
water

Article

Cyber—Physical Attack Detection in Water Distribution
Systems with Temporal Graph Convolutional Neural Networks

Lydia Tsiami and Christos Makropoulos *

����������
�������

Citation: Tsiami, L.; Makropoulos, C.

Cyber—Physical Attack Detection in

Water Distribution Systems with

Temporal Graph Convolutional

Neural Networks. Water 2021, 13,

1247. https://doi.org/10.3390/

w13091247

Academic Editor: Stefano Alvisi

Received: 26 March 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical
University of Athens, Iroon Politechniou 5, Zografou, 157 80 Athens, Greece; lydia.m.tsiami@gmail.com
* Correspondence: cmakro@mail.ntua.gr

Abstract: Prompt detection of cyber–physical attacks (CPAs) on a water distribution system (WDS)
is critical to avoid irreversible damage to the network infrastructure and disruption of water ser-
vices. However, the complex interdependencies of the water network’s components make CPA
detection challenging. To better capture the spatiotemporal dimensions of these interdependencies,
we represented the WDS as a mathematical graph and approached the problem by utilizing graph
neural networks. We presented an online, one-stage, prediction-based algorithm that implements the
temporal graph convolutional network and makes use of the Mahalanobis distance. The algorithm
exhibited strong detection performance and was capable of localizing the targeted network com-
ponents for several benchmark attacks. We suggested that an important property of the proposed
algorithm was its explainability, which allowed the extraction of useful information about how the
model works and as such it is a step towards the creation of trustworthy AI algorithms for water
applications. Additional insights into metrics commonly used to rank algorithm performance were
also presented and discussed.

Keywords: cyber—physical system; cyber—physical attacks; water distribution network; anomaly
detection; deep learning; graph neural networks

1. Introduction

In an era of unprecedented technological advancements, the water sector is under-
going a digital transformation [1]. Digital devices have already been deployed in water
distribution networks (WDNs) to monitor and control utility operations, and to increase
the network’s automation and efficiency, and although water digitalization is essential, it
comes at a cost: It exposes the WDN to the risks of a cyber–physical system, i.e., cyber-
attacks [2]. Since the impact of a potential attack could be enormous [3], research interest
on the security of water infrastructures is growing [4]. In the face of a potential cyber-attack,
one of the emerging fields of ongoing research focuses on the early detection of attacks [5].
Prompt detection of cyber–physical attacks is a prerequisite to respond to the threat swiftly
and avoid irreversible damages, but it is a task that is arguably challenging due to the
nature of WDN’s fluxes (e.g., water demand, pipe pressure). WDN’s fluxes are governed
by stochasticity and high variability [6], characteristics that imply that researchers should
treat them as realizations of stochastic processes [7].

Attack detection algorithms on water distribution networks generally rely on Su-
pervisory Control and Data Acquisition (SCADA) system data to classify the system as
safe or under attack. SCADA data are real-time, field-based network measurements (tank
water level, pump flow, etc.) transmitted to the central system by programmable logic
controllers (PLCs). A key characteristic of SCADA data is that they have spatiotempo-
ral interdependencies. In theory, an algorithm that effectively captures these complex
interdependencies would be able to detect intrusions even when they are concealed by
the attacker [8]. Tuptuk et al. [4] divided cyber–physical systems’ attack detection algo-

Water 2021, 13, 1247. https://doi.org/10.3390/w13091247 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w13091247
https://doi.org/10.3390/w13091247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13091247
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13091247?type=check_update&version=3

Water 2021, 13, 1247 2 of 16

rithms into three categories: Model-based, machine learning, and statistical methods. Each
method processes the spatiotemporal attributes of the data differently.

Model-based methods, such as the one proposed by Housh and Ohar [9], attempt
to model the physical process of the system and therefore account simultaneously for
the spatial and temporal information of the network with a single model. However,
model-based methodologies are difficult to implement in real-life settings, because a well-
calibrated hydraulic model of the network is often unavailable. On the contrary, statistical
models ignore the spatiotemporal information of the data and are often used in combination
with machine learning models to create multi-stage algorithms [10–12].

Machine learning methods do not process the spatiotemporal information in a specific
way; rather, it depends on the proposed model. Temporal information is often processed
by modeling the SCADA data as time series data [12,13]. Brentan et al. attempted to go
a step further and add the time of the day as an input feature to their model [10], while
Kadosh et al. followed a completely different route and created different models for each
hour of the day [14]. Most researchers use the spatial relations of the SCADA data only
as a guide to group nearby features and to create different models for different sub-areas
of the network [10,13–15]. Some machine learning models ignore entirely the spatial and
temporal context of the SCADA data [12,15–18]. However, in the case of the autoencoder
proposed by Taormina et al., the authors argued that their model accounts implicitly for the
spatial and temporal information, as this information is reflected in the SCADA data [16].

So far, there have been no machine learning models reported in the relevant literature
that explicitly embed in their architecture the spatial information of SCADA data. As a
result, a unifying approach that simultaneously encompasses temporal and spatial rela-
tionships has not been proposed to date. Meanwhile, there has been a rapid development
of deep learning models that operate on relational data (i.e., graphs) called graph neural
networks (GNNs). GNNs have been used successfully in many similar time series problems
like traffic forecasting [19], motion recognition [20], and automatic seizure detection [21].
For that reason, we speculated that they might perform well in attack detection problems.

In this work, we propose a prediction-based CPA detection algorithm that leverages
the inherent interdependencies of the SCADA data through temporal graph convolutional
neural networks (TGCN) [21] and makes use of the Mahalanobis distance. Our goal was to
explore whether the inherent ability of a TGCN to incorporate the relationships between the
nodes of a graph makes it a valuable tool in CPA detection and localization. We examined
whether the model was able to learn a meaningful representation of the network and
attempt to understand how the model localized attacks by employing a simple removal-
based explanation method. To develop and evaluate our algorithm, we used the publicly
available datasets featured in the battle of the attack detection algorithms (BATADAL) com-
petition [5]. The proposed algorithm displayed a strong detection performance, equivalent
to the best-performing models developed for that competition, while also presenting a
unique combination of advantages that are further discussed below.

2. Materials and Methods
2.1. Temporal Graph Convolutional Networks

A temporal graph convolutional network [21] is a deep learning model that operates
on a structural time series by performing localized feature extraction shared both in space
and time. A structural time series has the form (X, A) where X ∈ RT×p×c contains c-
dimensional observations across T time steps for p different sequences and A ∈ {0, 1}p×p

is the adjacency matrix of the p sequences. The adjacency matrix A can be symmetric for
undirected graphs or asymmetric for directed graphs, and has 1s in its diagonal.

A TGCN consists of several spatio-temporal convolutional (STC) layers [21] that
operate on the input sequences in a way that allows the graph topology to be maintained at
each layer. The STC layer applies a 1D convolution to each of its input sequences and then
refers to the adjacency matrix of the structural time series to aggregate neighboring features.
The STC layer can be used with two different aggregation rules: Rule A aggregates features

Water 2021, 13, 1247 3 of 16

from the node’s neighborhood including the node itself and Rule B aggregates features
from the node’s neighbors, and then combines these features with the node’s own features
(Figure 1).

Water 2021, 13, 1247 3 of 17

A TGCN consists of several spatio-temporal convolutional (STC) layers [21] that op-
erate on the input sequences in a way that allows the graph topology to be maintained at
each layer. The STC layer applies a 1D convolution to each of its input sequences and then
refers to the adjacency matrix of the structural time series to aggregate neighboring fea-
tures. The STC layer can be used with two different aggregation rules: Rule A aggregates
features from the node’s neighborhood including the node itself and Rule B aggregates
features from the node’s neighbors, and then combines these features with the node’s own
features (Figure 1).

