physical 
properties (Figure 9a). Each inversed resistivity section obtained a distribution of petrophys-
ical properties of resistivity variability and possible resistivity anomalies (which may be wa-
ter-bearing zones). The final depth of the inversed sections ranges from 5 to 30.2 m. 

 

Figure 9. (a) Inverse model resistivity section of ERT survey lines (i.e., L1, L2, L3, L4, L5, and L6) containing existing 
borehole lithological information on L3; (b) correlation of acquired ERT hydrologic stratigraphy with (c) The existing 
borehole lithological information; and (d) ERT measurements line alignment in the study area, in which the red dot shows 
the location of the existing borehole, and the yellow dots indicate the proposed locations of wells for groundwater exploi-
tation. 

Generally, the root means square (RMS) error at the end of eight iterations of almost 
every ERT section is less than 8%. The interpretation of ERT sections is based on a standard 
resistivity range of values. The recommended GWpot zones were based on an understanding 
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of the subsurface sediment/ rock lithology of the study area. Meanwhile, the subsurface li-
thology related to the resistivity range was derived from the existing standard resistivity 
chart, which considers other local factors that may cause the resistivity deviation. 

In the study area, the L1, L2, L3, L4, L5, and L6 ERT inversed resistivity values area 
12.8–189 Ωm, 12.8–189 Ωm, 3.62–792 Ωm, 12.8–189 Ωm, 3.62–792 Ωm, and 3.62–792 Ωm, 
respectively (Figure 9a). The inverse resistivity models using dipole–dipole configurations 
on L2, L4, and L6 ultimately revealed the vertical and lateral distribution of subsurface re-
sistivity. According to the predicated GWpot on diffusion and array configuration, the 
groundwater prospect resistivity values are 12.8–48.3 Ωm, 14–76.4 Ωm, and 3.62–16.3 Ωm 
on L2, L4, and L6, respectively. Variation of resistivity characteristics within the primary 
lithological unit ultimately indicates the GWpot prospect adjacent to clayey sand and silicate 
aquifers (sandstone) (Figure 9a). This result is consistent with the Karak watershed regional 
geology, which is mainly composed of interlayers of fine sand, sandstone, clay, and gravel. 
Since the GWpot is structurally controlled, it also needs to locate potential fracture zones, e.g., 
fractured sandstone, which are considered good aquifer sources. The ERT techniques 
should be applied with a proper understanding of the hydrogeological background. There-
fore, five lithological sequences (i.e., topsoil with coarse gravel and sand, silty sand mixed 
lithology, clayey sand/fine sand, fine sand/gravel, and clayey basement) of the drilled bore-
hole on L3 at final depths of 45 m were normalized with the ERT model by mean of quanti-
tative quota (Figure 9b). The ERT-predicted hydro-stratigraphy and borehole lithological 
log signature (Figure 9c) performance analysis shows suitable matches. The marked yellow 
points on the L3, L4, and L6 sections are considered future prospects for groundwater ex-
ploitation (Figure 9d). These high groundwater potential zones will play a vital role in the 
future expansion of drinking water and irrigation development in the surveyed area. 

5.5. VES Interpretation 
5.5.1. Hydrogeological Characteristics 

The VES technique has been proven efficient in evaluating hydrogeology, aquifer 
properties, and aquifer potential. In this study, aquifer characteristics (such as thickness, 
lithology, and resistivity, reflection coefficient, and isopach) were determined, which is 
an essential factor in hydro-stratigraphic inheritance and GWpot assessment. The apparent 
resistivity data obtained from the VES positions were plotted against half of the current 
electrode spacing (AB/2), and a curve matching technique was used to interpret resistivity 
sounding curves (Figure 10). This technique involves matching small segments of the field 
curve against the trendline curve to determine the thickness of a particular layer in half-
space and the apparent resistivity. As far as the evaluation of the statistical apparent re-
sistivity is concerned, the qualitative interpretation results indicating that the curves, strat-
ification properties, and RMS errors are in complete agreement (Figure 11) (Appendix A). 
Depending on the shape of the VES curve, the resistivity distributions of various hydro-
stratigraphy can be classified into H, K, A, and Q types, which can be mutually combined 
to generate HA, HK, KH, and QH types [72]. In this study, the type of curves observed 
include 3-layer H-type (26%), 4-layer HA-type (9%) and KH (52%), and 5-layer HKH-type 
(13%). Qualitative hydrological inferences can usually be based on the type of curve. 

