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Abstract: Water is an essential resource that facilitates the existence of human life forms. In recent
years, the demand for the consumption of freshwater has substantially increased. Seawater contains
a high concentration of salt particles and salinity, making it unfit for consumption and domestic
use. Water treatment plants used to treat seawater are less efficient and reliable. Deep learning
systems can prove to be efficient and highly accurate in analyzing salt particles in seawater with
higher efficiency that can improve the performance of water treatment plants. Therefore, this work
classified different concentrations of salt particles in water using convolutional neural networks with
the implementation of transfer learning. Salt salinity concentration images were captured using
a designed Raspberry Pi based model and these images were further used for training purposes.
Moreover, a data augmentation technique was also employed for the state-of-the-art results. Finally,
a deep learning neural network was used to classify saline particles of varied concentration range
images. The experimental results show that the proposed approach exhibited superior outcomes by
achieving an overall accuracy of 90% and f-score of 87% in classifying salt particles. The proposed
model was also evaluated using other evaluation metrics such as precision, recall, and specificity,
and showed robust results.

Keywords: classification; deep learning; convolutional neural networks; transfer learning; saline
particles; salinity

1. Introduction

Water is an essential element for the survival of different life forms existing on Earth.
Freshwater is consumed across a diverse array of applications such as agriculture [1],
health care [2], domestic use, industrial applications [3,4], etc. The present freshwater
sources such as lakes, ponds, and reservoirs are becoming dehydrated and disappearing
at an extreme rate. Furthermore, with the increase in the number of human populations,
freshwater consumption has increased every year, leading to scarcity and massive demand
for freshwater sources. With advanced industry evolution and globalization, different
issues regarding water, pollution, environment, and energy, etc. being overexploited has
attracted extensive attention. As important parameters, water resources are assessed at
national, international, urban, and industrial scales [5]. With water shortages, desalination
treatment as a water production system that can be used for freshwater supply from
seawater is therefore a solution for water resource conservation. For seawater desalination,
researchers have conducted various studies and focused toward replacing old energy
with renewable energy to improve desalination techniques. Membrane process or reverse
osmosis (RO) is one of such techniques used for desalination and is widely used. Practices
based on RO shows better thermodynamic performances compared to thermal scales.
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These solutions use more energy consumption and have a lower recovery rate [6]. More of
these works are discussed further in Section 2 of the presented study.

The amount of fresh water has been nearly the same over the years, but due to rapid
increase of the population on Earth, it has led to a greater consumption of clean water
every year. Human action, competition for resources, and rapid growth in industrialization
affect the natural health of the atmosphere. Pollutants are mainly contributed by industrial
lime, oil combustion, agriculture waste, and anthropogenic activities. Many pollutants are
transferred by the wind directions from the industrial localities and national highways. In
dense cities, gas and toxic substances systematically spread in the atmosphere. Although
their natural concentrations seldom touch dangerous levels, they can be harmful to human
health and to the environment at high concentrations. Pollutants can be transferred in water
in dissolved form either in the surface or ground. With fresh water resources dwindling,
seawater desalination is expected to become increasingly important in meeting Saudi
Arabia’s future water needs. Desalination, on the other hand, is a more energy-intensive
process than conventional water treatment processes. Saudi Arabia is said to use 25% of
domestic oil and gas production in desalination plants, with that percentage expected to
rise to 50% by 2020.

The possible sources of deriving freshwater are surface water and seawater bodies.
About 97% of the water on Earth exists in the form of seawater and oceans. However,
these sources contain a significant amount of total dissolved solids (TDS) that ranges
from 3000 mg/L to 4000 mg/L [7], which makes it unfit for human consumption and the
agricultural sector. Further to this, seawater contains high mineral content and elements
such as Na+, K+, Ca2+, Mg2+, and (SO4), major contributors to making seawater saline.
This identifies saline particles as a vital task, so that it is appropriately treated with great
accuracy using suitable desalinated seawater methods. This research study presents
an attempt to use an artificial intelligence deep learning framework to identify saline
particles in different salt concentrations using a scattering pattern. Desalination is treated
as one of the extreme solutions for water supply. The discussion should be focused on
its affordability and cleaning techniques, while some of the techniques in the past have
addressed technological problems. The provided solution by this study will focus on
reducing the cost to classify the salinity of water. Therefore, the main contribution is to use
current edge-based techniques to classify salinity from any form of water with minimal
efforts. Even though desalination and water reuse can be used as autonomous solutions
to water shortage, the role of desalination classification is an effort to avoid future water
scarcity problems [8].