Covert et al. define the two rules as follows:
Rule A: 𝑎௜௟ = 𝑊௜௡௧௟ ∗ ℎ௜௟ିଵ 𝑧௜௟ = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ൫൛𝑎௝௟𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁௞(𝑖)ൟ൯ ℎ௜௟ = 𝑔൫𝑧௜௟൯

(1)

Rule B: 𝑎௜௟ = 𝑊௜௡௧௟ ∗ ℎ௜௟ିଵ 𝑧௜௟ = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ൫൛𝑎௝௟𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑁௞(𝑖) \ 𝑖 ൟ൯ ℎ௜௟ = 𝑔ଶ ቀ𝑊௖௢௠௕௟ ∗ 𝑔ଵ൫ൣ𝑧௜௟, 𝑎௜௟൧൯ቁ
(2)

where ℎ௟ିଵ ∈ ℝ்೗షభ×௣×௖೗షభ is the input to the layer 𝑙 with 𝑇௟ିଵ number of time points
and ℎ௜௟ିଵ ∈ ℝ்೗షభ×௖೗షభ represents the hidden features associated with sequence 𝑖 of the
input, ∗ denotes the 1D convolution with filter 𝑊௜௡௧௟ , and 𝑔 a nonlinearity. The neigh-
borhood of node 𝑖 is defined as 𝑁௞(𝑖) = {𝑗 𝑠. 𝑡. 𝐴(𝑘)௜௝ = 1} and represents the set of
nodes that are within 𝑘 steps reachable to 𝑖. 𝐴(𝑘) is the k-step reachability matrix obtained from the operation 𝐴(𝑘) =𝟙 (𝐴௞) where 𝐴௞ is the graph’s adjacency matrix to the kth power and 𝟙(∙) is an element-
wise indicator function. Setting 𝑘 ൐ 1 enables information to spread through the graph
using fewer layers.

The only parameter for Rule A is the convolutional kernel 𝑊௜௡௧௟ ∈ ℝ௧మ೗ ×௖೗×௖೗షభ. Rule B
has two parameters: 𝑊௜௡௧௟ , and the second convolutional kernel 𝑊௖௢௠௕௟ ∈ ℝ௧మ೗ ×௖೗×൫ଶ∗௖೗൯ .
Note that the number of parameters of an STC layer are independent to the input adja-
cency matrix. This property allows the TGCN model to accept inputs with arbitrary graph
topologies, and therefore, facilitates the use of removal-based explanations to interpret the
model predictions.

(a) (b)

Figure 1. Different aggregation rules of the STC layer. Both rules begin by applying a 1D convolu-
tion along the temporal dimension and then: (a) Rule A aggregates features from the node’s neigh-
borhood including the node itself, and (b) Rule B aggregates features from the node’s neighbors,
and then combines these features with the node’s own features.

Figure 1. Different aggregation rules of the STC layer. Both rules begin by applying a 1D convolution
along the temporal dimension and then: (a) Rule A aggregates features from the node’s neighborhood
including the node itself, and (b) Rule B aggregates features from the node’s neighbors, and then
combines these features with the node’s own features.

Covert et al. define the two rules as follows:
Rule A:

al
i =W l

int ∗ hl−1
i

zl
i =AGGREGATE ({al

j f or j in Nk(i)})

hl
i =g(zl

i)

(1)

Rule B:

al
i =W l

int ∗ hl−1
i

zl
i =AGGREGATE ({al

j f or j in Nk(i) \ i })

hl
i =g2(W l

comb ∗ g1(
[
zl

i , al
i

]
))

(2)

where hl−1 ∈ RTl−1×p×cl−1
is the input to the layer l with Tl−1 number of time points and

hl−1
i ∈ RTl−1×cl−1

represents the hidden features associated with sequence i of the input,
∗ denotes the 1D convolution with filter W l

int, and g a nonlinearity. The neighborhood
of node i is defined as Nk(i) = {j s.t. A(k)ij = 1} and represents the set of nodes that are
within k steps reachable to i.

A(k) is the k-step reachability matrix obtained from the operation A(k) = 1 (Ak)
where Ak is the graph’s adjacency matrix to the kth power and 1(·) is an element-wise
indicator function. Setting k > 1 enables information to spread through the graph using
fewer layers.

The only parameter for Rule A is the convolutional kernel W l
int ∈ Rtl

2×cl×cl−1
. Rule B

has two parameters: W l
int, and the second convolutional kernel W l

comb ∈ Rtl
2×cl×(2∗cl). Note

that the number of parameters of an STC layer are independent to the input adjacency
matrix. This property allows the TGCN model to accept inputs with arbitrary graph
topologies, and therefore, facilitates the use of removal-based explanations to interpret the
model predictions.

2.2. Attack Detection Algorithm

The aim of an attack detection algorithm is to successfully classify the system’s state
as “safe” or “under attack” at all times. However, approaching the problem with binary

Water 2021, 13, 1247 4 of 16

classification techniques is unrealistic, as in practice, a dataset with a sufficient and diverse
set of labeled attacks is usually unavailable. Relying on statistic and regression techniques,
instead, seems more promising in our case, because there are plenty of data representing
the system under normal operating conditions.

Since the goal was to approach the attack detection problem with a TGCN model, we
started by representing the water network as a mathematical graph where its nodes (tanks,
junctions, and pumps) were linked with edges (pipes). Then, we could define the SCADA
readings as structural time series that have the form (X, A) where X ∈ RT×p×c contains
c-dimensional observations across T time steps for p different nodes and A ∈ {0, 1}p×p is
the adjacency matrix of the p nodes of the network. By representing the SCADA data as
structural time series, we could then use them as inputs to a TGCN model and train it for a
specific task.

The proposed attack detection algorithm was developed: (a) First by training a TGCN
model that predicted the current SCADA measurements, and then (b) by calibrating an
attack detection scheme that issued alarms based on the comparison of the predicted values
with the observed.

2.2.1. TGCN for Time-Series Prediction

The first step of the attack detection algorithm required training a TGCN model that
predicted the current network observations, given the SCADA measurements of n prior
timesteps. The basic structure of the TGCN model, as we implemented it, consists of one
or more STC layers, each one followed by a pooling layer along the temporal dimension.
Then, the output of the last STC layer is flattened and passed to a fully connected neural
network to make predictions (Figure 2).

Water 2021, 13, 1247 4 of 17

2.2. Attack Detection Algorithm
The aim of an attack detection algorithm is to successfully classify the system’s state

as “safe” or “under attack” at all times. However, approaching the problem with binary
classification techniques is unrealistic, as in practice, a dataset with a sufficient and diverse
set of labeled attacks is usually unavailable. Relying on statistic and regression techniques,
instead, seems more promising in our case, because there are plenty of data representing
the system under normal operating conditions.

Since the goal was to approach the attack detection problem with a TGCN model, we
started by representing the water network as a mathematical graph where its nodes
(tanks, junctions, and pumps) were linked with edges (pipes). Then, we could define the
SCADA readings as structural time series that have the form (𝑋, 𝐴) where 𝑋 ∈ ℝ்×௣×௖
contains 𝑐-dimensional observations across 𝑇 time steps for 𝑝 different nodes and 𝐴 ∈{0,1}௣ × ௣ is the adjacency matrix of the 𝑝 nodes of the network. By representing the
SCADA data as structural time series, we could then use them as inputs to a TGCN model
and train it for a specific task.

The proposed attack detection algorithm was developed: (a) First by training a TGCN
model that predicted the current SCADA measurements, and then (b) by calibrating an
attack detection scheme that issued alarms based on the comparison of the predicted val-
ues with the observed.

2.2.1. TGCN for Time-Series Prediction
The first step of the attack detection algorithm required training a TGCN model that

predicted the current network observations, given the SCADA measurements of 𝑛 prior
timesteps. The basic structure of the TGCN model, as we implemented it, consists of one
or more STC layers, each one followed by a pooling layer along the temporal dimension.
Then, the output of the last STC layer is flattened and passed to a fully connected neural
network to make predictions (Figure 2).

Figure 2. Basic TGCN architecture for the time-series prediction task.