The geoelectrical interpretation based on curve matching reveals hydrologic resistance 
and depth variation (Figure 10). According to the corresponding resistivity values (ρ , ρ , ρ , ρ , and ρ ) and thicknesses (h1, h2, h3, h4, and h5), the geoelectric units indicate four to 
six sequences of lithologies, i.e., topsoil (coarse gravel and sand), alluvial layer, silty sand, 
clayey sand, fine sand and gravels, and clayey sand with saline water. Table 6 summarizes 
the VES interpretation, including the number of hydrologic layers and their correspond-
ing resistivity values and the inferred lithology information. Appendix A presents the de-
tailed explanation of geoelectrical stratification for all the VES surveys carried out in the 
Karak watershed and the resistivity variation. 
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Table 6. Average inferred hydro-stratigraphy corresponding to resistivity in the study area. The detailed VES interpreta-
tion results are shown in Appendix A. 

Inferred Hydro-Stratigraphic  
Lithology Inferred Resistivity (𝛒) Variation Reflection Coefficient 

Variation Thickness Variation (m) 

Topsoil 954–1109 0.6723–0.7889 3.3–4.5 
Coarse gravel and sand 748–923.1 0.7313–0.7626 1.3–4.7 

Silty sand mixed lithology 323–673 0.7841–0.8663 4.6–8.2 
Clayey sand 685–1098.3 0.8911–0.9523 6.8–28.4 

Fine sand and gravels 34–98.8 0.9643–0.9752 12.6–22.8 
Clayey sand with saline water 26–84.2 0.5885–0.7434 10.8–32.5 
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Figure 10. VES data interpretation result-based partial curve matching (PCM) along 26 VES stations: (a) hydrologic layers 
depth variation; (b) hydrologic layers resistivity variation. 
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Figure 11. Root mean square (RMS) error of 26 VES stations (left) and the reflection coefficient variation of VES stations 
(right) in the study area. 

5.5.2. VES Correlation with Boreholes 
For better delineation of the hydro-stratigraphy, six VES results adjacent to two bore-

holes (BH06/BH09) were correlated with known lithological information. Performance 
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analysis shows that VES1 yields five lithological units (coarse gravel/sand, silty sand 
mixed lithology, clayey sand, and fine sand/gravel) (Figure 12). The zone of interest with 
water saturation lies at a depth of 29.8 m. VES3 penetrates up to 48.1 m where water is 
predominantly saline, with freshwater saturation having a lithology of coarse 
gravel/sand, silty sand mixed lithology, silty sand/gravels, fine sand/gravel, and clayey 
sand/saline water. VES2 yields three lithological units, where the zone of interest lies at a 
shallow depth. Furthermore, VES9, VES17, and VES8 correlated with borehole BH09 show 
suitable matches, where salinity and freshwater saturation are encountered at a shallow 
depth (25 to 35 m) due to capillary action. However, the VES8 upper portion is mainly 
composed of unconsolidated alluvium, and the freshwater zone is at a shallow depth due 
to elevation. The main lithological characteristics of the topsoil at each VES station are 
predominantly alluvium. The VES and borehole log signature performance analysis show 
suitable matches between them (Figure 12). 

 
Figure 12. Correlation of VES data interpretation results with borehole lithological information. 