To address these research issues and gaps, a unique deep learning system was imple-
mented to capture the concentration of the salt particles. There are no such works that have
discussed the detection of seawater saline particles and classification using deep learning
for implementing efficient and accurate desalination techniques. A detailed analysis for
addressing salinity in seawater is presented in further sections.

Objectives:

Moreover, this paper examines and addresses the following key points:

• Contaminants such as salt particles present in water cause hardness and make it unfit
for consumption. Identifying saline particles in the water will help water treatment
plants treat water effectively with high performance.

• The proposed approach aims to target seawater, a rich source of salt particles, using a
deep learning system.

• The presented study involves experimentation and the analysis of different saltwater
concentrations to provide the system’s robustness against high saline concentrations.

• The proposed work is evaluated using various classification measuring metrics such
as precision, recall, accuracy scores, etc.

• Conventional water treatment plants are less accurate and efficient in treating seawater.
Integrating the proposed framework with water treatment plants can boost their oper-
ational and functional capabilities, resulting in a better seawater treatment process.
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The rest of this paper is organized as follows. Section 2 discusses the related works
in this domain. Section 3 presents the proposed framework used for implementing the
desired deep learning model. Results and discussion are presented in Section 4 while the
conclusions from the work and future directions are discussed in Section 5.

2. Literature Work

Numerous methods have been proposed and presented by researchers worldwide to
predict salinity and harmful elements in saline water. Some of the best-in-class techniques
proposed are discussed below.

Melesse et al. [9] proposed a hybrid approach to predicting river water salinity in
the Babol-Rood River. The input variables essential for the machine learning (ML) model
were predicted using Pearson’s correlation coefficient method. Furthermore, the main
predictor used for predicting the salinity in river water was TDS. The designed ML models
were evaluated using various regression estimation metrics. The demonstrated results
showed that the presented approach outperformed the other popularly known techniques
by achieving high-performance rates. Banerjee et al. [10] predicted the salinity forecast of
groundwater based on pumping rate using ANN with quick propagation. The advantage of
using quick propagation for calculating the derivatives is that it uses an adaptive learning
rate for every connection weight used during the training of the network. The implemented
model was compared with the conventional statistical saturated-unsaturated (SUTRA)
computational model. The model also estimated the standard baseline for consuming
groundwater below the pumping rate of 13,000 L/day, so the groundwater salinity should
be maintained within 2.5%. Barzegar and Moghaddam [11] estimated groundwater salinity
using artificial neural networks (ANN). The proposed model predicted groundwater
salinity measured in terms of electrical conductivity over various input concentrations
such as Cl−, Na+, Mg2+, etc. The benefits of using ANN for predicting salinity is that it
handles a non-linear relationship between different variables effectively and detects robust
patterns in the data to provide correct model predictions. Furthermore, the weights of
the implemented ANN were estimated using the genetic algorithm (GA), an evolutionary
optimization approach that optimizes the correct weights. The presented approach was
compared with other popularly known techniques. The results demonstrated that the
model outperformed the remaining approaches by achieving great results. A hybrid
evolutionary approach was presented by Azad et al. [12] for the prediction of water quality
at three river stations. Their research was based on predicting the water quality based on
five parameters, namely, electrical conductivity (EC), sodium adsorption ratio (SAR), total
dissolved solids (TDS), carbonate hardness (CH), and total hardness (TH). The proposed
approach was evaluated on regression metrics that demonstrated exemplary performance
with high accuracy. Duong et al. [13] optimized the air-gap membrane distillation system
for seawater desalination. They reduced the usage of heat and electricity during the
desalination process, but they did not provide a solution of classification of the saline
particles. This technique directly impacts the energy consumption and therefore poor
accuracy of the assessment results. Doornbusch et al. [14] investigated the solution for
multivalent ions in seawater on the desalination performance of multistage electrodialysis.
They used natural seawater as feed solution, and conventional cation exchange membranes
(CEMs) as well as CEMs with preferential removal of multivalent ions were compared.
Their technique results were steady for 18 days with an average energy usage of 3 kWh/m3,
which showed the effectiveness of multistage electrodialysis seawater desalination.