To learn a representation of the network under normal operating conditions, the
model requires an event-free dataset (i.e., with no attacks) split into training (𝑋௧௥௔௜௡, 𝑌௧௥௔௜௡)
and validation (𝑋௩௔௟, 𝑌௩௔௟). Before training the TGCN model and as a preprocessing step,
the data were scaled such that the maximal absolute value of each feature in the training
set would be 1.0. To obtain subsequences and use them as inputs to the model, we took a
window of a fixed size 𝑛 + 1 and slid it over the time series with a step size 1. The first 𝑛 measurements of each window were the input to our model, while the final, 𝑛 + 1 ob-
servations were the target output.

2.2.2. Calibration of the Attack Detection Scheme
After TGCN was trained, the validation set 𝑋௩௔௟ was passed through the model to

make a prediction 𝑌෠௩௔௟. We defined as the prediction error 𝐸, the difference between the
actual observations 𝑌 and the predictions 𝑌෠ for each timestep. 𝐸 = 𝑌 − 𝑌෠ (3)

Figure 2. Basic TGCN architecture for the time-series prediction task.

To learn a representation of the network under normal operating conditions, the
model requires an event-free dataset (i.e., with no attacks) split into training (Xtrain, Ytrain)
and validation (Xval , Yval). Before training the TGCN model and as a preprocessing step,
the data were scaled such that the maximal absolute value of each feature in the training
set would be 1.0. To obtain subsequences and use them as inputs to the model, we took
a window of a fixed size n + 1 and slid it over the time series with a step size 1. The
first n measurements of each window were the input to our model, while the final, n + 1
observations were the target output.

2.2.2. Calibration of the Attack Detection Scheme

After TGCN was trained, the validation set Xval was passed through the model to
make a prediction Ŷval . We defined as the prediction error E, the difference between the
actual observations Y and the predictions Ŷ for each timestep.

E = Y− Ŷ (3)

Since there are not attacks in either the training or in the validation set, we assumed
that the prediction error at each node was roughly Gaussian distributed. Hence, we could
estimate the parameters (

→
µ , S) of a multivariate Gaussian distribution that describes the

Water 2021, 13, 1247 5 of 16

model’s prediction error under normal operating conditions, where S is the covariance
matrix and

→
µ is the mean vector of the validation prediction errors Eval .

Given the model’s prediction error at timestep i,
→
ei ∈ R1×p, we could compute its

distance from the mean vector
→
µ of the multivariate Gaussian distribution using the

Mahalanobis distance (MD). The squared Mahalanobis distance is defined as:

D2
M(
→
ei) = (

→
ei −

→
µ)

T
S−1(

→
ei −

→
µ) (4)

Note that D2
M is essentially the sum of p independent standard normal variables, and

for that reason, follows a chi-squared distribution with p degrees of freedom [22].
There were two reasons why we chose the squared MD as an anomaly score for our

algorithm. First of all, the MD incorporates the dependencies between the prediction errors
at each sensor. This is a useful property when the goal is to detect not only nodes with
unusually high prediction errors, but also unusual prediction error combinations. The
second reason was that issuing alarms based on the MD was more straightforward, as it
only required us to tune one global anomaly threshold, instead of multiple thresholds that
were equal to the number of the network’s nodes.

Our expectation was that normal observations would have lower MD values compared
to anomalous instances. However, before defining a cutoff criterion to separate normal
from anomalous instances, we calculated the rolling mean of the raw anomaly scores to
avoid false positives. An alarm was issued at timestep i, when:

D2
M(
→
ei)(i−l,i) ≥ TH (5)

where D2
M(
→
ei)(i−l,i) is the mean of the squared MD in a window of length l; and TH is the

cutoff threshold. Selecting TH and l requires a calibration procedure. The procedure is
done numerically by testing different values for the two parameters in a holdout set with
a few positive examples (attacks) and calculating the algorithm’s performance with the
appropriate objective function. The objective function should reflect the algorithm’s per-
formance in detecting attacks. The parameter values that maximize the objective function
can then be used in new, unseen by the algorithm datasets to evaluate its performance
(Figure 3).

Water 2021, 13, 1247 6 of 17

(a) (b) (c)

Figure 3. Methodology outline: (a) Developing the TGCN model to predict current SCADA observations, (b) calibration
of the attack detection scheme, (c) application process of the attack detection algorithm to new observations.

3. Case Study

3.1. BATADAL
Our algorithm was trained and tested using the datasets featured in the battle of the

attack detection algorithms, an international competition in cyber-security of water distri-
bution systems. In BATADAL, the contestants were given three datasets containing
hourly SCADA measurements of a medium-sized real network, named C-Town. C-Town
consists of 388 nodes linked with 429 pipes and is divided into 5 district metered areas
(DMAs). The goal was to create an algorithm that detects when C-Town is under attack.

Each of the three datasets provided at the competition contains 43 sequences of
SCADA measurements from 31 different variables of the network. More specifically, the
SCADA data include the water level at all 7 tanks of the network (T1–T7), status and flow
of all 11 pumps (PU1–PU11) and the one actuated valve (V2) of the network, and pressure
at 24 pipes of the network that correspond to the inlet and outlet pressure of the pumps
and the actuated valve.

The first dataset (𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1) contains 12 months of observations and represents the
network under normal operating conditions (i.e., it is attack-free). The other two datasets
(𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3) have durations of 6 and 3 months, respectively, and contain 7
attacks each. All datasets were simulated using epanetCPA [8]. To develop their models,
the contestants were initially given only 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1 , and a semi-labeled version of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2 (we denote it as 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2(௦௘௠௜ି௟௔௕௘௟௘ௗ)) that contains only one attack fully la-
beled and the remaining partially revealed or hidden. The algorithms were later ranked
based on their performance on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3. We should also note that most of the attacks in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 2 and 3 were concealed. This means that the attacker had modified some of the
SCADA observations in an attempt to conceal the actual impact on the network.

The BATADAL contest and the attack scenarios of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 2 and 3 are described
in detail by Taormina et al. [5].

Figure 3. Methodology outline: (a) Developing the TGCN model to predict current SCADA observations, (b) calibration of
the attack detection scheme, (c) application process of the attack detection algorithm to new observations.

Water 2021, 13, 1247 6 of 16

3. Case Study
3.1. BATADAL

Our algorithm was trained and tested using the datasets featured in the battle of
the attack detection algorithms, an international competition in cyber-security of water
distribution systems. In BATADAL, the contestants were given three datasets containing
hourly SCADA measurements of a medium-sized real network, named C-Town. C-Town
consists of 388 nodes linked with 429 pipes and is divided into 5 district metered areas
(DMAs). The goal was to create an algorithm that detects when C-Town is under attack.

Each of the three datasets provided at the competition contains 43 sequences of
SCADA measurements from 31 different variables of the network. More specifically, the
SCADA data include the water level at all 7 tanks of the network (T1–T7), status and flow
of all 11 pumps (PU1–PU11) and the one actuated valve (V2) of the network, and pressure
at 24 pipes of the network that correspond to the inlet and outlet pressure of the pumps
and the actuated valve.

The first dataset (Dataset 1) contains 12 months of observations and represents the
network under normal operating conditions (i.e., it is attack-free). The other two datasets
(Dataset 2 and Dataset 3) have durations of 6 and 3 months, respectively, and contain 7
attacks each. All datasets were simulated using epanetCPA [8]. To develop their models,
the contestants were initially given only Dataset 1, and a semi-labeled version of Dataset 2
(we denote it as Dataset 2(semi−labeled)) that contains only one attack fully labeled and the
remaining partially revealed or hidden. The algorithms were later ranked based on their
performance on Dataset 3. We should also note that most of the attacks in Datasets 2
and 3 were concealed. This means that the attacker had modified some of the SCADA
observations in an attempt to conceal the actual impact on the network.

The BATADAL contest and the attack scenarios of Datasets 2 and 3 are described in
detail by Taormina et al. [5].