5.5.3. GWpot Based on VES 
Aiming at monitoring aquifer potential, a preliminary conceptualization of geoelec-

trical properties governing the reflection coefficient, the aquifer’s overburden thickness, 
and resistivity is needed during VES measurements. These basic and essential interpreta-
tive criteria are described below. 

The reflection coefficient (RC) is an essential geoelectric factor, as it helps to identify 
the permeable hydrologic layers carrying the GWpot. The RC values of the VES positions 
in the surveyed area were calculated using Loke’s method [72]. Figure 13a shows the 
changes in RC values detected by each VES station. Differences in subsurface resistivity 
and lithology cause the RC fluctuations. The calculated RC values were contoured in 
Surfer 15 software, and an RC map shows a value range of 0.50–0.95 (Figure 14a). Olayinka 
[73] observed that the subsurface topography usually shows a good aquifer when the 
overburden is relatively thick and/or the reflection coefficient is low (<0.8). RC mapping 
has been found to be useful in investigating the hydrogeological aquifer because it reveals 
whether a permeable aquifer is filled with water. Therefore, an anisotropy coefficient for 
this parameter was considered in this study. 

An overburden thickness/isopach map was plotted and contoured according to the 
interpreted depths to the sedimentary rock (Figure 14b). The isopach map illustrates the 
thickness variation in a hydro-stratigraphic layer, a tabular unit, or a stratum [29]. Isopach 
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mapping is essential in the hydrogeological investigation because it shows the number of 
hydrogeologic layers above the aquifer, and where groundwater can be observed in areas 
considering the overburden thickness. The overburden thickness variation of the aquifer 
along VES can be seen in Figure 13b. The overburden thickness in the surveyed area varies 
between 6.3 and 65.6 m. The isopach map shows that the overburden thickness in the 
northern, eastern, and southern parts of the surveyed area ranges from 20 to 50 m (Figure 
14b). In contrast, the relatively thin overburden thickness of 5–15 m is virtually around 
the central and western parts of the surveyed area. The overburden thickness is shallow 
in most probing stations, indicating that the basement is close to the surface. Therefore, 
groundwater in these areas is highly dependent on the occurrence of fractures [29]. 
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Figure 13. (a) Reflection coefficient (RC); (b) overburden thickness along 26 VES stations in the surveyed area. 

The apparent resistivity values of all VES stations were contoured to produce an iso-
resistivity map (Figure 14c), indicating that the apparent resistivity increases radially out-
ward from the center of the region and the resistivity values are 10–1150 Ωm. The resis-
tivity of the bedrock represents the resistivity of the deepest hydrological layer in the sur-
veyed area. It has been found that the resistivity of the bedrock is of significance in many 
aspects of hydrogeological and hydro-geophysical measurements because it plays a vital 
role in assessing the potential of groundwater. After all, the resistivity of the bedrock has 
the potential to reveal fractured aquifers. 

The lower RC and relatively high overburden thickness can increase a well’s ground-
water productivity [74]. In this study, the considered GWpot geoelectrical factors includes 
reflection coefficient, overburden thickness, and iso-resistivity obtained from the interpre-
tation of VES data. This quantification of aquifer potential indirectly verified the accuracy 
of the MIF model and its predictive performance. The VES stations in the surveyed area 
were divided into high yield, medium yield, and low yield groundwater by employing 
Olayinka’s basic criteria [73]. 
(1) High GWpot: the overburden thickness is greater than 13 m with an RC less than 0.8. 
(2) Medium GWpot: the overburden thickness is 13-30 m with an RC greater than or equal 

to 0.8. 
(3) Low GWpot: the overburden thickness is less than 13 m with an RC greater than or 

equal to 0.8. 
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Figure 14. (a) Reflection coefficient map; (b) overburden thickness map; (c) apparent resistivity map based on the inter-
pretation of VES data. 