Furthermore, the proposed approach was compared with other evolutionary ap-
proaches and proven to be a reliable technique for estimating water quality. An efficient
and reliable solution to measure the water’s salinity was proposed by Hussain et al. [15].
They estimated the salinity of water using a smartphone. Ambient light sensor (ALS) and
embedded flash lamps were used to detect and detect seawater salinity. Furthermore, their
research study involved the analysis of multiple approaches for identifying saline particles.
Moreover, its compact size and inexpensive developmental cost can serve as an alternative
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to less efficient salinometers. The simulated results were verified using various measuring
metrics such as sensitivity, reproducibility, and dynamic range, which exhibited superior
results. In addition to the prediction of water quality, it is vital to treat the saline water to
be utilized in day-to-day tasks. Some of the modern and recent techniques used to model
this purpose can be discussed as follows: Tufa et al. [16] presented a membrane-based hy-
brid technique for water desalination. They used the membrane distillation (MD) process
to increase the overall recovery rate of water by lowering the discharged brine volume.
Furthermore, MD brine was passed through reverse electro-dialysis (RED) to generate
saline gradient power, which produced energy used to derive the high-pressure pumps
at the reverse osmosis (RO) stage. The implemented technique serves as a robust and
energy-efficient desalination approach that causes less greenhouse gas emissions and the
generation of low-grade waste heat that functions as an ideal source of energy for industrial
applications. Maia et al. [17] conducted a review of studies related to solar chimneys for
water desalination power generation. Solar chimneys use solar energy, which serves as a
reliable source of energy that generates hot air that is used to derive turbines and generate
power. This makes solar chimneys a cost-effective and reliable solution. However, it suffers
from the disadvantages of low efficiency. To resolve this issue, hybrid solar chimney de-
salination systems can be implemented such as integrating photovoltaic and desalination
based solar chimneys that effectively utilize solar power and give robust output. Suwaileh
et al. [18] reviewed possible solutions based on membrane desalination and water recla-
mation for agriculture. Approaches such as reverse osmosis (RO), membrane bioreactor,
electro dialysis, etc. are popularly known techniques for treating water. However, the
quality of the water produced is not fit for agricultural use. The fusion of membrane-based
techniques such as RO and forward osmosis (FO)-based integration systems can provide
useful solutions by containing the necessary amount of nutrients required for fertigation.
In arid and semi-arid regions such as Saudi Arabia, Iran, and Kuwait where freshwater
sources are absent, it is essential to provide methods for water treatment and forecast water
demands. Alkhudhiri et al. [19] estimated future demands for wastewater and seawater
treatment using exponential smoothening and linear regression techniques. They predicted
that the variation of treated water will be about 4% in the years 2025–2050. Additionally,
the demand for water supply is expected to rise to 5% due to the growth in industrial
sectors. Mansouri and Ghoniem [20] explored nuclear energy as an alternative to fossil fuel
for powering water desalination. Nuclear energy serves as an efficient and cost-effective
substitute to reduce fossil fuel consumption and emissions of carbon dioxide in the environ-
ment. Furthermore, analysis was conducted using the IAEA modeling tool to demonstrate
that nuclear energy is cost-efficient and exhibits a more robust performance than fossil fuels.
Additionally, analysis of the results showed that nuclear desalination using RO was proven
to be an economical and efficient design for seawater desalination. Pan et al. [21] showed a
study to estimate the RO and capacitive deionization (CDI) for brackish water desalination.
They systematically summarized the technological information of RO and CDI, focusing
on the effect of key parameters on desalination performance as well as energy-water effi-
ciency, economic costs, and environmental impacts. This study showed that both RO and
CDI play important roles in water and resource recovery from brackish water. Ayers and
Westcot [22] proposed a technique for classification of water regarding its risk of toxicity
according to the contents of sodium and chloride. This work objective was to study the
quality of the irrigation water. The results of 45 complete analyses (electrical conductivity,
pH, and concentrations of Ca2+, K+, Cl−, HCO3−, and CO3z−) of water samples belonging
to different places, located in the study region were used. All analyzed water samples
presented low sodality and high alkalinity. Rose and Marry [23] showed an alternative by
identifying the solvents present in the water body ensuring desalination of the particular
ionic compound or metal. The primary objective was to classify the sensor data, viz, the
salts in TDS. To assess the conductivity and TDS, 500 samples of various compositions
were used. Machine learning was applied to classify the salts with the help of the K-nearest
neighbor classifier. Taheran et al. [24] reviewed different techniques for PhAC removal by
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using membrane separation processes as these are highly used for quality drinking and
industrial water. They showed that the osmosis membrane can proficiently eliminate prac-
tically all PhACs, however, its operational expense is generally high and nano-filtration
(NF) layers are profoundly impacted by electrostatic and hydrophobic association. To
improve the performance and robustness, it is proposed to consolidate membrane layers
with different frameworks, like activated carbon and enzymatic degradation.