3.2. Application of the Attack Detection Algorithm to C-Town

As a first step, we constructed C-Town’s adjacency matrix. Given that the available
measurements were only from 31 of the network’s nodes, it was not possible to use the
adjacency matrix of the whole network. As a result, we created a new, condensed adjacency
matrix that described the connections only between the nodes whose observations were
available (Figure 4). For each node of the condensed network, only one measurement
was reported. The only exceptions were the pump nodes that reported two different
measurements: Status and flow. Since all nodes should have the same c number of
measurements, we excluded the pump status, which is a binary variable, and we kept the
numerical flow rate.

For the development of our model, we used the attack-free Dataset 1 and split it into
training and validation in a 75:25 ratio. To learn the prediction task, the TGCN architecture
included three stacked STC layers with {32, 32, 64} output channels, respectively, and a
temporal kernel k = 3. Each STC layer was followed by a max pooling layer. Finally, the
output of the last STC layer was flattened and passed to a fully connected layer with 128
neurons and then its output was passed to a final linear layer to attain a forecast for the
network’s current measurements. The STC layers used Rule B as their aggregation rule
and the 3-step adjacency matrix of the network A(k = 3). We used ReLu as an activation
function. The model was trained with subsequences of length n (n = 8 hours) taken in
mini-batches of size b (b = 16) from the training inputs Xtrain and targets Ytrain. During
training, we used the Adam optimizer to minimize the mean squared error (MSE) loss.
Early stopping was applied to prevent overfitting of the model and to reduce the overall
time required for the training process. All hyperparameters were experimentally chosen
based on effective models, meaning that other optimal values could be possible.

Water 2021, 13, 1247 7 of 16

Water 2021, 13, 1247 7 of 17

3.2. Application of the Attack Detection Algorithm to C-Town
As a first step, we constructed C-Town’s adjacency matrix. Given that the available

measurements were only from 31 of the network’s nodes, it was not possible to use the
adjacency matrix of the whole network. As a result, we created a new, condensed adja-
cency matrix that described the connections only between the nodes whose observations
were available (Figure 4). For each node of the condensed network, only one measurement
was reported. The only exceptions were the pump nodes that reported two different meas-
urements: Status and flow. Since all nodes should have the same 𝑐 number of measure-
ments, we excluded the pump status, which is a binary variable, and we kept the numer-
ical flow rate.

For the development of our model, we used the attack-free 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1 and split it
into training and validation in a 75:25 ratio. To learn the prediction task, the TGCN archi-
tecture included three stacked STC layers with {32, 32, 64} output channels, respectively,
and a temporal kernel 𝑘 = 3. Each STC layer was followed by a max pooling layer. Fi-
nally, the output of the last STC layer was flattened and passed to a fully connected layer
with 128 neurons and then its output was passed to a final linear layer to attain a forecast
for the network’s current measurements. The STC layers used 𝑅𝑢𝑙𝑒 𝐵 as their aggrega-
tion rule and the 3-step adjacency matrix of the network 𝐴(𝑘 = 3). We used ReLu as an
activation function. The model was trained with subsequences of length 𝑛 (𝑛 = 8 ℎ𝑜𝑢𝑟𝑠)
taken in mini-batches of size 𝑏 (𝑏 = 16) from the training inputs 𝑋௧௥௔௜௡ and targets 𝑌௧௥௔௜௡. During training, we used the Adam optimizer to minimize the mean squared error
(MSE) loss. Early stopping was applied to prevent overfitting of the model and to reduce
the overall time required for the training process. All hyperparameters were experimen-
tally chosen based on effective models, meaning that other optimal values could be pos-
sible.

(a) (b)

Figure 4. (a) The network of C-Town, (b) the resulting condensed graph of the network, created
based on the available measurements.

3.3. Algorithm Performance Metrics
To evaluate our algorithm’s performance, we mainly used two performance metrics:

the 𝑆 score and the 𝐹 score.
The 𝑆 score is a metric used in BATADAL to evaluate the CPA detection algorithms,

and it is a combination of two different metrics into one.
The first metric is time to detection:

Figure 4. (a) The network of C-Town, (b) the resulting condensed graph of the network, created
based on the available measurements.

3.3. Algorithm Performance Metrics

To evaluate our algorithm’s performance, we mainly used two performance metrics:
the S score and the F score.

The S score is a metric used in BATADAL to evaluate the CPA detection algorithms,
and it is a combination of two different metrics into one.

The first metric is time to detection:

STTD = 1− 1
NA

NA

∑
i=1

TTDi
∆Ti

(6)

where NA = number of attacks, and TTDi
∆Ti

= the time to detection of attack i (TTDi) as a
ratio of the total attack duration (∆Ti).

The second metric is classification performance which is defined as:

SCM =
TPR + TNR

2
(7)

where TPR = True Positive Rate = TP
TP+FN , and TNR = True Negative Rate = TN

TN+FP .
The two metrics are combined into a single score:

S = γSTTD + (1− γ)SCM (8)

where γ = 0.5, which means that for the competition both metrics were considered equally
important.

Note that the S score implements TNR to determine the model’s ability to avoid false
alarms. The drawback of TNR in imbalanced classification datasets, like the ones in attack
detection, is that TNR determines true negatives as more important than true positives.
True negatives (safe conditions) in anomaly detection problems are the majority class of the
datasets; thus, TNR presents small variance and makes it hard to capture the differences in
an algorithm’s performance in terms of the number of false positives it issues.

F score is the weighted harmonic mean of precision and recall:

Fβ = (1 + β2)
Precision·Recall

β2·Precision + Recall
(9)

Water 2021, 13, 1247 8 of 16

where Precision = TP
TP+FP is the model’s ability to avoid false alarms, Recall = TP

TP+FN (or
TPR) measures the algorithm’s ability to identify when the system is under attack, and β
determines the balance between precision and recall, with high values favoring recall.

For β = 1 the F score is called the F1 score and considers equally recall and precision.
Other common variations of F score are the F2 score, which deems recall as twice as
important as precision, and F0.5, which in the exact opposite way, deems precision as twice
as important as recall.

The advantage of the F score is that it gives focus to true positives, false positives,
and false negatives, while no attention is given to the majority class, i.e., the true negative
group. However, when it is used as a single-score metric, the main shortcoming resides in
the fact that low recall from low precision models cannot be distinguished.

4. Results
4.1. Attack Detection Performance

We trained the TGCN model 20 times using the attack-free Dataset1, and for each
TGCN model, we fine-tuned the detection rule parameters using as a holdout set, Dataset 2,
and as an objective function the maximization of S score on the holdout set. The aver-
age performance of the TGCN model on the test set (Dataset 3) across 20 trainings is
S = 0.930 ± 0.005 (STTD = 0.9334, SCM = 0.9267) and the low variance of the S score
indicates that the algorithm tends to have a consistent performance between different
training instances. To gain more insight on how the algorithm performs, we present the
results of the best model, which was selected based on its performance on the holdout set
(Dataset 2).

Judging only by the raw anomaly scores of the test set (Figure 5), we expected that
the algorithm would perform well on the test set, due to the obvious increase of the MD
when the network was under attack. Indeed, when the detection rule was applied, the
algorithm detected all seven attacks of the test set, together with two false alarm instances
(Figure 6). The parameters selected by the fine-tuning process were (TH, l) = (49.58, 17).
This large length of the rolling mean window offset the alarms issued by the algorithm
and as a result improved the true positive rate on the dataset, but it was also the reason
why so many false positives were issued after some attacks ended. Only 16% of the total
false positives corresponded to false alarm instances. The first false alarm lasted 17 hours
(between the fifth and sixth attack), and the second had only a 2-hour duration (between
the sixth and seventh attack). The detection times of each attack were {5, 3, 0, 1, 0 1, 9},
resulting in a time to detection score STTD = 0.932 that combined with the SCM = 0.934
gave the algorithm an overall S = 0.933 on the test set.