Considering these criteria, the RC and overburden thickness were used to produce 
the parameters for categorizing VES stations by the GWpot, i.e., VES1, VES5, VES6, VES8, 
VES9, VES14, VES16, VES17, VES21, VES24, and VES26 have high yield GWpot (Figure 
15a), VES3, VES7, VES11, VES13, VES19, VES20, and VES25 have medium yield GWpot 
(Figure 15b), and VES2, VES4, VES10, VES12, VES15, VES18, and VES22 have low yield 
GWpot (Figure 15c). Based on these groundwater potentiality variations among the VES 
stations, a final GWpot contour map of the surveyed area was generated, and it demon-
strates that the northern, northeastern and eastern parts have excellent GWpot for future 
exploitation and development, while the low and medium GWpot regions are located in 
the western and central parts of the surveyed area (Figure 16). The VES-based groundwa-
ter potential map was compared with the groundwater potential map obtained by the RS 
and GIS-based MIF method. This indicated that the MIF method is accurate and consistent 
in predicting GWpot. 
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Figure 15. Groundwater potential VES distribution corresponding overburden thickness and reflection coefficient (RC): 
(a) high yield GWpot VES stations, (b) medium yield GWpot VES stations, and (c) low yield GWpot VES stations. 
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Figure 16. Groundwater potential map of the vertical electrical sounding (VES) surveyed area. 

5.6. Geophysical Well Logs Interpretation 

Information obtained from technical reports of SPLs and NRLs (short and long) and 
drilling protocols show that the slightly denser thick and deep sandstone is an effective 
aquifer type for groundwater exploitation in the study area (Figure 17). The geophysical 
well logs approach has great significance in determining the exact location (depth) of any 
permeable aquifers and impermeable aquitards (Table 7). In this study, NRLs (short and 
long) were appropriately calibrated and quantitatively interpreted. Moreover, log meas-
urements were converted to the apparent resistivity and adjusted for mud resistivity, bed 
thickness, borehole diameter, mud cake, and invasion to arrive at true resistivity (Figure 
17). SPL interpretation can be complex, particularly in freshwater aquifers. This complex-
ity commences to the perversion of groundwater and misinterpretations of spontaneous 
potential (SP) logging. SPLs record the potential or voltage caused by contact between a 
shale/clay layer and an aquifer. The natural flow of current and the SP curve were offered 
under the salinity conditions. The NRLs (short/long), SPLs, and drilling protocol at a 
depth of 152.4 m showed that the major lithology’s units are clay, gravel-boulders, and 
sandstone (Table 8). The quality of groundwater measured by TDS is fresh. The static wa-
ter level depth is about 88.3 m (Figure 17). The proposed slot opening, and the estimated 
discharge volume, are 1/40-1/50 and 11.35–13.24 cubic meters per hour (m3/h), respectively 
(Table 8). 

Table 7. The following screen schedule is proposed for conversion. 

No Depth (m)  Screen (m) Slot Size (m) 
01 106.6–113.9 7.3 1/12.1–1/15.2 
02 117.6–128.6 10.9 1/12.1–1/15.2 
03 139.5–150.5 10.9 1/12.1–1/15.2 
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Table 8. Derived borehole lithology-based Normal resistivity logs (NRLs) (short/long) and sponta-
neous potential logs (SPLs). 

No Depth (m)  Classified Lithology Thickness (m) 
01 0–134 Gravel-boulder 134 
02 134–196 Gravel-boulder-sandstone 62 
03 196–269 Gravel-boulder 73 
04 269–238 Sandstone hard 59 
05 238–344 Sandstone fine grained 16 
06 344–377 Sandstone hard 33 
07 377–383 Clay 06 
08 383–429 Sandstone hard 46 
09 429–442 Sandstone fine grained 13 
10 442–488 Sandstone hard 46 
11 488–503 Clay 15 

 

Figure 17. Spontaneous potential (SP), short normal resistivity (SNR), and long normal resistivity 
(LNR) log curves obtained in Well -1 of the experimental site of the Marwatan Banda, Karak. 