The examination of saline particles in seawater is a complicated task. Deep learning
and various machine learning techniques are employed in many image processing and
classification tasks and have provided superior results compared to the conventional
approaches. Some of the studies involving the use of deep learning are discussed as
follows. Huang et al. [25] proposed a deep learning system based on CNN with transfer
learning to identify and detect underwater marine organisms. The proposed approach
was tested against various factors such as marine turbulence, shooting angle variations,
and illumination variations. Furthermore, three types of data augmentation techniques
were used to evaluate the proposed technique. Some of the other best machine learning
methods includes [26–31].

3. Research Methodology

The proposed research study involves the classification of saline particles in two
stages. The first stage involves the preparation of scattered images for various ranges of salt
salinity concentration using a Raspberry Pi device. These scattered images will serve as our
training dataset. A detailed discussion regarding the creation and simulation of the dataset
is discussed in Section 3.2. The second stage explained in Section 3.3 involves preprocessing
and using the generated dataset to train deep learning neural network models to classify
saline particles of varied ranges in appropriate classes. The steps that we followed as an
algorithm is shown below (Algorithm 1):

Algorithm 1

Step 1: Salinity captured images are taken as input.
Step 2: Images are divided into training and testing of 7:3 proportion.
Step 3: Transfer learning based VGG16 deep learning model for salinity particles classification is
designed with 19 weighted layers.
Step 4: Classification for 10 salt concentration particles is evaluated.
Step 5: Results are plotted using various performance ML based parameters.
Predictive analysis is done with other ML models.

3.1. Sample Preparation

The sample solution used for generating the scattering pattern was prepared by
adding sodium chloride to a water-filled cuvette made up of glass in intervals of 10 ppt
(parts per thousands). The minimum concentration of the salt solution was 0 ppt while the
maximum saline solution was 100 ppt. Ten classes as tabulated in Table 1 were generated
using the prepared samples. Since the concentration of salt particles in oceans or seawater
ranges to about 35 ppt [32], therefore, the prepared solution acts as seawater, which can be
used to classify the concentration of salt particles in seawater, which in turn could prove to
be advantageous for desalinated water treatment plants.

3.2. Stage 1: Experimental Analysis

The simulation of stage 1 for generating scattered pattern images is demonstrated
in Figure 1. The experiment used a ~1 mW red pointer laser diode that operated on a
wavelength of 660 nm. Furthermore, the diode’s light was focused on a water-filled cuvette
that contained aa saline salt solution using a lens of 2.5 cm focal length. The scattered light
from the saline particles was projected onto a white screen placed at a distance of 1.5 cm
away from the cuvette. Finally, the scattered pattern was captured using a complementary
metal-oxide-semiconductor (CMOS) camera device placed at a distance of 5 cm away from
the screen. Furthermore, the camera was connected to a Raspberry Pi 3 Model B+ device
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with a 64-bit quad-core processor running at 1.4 GHz with 1 GB RAM. The advantage of
using it in this simulation was that it has a powerful processor that is faster than other
devices, which can handle multiple tasks simultaneously and control the temperature of
the connected devices so that they can run longer without heating. It is also compatible
and ideal for connecting interfaces and components such as HDMI, USB, and Ethernets. It
is widely used in commercial applications such as biometrics systems [33], cloud based
applications [34], etc. Finally, the images were transferred to a laptop with a hardware
configuration consisting of an i5-7200U processor running at 3.2 GHz speed and having
8 GB RAM. In addition to this, the device also contained an external NVIDIA GPU 960MX
for better performance. The training dataset consisted of 1000 images in total with a
distribution of 100 images in ten individual classes.