Water 2021, 13, 1247 9 of 17

algorithm detected all seven attacks of the test set, together with two false alarm instances
(Figure 6). The parameters selected by the fine-tuning process were (𝑇𝐻, 𝑙) = (49.58, 17).
This large length of the rolling mean window offset the alarms issued by the algorithm
and as a result improved the true positive rate on the dataset, but it was also the reason
why so many false positives were issued after some attacks ended. Only 16% of the total
false positives corresponded to false alarm instances. The first false alarm lasted 17 hours
(between the fifth and sixth attack), and the second had only a 2-hour duration (between
the sixth and seventh attack). The detection times of each attack were {5, 3, 0, 1, 0 1, 9},
resulting in a time to detection score 𝑆்்஽ = 0.932 that combined with the 𝑆஼ெ = 0.934
gave the algorithm an overall 𝑆 = 0.933 on the test set.

When it comes to the running time of the proposed algorithm, the majority of the
computational load was consumed at the training stage of the TGCN. After the develop-
ment of the model and when the attack detection scheme was applied to new observa-
tions, the runtime was sufficiently fast, as it took a few seconds. Especially in the BA-
TADAL datasets, where the observations are reported on an hourly timescale, the algo-
rithm’s runtime did not affect the evaluation process.

Figure 5. Mahalanobis distance on the test set (𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3 of BATADAL), before and after using a
rolling mean window to avoid outliers.

Figure 6. Algorithm performance on the test dataset (𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3 of BATADAL).

4.2. Sensitivity Analysis
Training the TGCN model is a non-deterministic process and the results depend on

factors such as the initial starting point and batch randomization. When we trained our
algorithm multiple times, we noticed that its performance metrics had a small variance
between different training instances, indicating that the TGCN was fairly stable. However,
the proposed attack detection algorithm also involved the calibration of the detection rule
parameters (𝑇𝐻, 𝑙), a process that relies on the holdout set (one preferably with labeled
attacks) and the objective function. In this section, we explore how different data availa-
bility scenarios and the choice of the objective function affected the algorithm’s perfor-
mance.

Figure 5. Mahalanobis distance on the test set (Dataset 3 of BATADAL), before and after using a rolling mean window to
avoid outliers.

Water 2021, 13, 1247 9 of 16

Water 2021, 13, 1247 9 of 17

algorithm detected all seven attacks of the test set, together with two false alarm instances
(Figure 6). The parameters selected by the fine-tuning process were (𝑇𝐻, 𝑙) = (49.58, 17).
This large length of the rolling mean window offset the alarms issued by the algorithm
and as a result improved the true positive rate on the dataset, but it was also the reason
why so many false positives were issued after some attacks ended. Only 16% of the total
false positives corresponded to false alarm instances. The first false alarm lasted 17 hours
(between the fifth and sixth attack), and the second had only a 2-hour duration (between
the sixth and seventh attack). The detection times of each attack were {5, 3, 0, 1, 0 1, 9},
resulting in a time to detection score 𝑆்்஽ = 0.932 that combined with the 𝑆஼ெ = 0.934
gave the algorithm an overall 𝑆 = 0.933 on the test set.

When it comes to the running time of the proposed algorithm, the majority of the
computational load was consumed at the training stage of the TGCN. After the develop-
ment of the model and when the attack detection scheme was applied to new observa-
tions, the runtime was sufficiently fast, as it took a few seconds. Especially in the BA-
TADAL datasets, where the observations are reported on an hourly timescale, the algo-
rithm’s runtime did not affect the evaluation process.

Figure 5. Mahalanobis distance on the test set (𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3 of BATADAL), before and after using a
rolling mean window to avoid outliers.

Figure 6. Algorithm performance on the test dataset (𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3 of BATADAL).

4.2. Sensitivity Analysis
Training the TGCN model is a non-deterministic process and the results depend on

factors such as the initial starting point and batch randomization. When we trained our
algorithm multiple times, we noticed that its performance metrics had a small variance
between different training instances, indicating that the TGCN was fairly stable. However,
the proposed attack detection algorithm also involved the calibration of the detection rule
parameters (𝑇𝐻, 𝑙), a process that relies on the holdout set (one preferably with labeled
attacks) and the objective function. In this section, we explore how different data availa-
bility scenarios and the choice of the objective function affected the algorithm’s perfor-
mance.

Figure 6. Algorithm performance on the test dataset (Dataset 3 of BATADAL).

When it comes to the running time of the proposed algorithm, the majority of the com-
putational load was consumed at the training stage of the TGCN. After the development
of the model and when the attack detection scheme was applied to new observations, the
runtime was sufficiently fast, as it took a few seconds. Especially in the BATADAL datasets,
where the observations are reported on an hourly timescale, the algorithm’s runtime did
not affect the evaluation process.

4.2. Sensitivity Analysis

Training the TGCN model is a non-deterministic process and the results depend on
factors such as the initial starting point and batch randomization. When we trained our
algorithm multiple times, we noticed that its performance metrics had a small variance
between different training instances, indicating that the TGCN was fairly stable. However,
the proposed attack detection algorithm also involved the calibration of the detection rule
parameters (TH, l), a process that relies on the holdout set (one preferably with labeled
attacks) and the objective function. In this section, we explore how different data availability
scenarios and the choice of the objective function affected the algorithm’s performance.

4.2.1. Data Availability

The proposed algorithm was trained using data under normal operating conditions
and then the detection rule parameters TH and l were selected in a supervised way using
the fully labeled Dataset 2. However, fully labeled datasets with attacks are limited in prac-
tice. For that reason, we examined the algorithm’s performance under two different data
availability scenarios. More specifically, we fine-tuned the detection rule parameters using:

• Dataset 2(semi−labelled): The semi-labeled version of Dataset 2 that was given initially
to the BATADAL contestants for algorithm development “corresponds to a postattack
scenario in which forensics experts carry out an investigation to determine whether,
when and where the water distribution system has been affected” [5];

• Validation set: We investigated the scenario where a dataset containing attacks was
unavailable. We used as a holdout set the validation set (Xval , Yval) and since it does
not contain attacks, we could not use the aforementioned objective functions that
were tailored to binary classification datasets. Nevertheless, the squared Mahalanobis
distance follows a chi-squared distribution with p(= 31) degrees of freedom. Hence,
we set TH equal to the upper-tail critical value of chi-squared distribution with
p(= 31) degrees of freedom at a 99.9% significance level. Then, the length of the mean
rolling window l was calibrated by minimizing the number of false alarms in the
validation set.

The algorithm was able to detect all attacks in the test dataset under different data
availability scenarios and to retain its performance in terms of the S score (Table 1). Perhaps
this indicates that the attack detection algorithm can also be employed in a completely
unsupervised way, without the need of a set with labeled attacks. However, since the

Water 2021, 13, 1247 10 of 16

results concerned the algorithm’s performance only on Dataset 3, we need to further test
our hypothesis before drawing a conclusion.

Table 1. How different data availability scenarios (regarding the holdout set) affect the algorithm’s performance in the
test dataset.

Holdout Set Objective
Function F1 Score Precision Recall SCM STTD S

Dataset 2
(fully labeled) max(S) 0.813 ± 0.032 0.713 ± 0.05 0.948 ± 0.011 0.927 ± 0.011 0.933 ± 0.005 0.930 ± 0.005

Dataset 2
(semi-labeled) max(S) 0.857 ± 0.021 0.800 ± 0.047 0.926 ± 0.018 0.934 ± 0.005 0.932 ± 0.008 0.933 ± 0.006
Validation set min(FP) 0.873 ± 0.01 0.843 ± 0.022 0.906 ± 0.01 0.933 ± 0.004 0.93 ± 0.005 0.931 ± 0.004

4.2.2. Objective Function Choice

When tuning the detection rule parameters (TH, l), the goal was to select a combi-
nation such that the attack detection algorithm would detect as many attacks as possible
while issuing a small number of false alarms. Ideally, having available a single-number
metric that is closely tied with these objectives can significantly speed up the developing
process. However, we noticed that using as an objective function the maximization of the
S score on the hold-out set (Dataset 2) often resulted in a (TH, l) selection that produced
many false positive instances. Given that optimizing the algorithm’s detection performance
on the holdout set precedes its evaluation on unknown test sets, we decided to explore
how different objective functions perceive the algorithm’s performance as “optimal”. For
that reason, we experimented with replacing the S score from the objective function with
F1 and F2 score, and our findings are presented below.