6. Discussion 
The Karak watershed, located in Northern Pakistan, has experienced significant eco-

nomic development associated with hydrology and groundwater exploitation. The super-
ficial resource depletion, the irregular spatial-temporal distribution of precipitation, and 
the deformation of the Indian and Eurasian tectonic plate environment, which affect the 
occurrence and movement of groundwater, together with widespread salt in the northern 
mountainous catchments, which is dissolved by runoff water and polluted groundwater 
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due to deep infiltration, have made groundwater a key resource in the study area. How-
ever, the collaboration of remote sensing observations, aquifer geoelectrical properties 
and accurate hydrogeological measurements, and the optimization of groundwater influ-
ential factors are major challenges. Therefore, the GWpot mapping are essential for plan-
ning artificial recharge programs to mitigate groundwater decline [6]. The multi-criteria 
decision-making (MCDM)-based multi-influence factor (MIF) model approach can be use-
ful for groundwater resource management (GRM) and monitoring purposes, which is an 
efficient bivariate statistical technique mainly used to calculate the degree to which each 
dependent or independent conditioning factor influences the GWpot. The MIF model has 
become a powerful tool for delineating regional GWpot and narrowing down the target 
areas for conducting detailed hydrogeological and hydro-geophysical surveys in the scat-
tered areas. However, in the MIF method, weights and ranks are subjectively assigned 
according to expert knowledge and literatures. In a comprehensive analysis, it is im-
portant to determine the weight of each category because the output result depends on 
the correct weight distribution. It is used to depict groundwater prediction zones taking 
into account various surface and subsurface hydrological influential factors. However, 
several studies report that the importance and predictive power of GCFs employed in 
GWpot assessment is usually controlled by geological, morphological, hydrological, and 
climatic environments [8–15,17]. According to Nampak [75], topographical features (e.g., 
elevation and slope) have a negative impact on GWpot, while lineament density and drain-
age density have positive impacts. Similar research reports that topographical, soil cover, 
structural and hydrogeological characteristics affect precipitation runoff and permeability, 
thereby affecting the occurrence of GWpot. Hou et al. [76] reported that lithology, altitude, 
and drainage density have a greater impact on the occurrence of GWpot, while land use 
and soil type have the least impacts. In this study, a GWpot map was generated based on 
the MIF model to identify regional GWpot of the Karak watershed. Several GCFs were con-
cluded to have significant impacts on groundwater production. For example, the high 
GWpot zones on the final map are closely correlated to lineament density and drainage 
density. Usually, the lineaments indicate the areas of faults and fractures, leading to in-
creased secondary porosity and permeability. This factor is of great significance in hydro-
geology because it provides a pathway for groundwater infiltration. However, the linea-
ment density is only an indirect indicator of the GWpot in the Karak watershed, because 
the lineaments usually show a permeable area. In the study area, a larger slope produces 
a smaller recharge, because surface water will quickly flow over the steep slope during 
rainfall, so there is not enough time for water seeping into the ground and recharge the 
unsaturated zone. However, the distribution of LU/LC usually depends on the subsurface 
soil and geological conditions, thereby increasing the groundwater recharge on the sur-
faces covered by vegetation (such as agricultural plants and forests).  

The hydrogeological interpretation of the 2D high-resolution resistivity tomography 
dataset of six traverses revealed the prospect of groundwater at different depths with var-
iation in the resistivities in the aquifer zone. The high resistivity of the subsurface geolog-
ical sediments was well delineated, which shows a large resistivity contrast within the 
complex geological background in the study area. This phenomenon is suggested to be 
caused by different degrees of weathering, fracturing and saturated weathered/fractured 
part of the sediments in the Karak region. In future, four to five boreholes/wells will be 
drilled in potential areas identified by ERT and VES to check the availability of ground-
water and the performance of geoelectric surveys. The analyzed regional GWpot, hydroge-
ological and aquifer geoelectrical information provides a beneficial prospect for the de-
velopment of GRM in the study area. However, the geoelectrical exploration methods can 
only locally verify the result of GWpot mapping, and they are too costly and time-consum-
ing to cover the whole study area. The acquired results are expected to help practitioners 
to drill boreholes/wells in order to supply domestic water and irrigation in the Karak wa-
tershed of Northern Pakistan. Moreover, combined geospatial and geoelectrical methods 
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through the MIFs model and Olayinka’s basic criteria will help to assess groundwater 
resources in other similar areas worldwide. 