Table 1. Distribution of salt concentrations in the respective classes.

Classes Range (in ppt)

1 0–10
2 10–20
3 20–30
4 30–40
5 40–50
6 50–60
7 60–70
8 70–80
9 80–90

10 90–100
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Figure 1. Schematic representation for determining the scattering image pattern.

3.3. Stage 2: Classification of Concentration of Saline Particles

The classification of a scattered pattern is done using a deep learning technique. In
this research work, VGG16 [35], a popular CNN model, was used to classify the images.
The sole reason for using it to implement the proposed system is that it has a very deep
network architecture consisting of up to 19 weighted layers that facilitates the capture of
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robust and unique features, making it ideal for classifying images with great accuracy.
Furthermore, transfer learning was used in conjunction with the CNN model since it did
not contain enough training images. In addition to this, fine-tuning was integrated on
the top of the model to predict ten classes. The implementation of the model was done
using Keras and Tensor flow frameworks. Figure 2 shows the architecture of the fine-tuned
VGG16 model with weights and knowledge transferred from the ImageNet database [36].
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Figure 2. The architecture of the fine-tuned VGG-16 model.

Initially, the training images were converted to grayscale images to simplify the
computation task. Then, the input images were reshaped to the required dimensions of 224
× 224× 3 for the input of the model. The layers of the model were frozen so that the model
only trained the added layers. The data augmentation technique was applied to the training
set due to its limited size. Table 2 formulates the various transformations applied to the
training images. Furthermore, the images were split into training and testing data in the
ratio 70:30, respectively. Customized parameters tabulated in Table 3 were used to perform
network training and intricate pattern and design learning. According to Table 3, the Adam
optimizer, represented using Equations (1) and (2), is used for performing optimization of
the network since it outputs robust results.

Wi = Wi−1 − α
Vdw√

Sdw+ ∈
(1)

bi = bi−1 − α
Vdb√

Sdw+ ∈
(2)

Table 2. Data augmentation techniques applied to the model.

Type of Transformation Value

Rotation 20
Zooming 0.2

Width Shifting 0.2
Height Shifting 0.2

Rescaling 1.0/255
Sample wise Centering True

Horizontal Flipping True
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Table 3. List of parameters used for ADAM optimization.

Parameter Name Default Value

α 0.001
β1 0.9
β2 0.999
∈ 10−8

In Equations (1) and (2), Wi denotes the weights at ith iteration; α is the tuned step size
sequence known as learning rate; and bi denotes the bias at ith iteration. In the equation,
VdW and SdW are computed using Equations (3) and (4).

VdW =
β1VdW−1 + (1− β1)dW(

1− β1
t) (3)

SdW =
β2SdW−1 + (1− β2)dW2(

1− β2
t) (4)

where β1 and β2 are the hyperparameters used to control the first-order momentum and
second-order momentum, respectively. Similarly, analogous to Equations (3) and (4), Vdb
and Sdb can be computed. The default setting to test the machine learning problems for
various parameters to perform the optimization are tabulated in Table 3 under the list of
parameters used in designing the model.

Since the scattered images were complicated, to learn the robust patterns, we therefore
used a low learning rate of 1× 10−5 for model training as per Table 4. Moreover, the
particular value for this hyper-parameter was determined by experimenting and evaluating
various ANN models. As the implemented deep learning model was trained with lower
learning rate, the models were trained on high epochs. Categorical cross entropy loss
function was used for the modeling and multi-classification task. Moreover, since image
data were used in the proposed study for implementing CNN that contained lots of features
and patterns, we trained the model on a batch of 32 images for easy computation.

Table 4. List of parameters used in designing the model.