Figure 7 and Table 2 show the performance of our algorithm on the holdout set
(Dataset 2) for the same TGCN model, but for different objective functions. From the
examples, we observed that changing the objective function could lead to algorithms that
produce fewer false positives without compromising the attack detection performance.
Notice how in this example, algorithms (b) and (c) had roughly the same S score (Table 2)
and yet, algorithm (c) issued a lot more false alarms (Figure 7). This is because the S score
implements TNR to determine the model’s ability to avoid false alarms, which presents
small variance in imbalanced datasets. As a result, using the F2 score in the objective
function (which also prioritizes the detection of attacks) produced fewer false positive
instances (Figure 7) without compromising the attack detection performance (Table 2).

Table 2. Algorithm performance on the holdout set (Dataset 2) using the same trained TGCN model,
but different objective functions to fine-tune the attack detection threshold “TH” and rolling mean
window length “l”.

Algorithm * (a) (b) (c)

Objective function maximize(F1) maximize(F2) maximize(S)
Precision 0.822 0.711 0.610

Recall 0.819 0.927 0.931
F1 score 0.821 0.805 0.737
F2 score 0.820 0.874 0.842

SCM 0.898 0.938 0.926
STTD 0.934 0.930 0.951

S 0.916 0.934 0.938
TNR 0.976 0.950 0.920
TP 403 456 458
FP 87 185 293
TN 3589 3491 3383
FN 89 36 34

* Each algorithm corresponds to the graphic performance of the algorithms showed in Figure 7.

Water 2021, 13, 1247 11 of 16

1

Figure 7. Graphic performance of the algorithm on the holdout set (Dataset 2) using the same trained TGCN model, but
different objective functions to fine-tune the attack detection threshold “TH” and rolling mean window length “l”. Objective
functions used: (a) F1 score, (b) F2 score, (c) BATADAL S score.

A common issue among the metrics in question is that they consider false positives as
independent from each other. However, scattered false positives contribute to the “crying
wolf” effect, while the same number of false positives concentrated one after the other can
be viewed as a single false alarm. This is especially highlighted when looking at the number
of false positives issued by the algorithms tuned with F1 and F2 score (algorithm (a) and
(b), respectively) (Table 2). We would expect that algorithm (a), which issued fewer false
positives than algorithm (b), would also issue fewer false alarm instances. Nevertheless,
algorithm (a) issued five false alarm instances and algorithm (b) four (Figure 7).

Although the S score was reasonably designed to be biased towards attack detection
(like F2 score), it failed to distinguish when an algorithm issued too many false positives
and as a result sometimes failed to rank the performance of different algorithms. This was
especially challenging at the developing stage where S is used to solve an optimization
problem. We argue that to accelerate the development of threshold-based algorithms, there
is a need to adopt common performance metrics that are better aligned to the challenge of
cyber–physical attack detection in water distribution networks.

Water 2021, 13, 1247 12 of 16

4.3. Attack Localization

To identify which components of the network were under attack, we compared the
MSE of the prediction at each node of the network to its corresponding maximum error
from the validation set. We used the highest error in the validation set as a reference to
our model’s prediction error on normal data. We found that, during an attack, the features
that were the closest or surpassed their historically highest error (under normal operating
conditions) were the ones that were either near the area under attack or attacked directly.
Attack 13 was the only attack scenario where the algorithm identified only the area of the
network under attack and not the component directly targeted (Table 3).

Table 3. Attack localization for the test set (Dataset 3) of BATADAL. Components in bold correspond to the directly
attacked components.

Attack Label Attack Description Features with the Highest Average MSE during the
Attack (in a Descending Order)

Attack 8 Alteration of L_T3 thresholds leading to underflow L_T3 P_J256
Attack 9 Alteration of L_T2 readings leading to overflow L_T2 P_J300 P_J289 P_J422
Attack 10 Activation of PU3 S_PU3
Attack 11 Activation of PU3 S_PU3
Attack 12 Alteration of L_T2 readings leading to overflow L_T2 P_J300 P_J289
Attack 13 Change the L_T7 thresholds P_J302 P_J307 L_T6
Attack 14 Alteration of T4 signal P_J415 L_T4

4.4. TGCN Model Explainability

In this section, we utilized TGCN’s ability to accept inputs with arbitrary graph
structures in an attempt to interpret model predictions. To do that, we relied on removal-
based explanations “that are based on the principle of simulating feature removal to
quantify each feature’s influence” [23]. More specifically, we deployed a method called
“sequence dropout” [21], where we omitted from the input one of the water network’s
features at a time and observed its impact on the model’s prediction. We applied the
sequence dropout on the validation set, which does not contain any attacks, and we report
the results.

Figure 8 quantifies each feature’s contribution to the model’s forecasting accuracy. It
shows the percent increase of the model’s overall MSE when a feature was omitted from
the input of the model. The most influential features were the pressure at the junction
that connected the reservoir with the water distribution network, and the water level at
the network’s tanks. The model considered as more important the flow of the pumps
that worked during the training set and tended to give less attention to pumps that were
deactivated in the attack free set (PU3, PU5, PU6, PU9, and PU11).

Water 2021, 13, 1247 13 of 17

dropout” [21], where we omitted from the input one of the water network’s features at a
time and observed its impact on the model’s prediction. We applied the sequence dropout
on the validation set, which does not contain any attacks, and we report the results.

Figure 8 quantifies each feature’s contribution to the model’s forecasting accuracy. It
shows the percent increase of the model’s overall MSE when a feature was omitted from
the input of the model. The most influential features were the pressure at the junction that
connected the reservoir with the water distribution network, and the water level at the
network’s tanks. The model considered as more important the flow of the pumps that
worked during the training set and tended to give less attention to pumps that were de-
activated in the attack free set (PU3, PU5, PU6, PU9, and PU11).

Figure 8. Feature importance summarization based on the percent increase of the MSE after each feature’s omission.

Figure 9 provides a node-level summary of the impact each feature sequence had on
the other features of the network when it was omitted from the input. By examining which
features were affected the most when removing a sequence, we could extract useful infor-
mation regarding the interdependencies among the features as those were assigned by the
deep learning model. For instance, we observed that the TGCN model mostly depended
on what a tank’s water level was at previous timesteps to make a prediction about the
tank’s current level. This means that tank levels were not influenced much by the other
features of the network. On the other side, the working pumps of the network were influ-
enced by tanks of the same DMA, meaning that the model could assign accurate relation-
ships (based on the physical model) between the network’s components. However, the
model, reasonably, failed to assign meaningful dependencies to the pumps that were
closed during the entirety of the training set (PU3, PU5, PU6, PU9, and PU11). Another
shortcoming of the model is that it failed to represent the actual interconnections of the
network’s junctions. Instead, the junctions of the network were influenced almost exclu-
sively by J280, which is the junction that connects the reservoir with the water distribution
network.

It is interesting to notice that Tank 7 was strongly influenced by Tank 6. Perhaps this
was why our algorithm disclosed Tank 6, instead of Tank 7, as the most likely under-
attack-component during the attack scenario 13. Our ability to make this assumption high-
lights the importance of algorithm explainability. Having some insight into why algo-
rithms behave as they should not, helps us take tailored-to-the-problem actions during
development, such as improving the training data, refining specific features, and updat-
ing the model architecture.

Figure 8. Feature importance summarization based on the percent increase of the MSE after each feature’s omission.

Water 2021, 13, 1247 13 of 16

Figure 9 provides a node-level summary of the impact each feature sequence had
on the other features of the network when it was omitted from the input. By examining
which features were affected the most when removing a sequence, we could extract useful
information regarding the interdependencies among the features as those were assigned by
the deep learning model. For instance, we observed that the TGCN model mostly depended
on what a tank’s water level was at previous timesteps to make a prediction about the tank’s
current level. This means that tank levels were not influenced much by the other features
of the network. On the other side, the working pumps of the network were influenced
by tanks of the same DMA, meaning that the model could assign accurate relationships
(based on the physical model) between the network’s components. However, the model,
reasonably, failed to assign meaningful dependencies to the pumps that were closed during
the entirety of the training set (PU3, PU5, PU6, PU9, and PU11). Another shortcoming of
the model is that it failed to represent the actual interconnections of the network’s junctions.
Instead, the junctions of the network were influenced almost exclusively by J280, which is
the junction that connects the reservoir with the water distribution network.