7. Conclusions 
This study addresses the applicability of the comprehensive MCDM-MIF model and 

hydro-geophysical investigation in GRM in the Karak watershed. The GIS-based MIF 
model facilitates the regional GWpot assessment using the topographical, geological, hy-
drological, and land-cover GCFs, meanwhile, the geophysical exploration and data inter-
pretation reveals the hydrogeological structure and aquifer geoelectrical characteristics. 
The main findings are as follows: 
(1) According to MCDM-MIF model, approximately 9.7% (72.3 km2), 52.4% (1307.7 km2), 

31.3% (913.4 km2), and 6.6% (44.8 km2) areas of the total Karak watershed are classified 
into the low, medium, high, and very high GWpot, respectively. The southern, south-
eastern, and the limited northeastern areas have high to medium GWpot due to the 
distribution of Quaternary alluvial and agricultural land with high infiltration capac-
ity. The final GWpot map will help to manage sustainable groundwater resources in 
the study area. 

(2) The predictive performance of MCDM-MIF model is consistent with the groundwater 
level (GWL) data (as AUC value is 68%, confusion matrix is 68%, and Kappa (K) analy-
sis is 65%). 

(3) The ERT approach with an optimal compromise between electrode distance and pro-
file length highlights the complexity of hydrogeological layers and reveal that GWpot 
is structurally controlled and adjacent to clayey sand and silicate aquifers (sandstone). 
The identified drilling locations on ERT traverses are of great significance for the ex-
pansion of drinking water supply and irrigation in the future. The performance anal-
ysis between ERT-predicted lithology and well-log lithology indicates suitable 
matches. 

(4) Hydro-stratigraphic information followed by apparent resistivity distribution at each 
VES station shows that the study area is mainly composed of coarse gravel and sand, 
followed by clayey sand with saline water. According to Olayinka's basic standards, 
the aquifer geoelectrical characteristics, e.g., reflection coefficient, aquifer overburden 
thickness and apparent resistivity distribution, were conceptualized. The interpreted 
potential zones based on VES show satisfactory matches with MIF-based groundwa-
ter potential. The drilling protocol and well logs data interpretation of NRLs 
(short/long) and SPLs reveal that deep sandstone is an effective aquifer type for the 
groundwater exploitation in the study area. 
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Appendix A 

Table A1. Summary results of VES data interpretation demonstrate the inferred lithologies corresponding to resistivity 
variation and hydrogeologic layers. 

VES 
No. 

RMS Er-
ror (%) 

No. of 
Layers 

Resistivity 
(Ohm.m) 

Thickness 
(m) 

Depth 
(m) 

Reflection 
Coeffi-
cient 

Inferred Hydro-Stratigraphic 
Lithology 

1 2.9 

Layer 1 923.1 2.4 2.4 

0.6723 

Coarse gravel and sand 
Layer 2 578 7.2 9.8 Silty sand mixed lithology 
Layer 3 685.4 28.4 38.2 Clayey sand 
Layer 4 54 12.6 50.8 Fine sand and gravels 

2 3.2 

Layer 1 748 1.9 1.9 

0.9284 

Coarse gravel and sand 
Layer 2 598.8 8.6 10.5 Silty sand and gravels 
Layer 3 57.8 16.4 26.9 Fine sands and gravels 
Layer 4 34.2 Infinite Infinite Clayey sand and saline water 