Model Parameters Values

Optimization Algorithm Adam
Learning Rate 1 × 10−5

Epochs 600
Loss Function Categorical Cross Entropy

Batch Size 32
Final Activation Function Softmax

Steps Per Epoch Batch Size
Validation Steps Batch Size/2

4. Experimental Results and Discussion

This section discusses the classification metrics used to evaluate the robustness of
the deep CNN model. This section’s primary objective was to visualize the proposed
study’s effectiveness on different saline concentration images. Furthermore, different
measuring metrics were used to evaluate the observations, providing evidence of the
system’s high accuracy. The experiment was conducted on a machine with technical
specifications as follows: Intel-i5 7200U, 8 GB Ram, 1 TB hard disk, and NVIDIA GTX
760MX Graphics. Additionally, the implementation of the proposed CNN model was
simulated in Python version: 3.5 environments. To establish the results of the proposed
method, we performed a statistical analysis by assessing predictive performance. This
was evaluated by estimating the accuracy and Kappa [37] (represented mathematically
using Equation (5)) on our training dataset with respect to the proposed model, Bayesian
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generalized linear model [37] and rotation forest [37] models. The statistical analysis was
done and parameters were obtained as shown in Table 5. A 5-fold cross validation was
applied to optimize the best model test with the best variable subset = 2.

k =
Accuracy− Pe

1− Pe
(5)

where k is kappa whose value ranges between (0, 1) and Pe represents the expected agree-
ment between the experimental and observed value.

Table 5. Predictive analysis on the training dataset.

Statistics Bayesian Generalized Linear
Model [37] Rotation Forest [38] Proposed Model

Accuracy 87.6% 87.6% 90%
Kappa 0.81 0.81 0.83

Compared to these models, the accuracy for saline water particle detection was greater
for the proposed ML model while Kappa was same for the other techniques when tested
with our dataset. Other performance measuring metrics used for evaluation are tabulated
in Figures 4 and 5, which are discussed as follows:

To effectively visualize and understand the implemented classification model, it is
necessary to understand the below parameters:

i. True Positives (Tp)—This evaluates to true if the actual class labels match with the
predicted class labels.

ii. True Negatives (Tn)—This evaluates to false if the actual class labels match with the
predicted class labels.

iii. False Positives (Fp) and False Negatives (Fn)—These parameters signify that the
actual class labels do not comply with the class predicted by the model or vice-versa.

Confusion Matrix

It is a powerful classification measurement metric that helps to visualize and judge
the performance of the classifier. In the confusion matrix represented in Figure 3, the x-axis
denotes labels predicted by the classifier while the y-axis denotes actual or true labels.
Furthermore, the diagonal values in Figure 4 represent the samples correctly classified by
the classifier while the non-diagonal samples denote misclassified samples.

Precision

This estimates the proportion of total positive predictions predicted by our classifica-
tion model that are actually positive. This is represented using Equation (6).

Precision =
Tp

Tp + Fp
(6)

Recall

This estimates the proportion of correctly identified positive predictions to all the
relevant samples identified as positive by the network model. Equation (7) calculates the
recall for the proposed model.

Recall =
Tp

Tp + Fn
(7)
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F-Score

This calculates the combined harmonic mean of precision and recall by considering
both measuring metrics. Equation (8) estimates the f-score for the proposed classification
model.

F− score = 2×
(

Precision× Recall
Precision + _Recall

)
(8)

Accuracy

This estimates the proportion of true positive and negative class labels to the total
number of class instances (Ts) in the training data. Equation (9) estimates the f-score for
the proposed classification model.

Accuracy =
Tp + Tn

Ts
(9)

Specificity

This estimates the proportion of correctly identified negative predictions to all the
relevant samples identified as negative by the network model. Equation (10) calculates the
recall for the proposed model.

Specificity =
Tn

Tn + Fp
(10)

All these parameters help to analyze the classification of salinity from the captured
images. The proposed work is a kind of novel work where water salinity from the images
was classified using the machine learning based model. From the results, it is evident that
the method is capable of producing 90% accuracy in terms of water salt classification, while
other parameters are also impressive at the initial stage results. Furthermore, the work is
unique and a comparison is not feasible with other methods as this type of work has not
been used as of today in this domain. To establish the proposed method for water salinity
classification, the results are convincible.
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Discussion