Water 2021, 13, 1247 14 of 17

Figure 9. Node-level summary of the impact each feature has on the other features of the network.

4.5. Comparison with BATADAL Algorithms
The BATADAL contestants had at their disposal 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2(௦௘௠௜ି௟௔௕௘௟௘ௗ) to develop their algorithms. If we had participated in the competi-

tion, the model of our choice (out of the 20 trained models) would have been the one with
the best performance (maximum 𝑆 score) in the holdout set, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2(௦௘௠௜ି௟௔௕௘௟௘ௗ) .
Based on this criterion, we report the performance of our algorithm in Table 4. When com-
pared with the algorithms that participated at BATADAL, TGCN ranks in the third posi-
tion right after the algorithms proposed by Housh and Ohar [9] and Abokifa et al. [12].
Housh and Ohar proposed a model-based approach that requires a perfectly calibrated
hydraulic model of the network. However, an accurate hydraulic model might be difficult
to obtain in real-life settings, due to uncertainties in key model parameters (such as nodal
demands, pipes roughness, etc.). Furthermore, it should be noted that Abokifa et al. pro-
posed a multi-stage approach that operates using an alarm watch window procedure. The
alarm watch window procedure might require a waiting period (starting from the mo-
ment the first anomaly is discovered) before an attack alarm is issued. This means that, as
also acknowledged by Abokifa et al., the time to detection of the attacks (𝑆்்஽) reported
“does not reflect the practical time taken by the proposed algorithm when operated in
real-time fashion” [12]. In comparison, TGCN does not require the use of a detailed phys-
ical model nor multi-stage techniques. As such, and given that the proposed algorithm is
also explainable and can be implemented in real-time, we argue that it is an approach
worthy of further exploration.

Figure 9. Node-level summary of the impact each feature has on the other features of the network.

It is interesting to notice that Tank 7 was strongly influenced by Tank 6. Perhaps
this was why our algorithm disclosed Tank 6, instead of Tank 7, as the most likely under-
attack-component during the attack scenario 13. Our ability to make this assumption
highlights the importance of algorithm explainability. Having some insight into why
algorithms behave as they should not, helps us take tailored-to-the-problem actions during
development, such as improving the training data, refining specific features, and updating
the model architecture.

4.5. Comparison with BATADAL Algorithms

The BATADAL contestants had at their disposal Dataset 1 and Dataset 2(semi−labeled)
to develop their algorithms. If we had participated in the competition, the model of our

Water 2021, 13, 1247 14 of 16

choice (out of the 20 trained models) would have been the one with the best performance
(maximum S score) in the holdout set, Dataset 2(semi−labeled). Based on this criterion, we
report the performance of our algorithm in Table 4. When compared with the algorithms
that participated at BATADAL, TGCN ranks in the third position right after the algorithms
proposed by Housh and Ohar [9] and Abokifa et al. [12]. Housh and Ohar proposed a
model-based approach that requires a perfectly calibrated hydraulic model of the network.
However, an accurate hydraulic model might be difficult to obtain in real-life settings, due
to uncertainties in key model parameters (such as nodal demands, pipes roughness, etc.).
Furthermore, it should be noted that Abokifa et al. proposed a multi-stage approach that
operates using an alarm watch window procedure. The alarm watch window procedure
might require a waiting period (starting from the moment the first anomaly is discovered)
before an attack alarm is issued. This means that, as also acknowledged by Abokifa et al.,
the time to detection of the attacks (STTD) reported “does not reflect the practical time
taken by the proposed algorithm when operated in real-time fashion” [12]. In comparison,
TGCN does not require the use of a detailed physical model nor multi-stage techniques. As
such, and given that the proposed algorithm is also explainable and can be implemented
in real-time, we argue that it is an approach worthy of further exploration.

Table 4. Comparison of TGCN with BATADAL algorithms.

Number of
Attacks Detected S STTD SCM TPR TNR

Housh and Ohar 7 0.970 0.965 0.975 0.953 0.997
Abokifa et al. 7 0.949 0.958 0.940 0.921 0.959

TGCN 7 0.931 0.934 0.928 0.885 0.971
Giacomoni et al. 7 0.927 0.936 0.917 0.838 0.997

Brentan et al. 6 0.894 0.857 0.931 0.889 0.973
Chandy et al. 7 0.802 0.835 0.768 0.857 0.678
Pasha et al. 7 0.773 0.885 0.660 0.329 0.992

Aghashahi et al. 3 0.534 0.429 0.640 0.396 0.884

5. Discussion

We found that TGCN is a valuable tool for cyber–physical attack detection in water
distribution systems. The proposed algorithm exhibited strong detection performance as
it was capable of detecting all simulated attacks while issuing a small number of false
positive instances. The small training variance and the fact that the algorithm retained its
performance after changes made to the threshold tuning step indicates that the proposed
algorithm possesses robust characteristics. Furthermore, for the majority of the bench-
mark attacks, the algorithm was capable of localizing the components directly targeted.
Interestingly, the algorithm’s explainability properties made it feasible to also understand
why the algorithm failed to detect directly targeted components for some attacks. We
also conclude that the TGCN succeeded in learning how to represent the network since
it assigned relationships between the network’s components that could be considered
accurate based on the physical model.

The work also demonstrated that several performance metrics, which are commonly
found in the literature, fall short when used as an objective function in the threshold tuning
step. This was because the available metrics consider different observations as independent
samples, failing to distinguish sequential from scattered false alarms or timely from delayed
attack detection. As Taormina et al. noted [5], there is also a lack of metrics that consider
the damage corresponding to the delayed detection of an attack. Hence, we also argue for
the need of a set of novel metrics that are aligned with the cyber–physical attack detection
objectives and account for the problem-specific characteristics of the SCADA datasets, as
these would help accelerate the optimization process of threshold-based algorithms and
provide a common framework for ranking different algorithms.

Water 2021, 13, 1247 15 of 16

When compared with other algorithms developed for the BATADAL competition,
the algorithm described in this work ranks among the best-performing ones. Despite
not having the best performance [5], we argue that it presents a unique combination of
advantages. Using the Mahalanobis distance as an anomaly score helps the practitioner
select the anomaly detection parameters in a completely unsupervised way when a set
with labeled attacks is unavailable. The algorithm is adaptable to real-time intrusion
detection given that detection rules require only past or current data. Furthermore, it was
capable of detecting and localizing attacks with a single model, without requiring multiple
stages. The TGCN model is not only limited to anomaly detection but can also be used
for tasks that require forecasting the system’s hydraulic state, such as real-time network
optimization and management. Perhaps the most important characteristic of the algorithm
is its explainability. This step towards “explainable AI” is important as it allows for the
extraction of useful insights about how models work and contributes to trust-building
by practitioners within water companies. This explainability could also be used to tailor
algorithms using domain knowledge to detect vulnerabilities that would otherwise require
extensive experiments and simulations when using purely black-box algorithms.

However, some limitations of the proposed algorithm should also be noted. First, it
is not possible to calculate the Mahalanobis distance in higher dimensional datasets due
to multicollinearity. Second, unlike the attack detection algorithm, the attack localization
algorithm was not able to immediately identify the directly targeted component for all
attack scenarios. Furthermore, given that the BATADAL datasets were generated using
“fairly regular” demand patterns [5] and our algorithm is data-based, the question of
whether it would retain its robustness when tested on real-life datasets remains unanswered.
However, it could be argued that the fact that the model embeds the spatial information of
its input features (in itself a form of prior knowledge), should help the algorithm retain
(some of) its robustness compared to solely data-based algorithms. Finally, our algorithm’s
robustness has not been tested against adversarial attacks. Although the benchmark attack
scenarios contained manipulated SCADA readings, including attacks concealed by replay,
further testing is required.