3 3.8 

Layer 1 899.3 2.4 2.4 

0.8671 

Coarse gravel and sand 
Layer 2 673 8.2 10.6 Silty sand mixed lithology 
Layer 3 487.4 18.7 29.3 Silty sand and gravels 
Layer 4 48.3 14.4 43.7 Fine sand and gravel 
Layer 5 26 8.6 52.3 Clayey sand and saline water 

4 4.5 

Layer 1 954 1.3 1.3 

0.9752 

Topsoil 
Layer 2 637.5 3.6 4.9 Silty sand and gravels 
Layer 3 43 7.4 12.3 Fine sand and gravels 
Layer 4 683.1 Infinite Infinite Clayey sands 

5 2.8 

Layer 1 854.7 4.5 4.5 

0.7841 

Coarse gravel and sand 
Layer 2 532.1 12.8 17.3 Silty sand and gravels 
Layer 3 678.2 26.2 43.5 Clayey sands 
Layer 4 43.2 6.6 50.1 Clayey sand and saline water 

6 1.7 

Layer 1 701 3.2 3.2 

0.8911 

Coarse gravel and sand 
Layer 2 693.4 4.6 7.8 Silty sand mixed lithology 
Layer 3 964.5 5.1 12.9 Clayey sands 
Layer 4 45.8 Infinite Infinite Clayey sand and saline water  

7 2.6 

Layer 1 1093.5 3.8 3.8 

0.8497 

Coarse gravel and sand 
Layer 2 601.5 12.4 16.2 Silty sand mixed lithology 
Layer 3 1065 18.4 34.6 Clayey sand 
Layer 4 73 8.2 42.8 Fine sand and gravels  

8 4.0 

Layer 1 1108.5 4.5 4.6 

0.7313 

Topsoil 
Layer 2 598.1 14.1 18.7 Silty sand and gravels 
Layer 3 376.7 22.4 41.1 Fine sand and gravels 
Layer 4 985.7 16.1 57.2 Clayey sands layer 

9 4.7 

Layer 1 735 2.2 2.2 

0.6861 

Alluvium 
Layer 2 323 5.6 7.8 Silty sand fine lithology 
Layer 3 675.8 12.4 20.2 Silty sand and gravels 
Layer 4 24.7 16 36.2 Fine sands and gravels 
Layer 5 74 6.4 42.6 Clayey sand and saline water  

10 2.5 

Layer 1 967.8 1.8 1.8 

0.9248 

Coarse gravel and sand 
Layer 2 560 4.2 6 Silty sand mixed lithology 
Layer 3 856.6 6.8 12.8 Clayey sand 
Layer 4 42.1 Infinite Infinite Fine sand and gravels  

11 3.7 

Layer 1 787 5.1 5.1 

0.8410 

Coarse gravel and sand 
Layer 2 445.8 12.2 17.3 Silty sand and gravels 
Layer 3 943.2 18.1 35.4 Clayey sands 
Layer 4 44 6.8 42.2 Clayey sand and saline water  

12 2.8 
Layer 1 799.8 1.6 1.6 

0.9523 
Coarse gravel and sand 

Layer 2 588 4.1 5.7 Silty sand mixed lithology 
Layer 3 1098.3 4.6 10.3 Clayey sand 
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Layer 4 57 2.4 12.7 Fine sand and gravels  

13 2.0 

Layer 1 800.3 1.3 1.3 

0.8557 

Coarse gravel and sand 
Layer 2 454 8.2 9.5 Silty sand and gravels 
Layer 3 822.7 16.2 25.7 Clayey sands 
Layer 4 38.6 10.6 36.3 Clayey sand and saline water  

14 4.0 

Layer 1 866 2.6 2.6 

0.6719 

Alluvium 
Layer 2 554 10.1 12.7 Silty sand fine lithology 
Layer 3 600.4 16.8 29.5 Silty sand and gravels 
Layer 4 89.3 22.8 42.3 Fine sands and gravels 
Layer 5 34.9 8.2 50.5 Clayey sand and saline water  