It can be observed from Figure 3 that our classification model classified most of the
samples correctly, while misclassifying only aa small percentage of samples incorrectly.
Furthermore, from Figure 4, it was observed that the overall accuracy of the model may
increase if there are more training data present for training the model. The specificity
metrics of the model showed that it classified most of the negative predictions as correct by
exhibiting a true negative ratio of 0.89. On the other hand, the model overall classified 85%
correct positive predictions on the test data. Moreover, from Figure 4, it can be seen that the
model classified more positive predictions over false misclassification by demonstrating a
precision score of about 88%, thereby making the model robust and efficient. Finally, an
f-score of 87% showed that the proposed model maintained between precision and recall.
To demonstrate state-of-the-art results and provide a detailed analysis report for evaluating
the proposed approach, the individual classification scores of target classes are presented
in Figure 5.
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These metric scores demonstrate that our classification deep learning model make
accurate classifications and predictions by classifying salt particles. To prove that our
classification model is robust and achieves state-of-the art results, the implemented model
was compared with similar salinity based prediction systems. Since very little research
has been done in the identification of seawater salinity concentration, it is not possible to
compare it with other approaches implemented in this area of research, but we have tried
to compare it with the best machine learning techniques implemented to estimate salinity.
Table 6 tabulates the comparison of the proposed approach with other salinity-based
estimation systems. It is evident from Table 6 that our proposed approach outperformed
the popularly known salinity based classification approaches by achieving an overall
accuracy of 90%. Moreover, the approach proposed by [39] also gave good results by
reaching an accuracy of about 86.7%, while the approaches presented by [40,41] produced
fair results in comparison to the remaining discussed approaches. The proposed method
outperformed compared to these approaches. On comparing our proposed approach with
the techniques presented in [23,42], which aims to predict the salinity and estimates TDS in
seawater using various machine learning and deep learning techniques, it was observed
that our implemented technique was proved to be powerful and accurate in terms of
accuracy. Furthermore, the performance and robustness of the proposed technique was
also tested with [43], who targeted the salinity of seawater using mixtures of machine
learning models on a real world dataset.

Table 6. Comparison of various salinity based classification approaches.

Salinity Prediction Approaches Accuracy (%)

Classifier Ensemble + Bayesian Learning (Mosavi, Hosseini,
Choubin, Goodarzi, & Dineva, 2020) [39] 86.7

Decision Tree (Vermeulen & Niekerk, 2017) [40] 75
Random Forest (Ivushkin et al., 2019) [41] 70

Proposed Approach 90

This classification implemented model can further be utilized to design the best water
treatment plants and devices so that they can treat seawater with high accuracy and exhibit
reliable performance. Since nutrients such as Na+, K+, Ca2+, Mg2+, and (SO4) present
in seawater are very hard to detect and remove, seawater is unfit for consumption. The
integration of the proposed model with modern treatment plants could improve their
performance considerably, so that the harmful nutrients can be eliminated from seawater,
making it suitable for consumption in various sectors such as health care, agriculture,
domestic use, etc. In addition to harmful elements, TDS and saline salt hardness can be
eradicated, which also acts as one of the major contributors of salinity in seawater.

5. Conclusions and Future Works

This paper detected and identified saline particles in different concentrations of the
saline solution. The scattering images of particles were collected using the experimental
setup shown in Figure 1. Furthermore, we applied the CNN model with transfer learning to
classify the saline particles. In addition, the data augmentation technique was also used to
generalize well and output robust results. Using the proposed approach, the accuracy of the
treatment plants will increase to a great extent, leading to better results for water treatment.
The experimental results demonstrated that the deep learning system outputted a higher
accuracy of 90%, while the f-score metrics outputted 87%, which shows that the system
considers all the classes in a balanced ratio. Furthermore, the remaining classification
metrics such as precision, recall, and specificity also exhibited robust and state-of-the-art
results. However, from Figure 4, it appears that due to the limited amount of training data,
our deep learning system suffered from the limitation of misclassification of saline salt
particles. Usage of techniques such as transfer learning and data augmentation increases
the training time and thus, in turn, increases the complexity of the system. Moreover, the
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system could not classify the salinity of salts greater than 100 ppt due to the limited range
of class labels in the training data.

In future works, we plan to integrate our proposed approach with modern water
treatment plants to study the practicality of deep learning systems in the water treatment
process. It would also be interesting to visualize and evaluate the proposed approach with
a large training set. We also plan to implement our proposed study with hybrid deep
learning models to examine the problem of water treatment more vividly and design highly
accurate water treatment systems in the future.
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