These remarks also point towards future research avenues. For example, the anomaly
detection algorithm, although sufficient for the benchmark datasets, can be adapted to be
efficient in higher dimensional datasets. The encouraging localization performance acts
as a motivation to suggest the future development of a real-time attack localization-and-
response algorithm combined with new performance metrics that consider the cost of not
localizing an attack promptly. The robustness of the algorithm can be further validated
by observing its performance in more realistic, stochastically generated datasets based on
real-life network timeseries that also incorporate adversarial attacks.

6. Conclusions

We presented an online, one-stage, explainable algorithm for the detection of cyber–
physical attacks in water distribution systems. The proposed algorithm’s uniqueness
stems from its ability to simultaneously embed the temporal and spatial information of
its input features. This was achieved by implementing temporal graph convolutional
neural networks and the Mahalanobis distance. Based on the explainability and the good
localization performance of the algorithm, we argue that the use of deep learning models
that consider the graph structure of the water network is a promising research direction. It
is hoped that this work will contribute to the further adoption and development of novel
GNN algorithms in water infrastructure problems, and that it will motivate the adoption
of common performance metrics that are better aligned to the challenge of cyber–physical
attack detection in water distribution networks.

Author Contributions: Conceptualization, C.M.; methodology, L.T. and C.M.; software, L.T.; investi-
gation, L.T. and C.M.; writing—original draft preparation, L.T.; writing—review and editing, L.T.
and C.M.; visualization, L.T.; supervision, C.M. All authors have read and agreed to the published
version of the manuscript.

Water 2021, 13, 1247 16 of 16

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Makropoulos, C.; Savić, D.A. Urban hydroinformatics: Past, present and future. Water 2019, 11, 1959. [CrossRef]
2. Nikolopoulos, D.; Moraitis, G.; Bouziotas, D.; Lykou, A.; Karavokiros, G.; Makropoulos, C. Cyber-physical stress-testing platform

for water distribution networks. J. Environ. Eng. 2020, 146, 04020061. [CrossRef]
3. Hassanzadeh, A.; Rasekh, A.; Galelli, S.; Aghashahi, M.; Taormina, R.; Ostfeld, A.; Banks, M.K. A review of cybersecurity

incidents in the water sector. J. Environ. Eng. 2020, 146, 03120003. [CrossRef]
4. Tuptuk, N.; Hazell, P.; Watson, J.; Hailes, S. A systematic review of the state of cyber-security in water systems. Water 2021, 13, 81.

[CrossRef]
5. Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A.; Eliades, D.G.; Aghashahi, M.; Sundararajan, R.; Pourahmadi,

M.; Banks, M.K.; et al. Battle of the attack detection algorithms: Disclosing cyber attacks on water distribution networks. J. Water
Resour. Plan. Manag. 2018, 144, 04018048. [CrossRef]

6. Kossieris, P.; Makropoulos, C. Exploring the statistical and distributional properties of residential water demand at fine time
scales. Water 2018, 10, 1481. [CrossRef]

7. Kossieris, P.; Tsoukalas, I.; Makropoulos, C.; Savic, D. Simulating marginal and dependence behaviour of water demand processes
at any fine time scale. Water 2019, 11, 885. [CrossRef]

8. Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. Characterizing cyber-physical attacks on water distribution
systems. J. Water Resour. Plan. Manag. 2017, 143, 04017009. [CrossRef]

9. Housh, M.; Ohar, Z. Model-based approach for cyber-physical attack detection in water distribution systems. Water Res.
2018, 139, 132–143. [CrossRef] [PubMed]

10. Brentan, B.M.; Campbell, T.E.; Gonzalez-Lima, F.; Manzi, D.; Ayala-Cabrera, D.; Herrera, M.; Montalvo, I.; Izquierdo, J.; Luvizotto,
E. On-line cyber attack detection in water networks through state forecasting and control by pattern recognition. In Proceedings
of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; American Society of
Civil Engineers: Reston, VA, USA, 2017; pp. 583–592.

11. Pasha, M.F.K.; Kc, B.; Somasundaram, S.L. An approach to detect the cyber-physical attack on water distribution system. In
Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 703–711.

12. Abokifa, A.A.; Haddad, K.; Lo, C.; Biswas, P. Real-time identification of cyber-physical attacks on water distribution systems via
machine learning–based anomaly detection techniques. J. Water Resour. Plan. Manag. 2019, 145, 04018089. [CrossRef]

13. Ramotsoela, T.D.; Hancke, G.P.; Abu-Mahfouz, A.M. Behavioural intrusion detection in water distribution systems using neural
networks. IEEE Access 2020, 8, 190403–190416. [CrossRef]

14. Kadosh, N.; Frid, A.; Housh, M. Detecting cyber-physical attacks in water distribution systems: One-class classifier approach.
J. Water Resour. Plan. Manag. 2020, 146, 04020060. [CrossRef]

15. Ramotsoela, D.T.; Hancke, G.P.; Abu-Mahfouz, A.M. Attack detection in water distribution systems using machine learning. Hum.
Cent. Comput. Inf. Sci. 2019, 9, 1–22. [CrossRef]

16. Taormina, R.; Galelli, S. Deep-learning approach to the detection and localization of cyber-physical attacks on water distribution
systems. J. Water Resour. Plan. Manag. 2018, 144, 04018065. [CrossRef]

17. Chandy, S.E.; Rasekh, A.; Barker, Z.A.; Shafiee, M.E. Cyberattack detection using deep generative models with variational
inference. J. Water Resour. Plan. Manag. 2019, 145, 04018093. [CrossRef]

18. Quiñones-Grueiro, M.; Prieto-Moreno, A.; Verde, C.; Llanes-Santiago, O. Decision support system for cyber attack diagnosis in
smart water networks. IFAC Pap. 2019, 51, 329–334. [CrossRef]

19. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
International Joint Conferences on Artificial Intelligence Organization: Seattle, WA, USA, 2018; pp. 3634–3640.

20. Teh, T.; Auepanwiriyakul, C.; Harston, J.A.; Faisal, A.A. Generalised Structural CNNs (SCNNs) for Time Series Data with
Arbitrary Graph Topology. arXiv 2018, arXiv:1803.05419v2.

21. Covert, I.; Krishnan, B.; Najm, I.; Zhan, J.; Shore, M.; Hixson, J.; Po, M.J. Temporal Graph Convolutional Networks for Automatic
Seizure Detection. arXiv 2019, arXiv:1905.01375v1.

22. McLachlan, G.J. Mahalanobis distance. Resonance 1999, 4, 20–26. [CrossRef]
23. Covert, I.; Lundberg, S.; Lee, S.-I. Explaining by removing: A unified framework for model explanation. arXiv 2020,

arXiv:2011.14878v1.

http://doi.org/10.3390/w11101959
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001722
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001686
http://doi.org/10.3390/w13010081
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000969
http://doi.org/10.3390/w10101481
http://doi.org/10.3390/w11050885
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000749
http://doi.org/10.1016/j.watres.2018.03.039
http://www.ncbi.nlm.nih.gov/pubmed/29635150
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001023
http://doi.org/10.1109/ACCESS.2020.3032251
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001259
http://doi.org/10.1186/s13673-019-0175-8
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000983
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001007
http://doi.org/10.1016/j.ifacol.2019.01.024
http://doi.org/10.1007/BF02834632

	Introduction
	Materials and Methods
	Temporal Graph Convolutional Networks
	Attack Detection Algorithm
	TGCN for Time-Series Prediction
	Calibration of the Attack Detection Scheme

	Case Study
	BATADAL
	Application of the Attack Detection Algorithm to C-Town
	Algorithm Performance Metrics

	Results
	Attack Detection Performance
	Sensitivity Analysis
	Data Availability
	Objective Function Choice

	Attack Localization
	TGCN Model Explainability
	Comparison with BATADAL Algorithms

	Discussion
	Conclusions
	References