15 2.8 

Layer 1 766.1 2.4 2.4 

0.9643 

Coarse gravel and sand 
Layer 2 543 6.1 8.5 Silty sand and gravels 
Layer 3 985 4.1 12.6 Clayey sands 
Layer 4 27 Infinite Infinite Clayey sand and saline water 

16 3.0 

Layer 1 812.9 4.2 4.2 

0.6537 

Coarse gravel and sand 
Layer 2 553.4 8.2 12.4 Silty sand and gravels 
Layer 3 985.6 20.8 33.2 Clayey sands 
Layer 4 58 24.2 57.4 Clayey sand and saline water  

17 4.5 

Layer 1 1109 3.4 3.4 

0.5855 

Topsoil 
Layer 2 643 8.7 12.1 Silty sand and gravels 
Layer 3 76 15.9 28 Fine sand and gravels 
Layer 4 832 22 50 Clayey sands  

18 2.8 

Layer 1 741 1.8 1.8 

0.9778 

Coarse gravel and sand 
Layer 2 533 5.1 6.9 Silty sand and gravels 
Layer 3 932 6.0 12.9 Clayey sands 
Layer 4 65.4 Infinite Infinite Clayey sand and saline water  

19 1.6 

Layer 1 979.8 5.2 5.2 

0.8923 

Coarse gravel and sand 
Layer 2 568 8.4 13.6 Silty sand and gravels 
Layer 3 732.6 16.8 30.4 Clayey sands 
Layer 4 64 10.8 41.2 Clayey sand and saline water  

20 4.2 

Layer 1 905 3.2 3.2 

0.9211 

Coarse gravel and sand 
Layer 2 548 6.1 9.3 Silty sand mixed lithology 
Layer 3 788 19.5 28.8 Clayey sand 
Layer 4 34 15 43.8 Fine sand and gravels  

21 2.4 

Layer 1 745 4.2 4.2 

0.7626 

Alluvium 
Layer 2 623 10.4 14.6 Silty sand fine lithology 
Layer 3 522.3 18.6 33.2 Silty sand and gravels 
Layer 4 37 6.2 39.4 Fine sands and gravels 
Layer 5 84.2 8.2 47.6 Clayey sand and saline water  

22 3.7 

Layer 1 865.6 1.6 1.6 

0.9429 

Coarse gravel and sand 
Layer 2 590 4.5 6.1 Silty sand and gravels 
Layer 3 955.7 6.8 12.9 Clayey sands 
Layer 4 67 Infinite Infinite Clayey sand and saline water  

23 3.3 

Layer 1 906.4 5.6 5.6 

0.6930 

Alluvium 
Layer 2 578 10.2 15.8 Silty sand fine lithology 
Layer 3 356 18.8 34.6 Silty sand and gravels 
Layer 4 65 10.4 45 Fine sands and gravels 
Layer 5 45.6 8.4 53.4 Clayey sand and saline water  

24 2.8 

Layer 1 842 4.4 4.4 

0.7889 

Coarse gravel and sand 
Layer 2 600.4 12.4 16.8 Silty sand and gravels 
Layer 3 789 22.8 39.6 Clayey sands 
Layer 4 37.2 14.7 54.3 Clayey sand and saline water  

25 2.5 

Layer 1 890 2.4 2.4 

0.8663 

Coarse gravel and sand 
Layer 2 566.3 6.8 9.2 Silty sand and gravels 
Layer 3 742 18.3 27.5 Clayey sands 
Layer 4 98 16.2 43.7 Clayey sand and saline water  
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26 3.0 

Layer 1 975.8 1.7 1.7 

0.9184 

Coarse gravel and sand 
Layer 2 563 10.2 11.9 Silty sand and gravels 
Layer 3 732.1 18 29.9 Clayey sands 
Layer 4 63.9 6.6 36.5 Clayey sand and saline water  
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