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Abstract: This paper proposes to apply a Markov chain random field conditioning method with a
hybrid machine learning method to provide long-range precipitation predictions under increasingly
extreme weather conditions. Existing precipitation models are limited in time-span, and long-range
simulations cannot predict rainfall distribution for a specific year. This paper proposes a hybrid
(ensemble) learning method to perform forecasting on a multi-scaled, conditioned functional time
series over a sparse l1 space. Therefore, on the basis of this method, a long-range prediction algorithm
is developed for applications, such as agriculture or construction works. Our findings show that
the conditioning method and multi-scale decomposition in the parse space l1 are proved useful in
resisting statistical variation due to increasingly extreme weather conditions. Because the predictions
are year-specific, we verify our prediction accuracy for the year we are interested in, but not for
other years.

Keywords: climate change; stochastic model; multi-scale analysis; Markov chain random field;
optimal ensemble learning

1. Introduction

Precipitation modeling is important for a wide range of applications. Knowing future
water conditions is key to many fields. For example, in agriculture, high kinetic rainfall
during the flowering stage will devastate subsequent crop yields. Predicting the precipita-
tion distribution and foreseeing such events can facilitate cultivation planning to prevent
yield loss. In this case, accurate rainfall profiling is more important than just estimating the
recurrence period. However, most precipitation models fail for the occurrence of extremity
in weather time series. Therefore, a reliable year-round prediction algorithm is required in
the emerging extreme weather for applications that rely on precipitation prediction.

Statistical prediction is possible only when certain repetitive patterns or invariant
properties are observed in specific subspaces. Therefore, the occurrence of precipitation
may exhibit their similarity in certain subspaces but dissimilarity in other subspaces. Such
versatile similarities in subspaces should be treated differently.

Two types of precipitation modeling are often envisioned: a history-dependent time
series and a time-independent probability distribution. The time series model aims to
reconstruct precipitation patterns for a period, while the probability model concentrates
on the occurrence of precipitation events in a period. Classical Neyman-Scott clustering
theory incorporates the two precipitation models into a stochastic point process [1,2].
Future rainfall patterns can be predicted through simulation based on the established
mathematical structure and estimated parameters of the prediction model in a stochastic
point process [3–5]. Stochastic time-series are frequently modeled using Markov processes
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in the Neyman-Scott model. Rainfall simulation is often built on variations of hidden
Markov models [6–8]. Therefore, a research gap exists in the prediction method under
extreme weather conditions.

The process of modeling the precipitation under extreme rainfalls, time-independent
probability distribution approaches are often used because the assumptions of stationary
and time-invariant distribution between years for ordinary time-series analysis are difficult
to be maintained. Precipitation analysis under extreme conditions often apply depth-
duration-frequency curves [9,10], extremograms [11], internal climate variability [12], and
selected covariates [13] for the probabilities of rainy events. For agricultural and hydrologi-
cal applications, inter-monthly variability needs to be handled in time series prediction.
The synthetic weather generator can be assisted by a Markov chain for precipitation occur-
rence in the auto-regressive model for daily and monthly generators [14]. However, such
methods still cannot make a specific prediction on a date basis. Without specific prediction
on a particular date, a water resource manager is difficult to make a working schedule.

Our method of learning ensembles takes inputs from the vectorized yearly precipita-
tion. When the value of a time series element is a vector, then the time series is a functional
time series. A functional can be deemed a “function of a function”; that is, it is a mathe-
matical structure for which an entire function is a value in a Hilbert space [15]. Therefore,
predictions obtained from a functional time series perfectly fits our purpose of year-round
prediction [16]. Prediction in functional time series possesses the advantage of exploiting
the coherency within the subgroups of a time series. That is, the Markov behavior depends
not only on the immediate successors but also on the repetitive patterns of the previous
years. Although the applications of functional time series have been developed for a long
time [17–19], the exploitation of coherency property is recent. Exploiting the subgroup
covariance structure of the functional auto-regression, drought intervals can be suitably
predicted [20].

As the escalated variations in the ratio of dry to wet days, the advantages of conven-
tional functional time series in coherency become insufficient to accommodate extreme
weather conditions. The yearly functional time-series can be decomposed into smooth
seasonal components and non-smooth stochastic components, which are no-where differ-
entiable manifolds or non-stationary time series. By introducing a self-similarity predictor
in the functional time series, the prediction can overcome certain non-stationary time
series [21,22]

The non-stationary part of time series has been addressed mathematically. The non-
smooth manifolds in Lipschitz and Riemannian domains have been developed [23] and
applied to algorithm levels. For example, Tsaig and Donoho [24] optimize wavelet co-
efficients in a multi-resolution non-smooth space. Ledyaev and Zhu [25] and Chen [26]
develop a computation method to approximate a non-smooth manifold on a smooth
manifold. With the mathematical foundation, low dimensional smooth manifolds can be
projected to high dimensional non-smooth manifold [27].

In addressing the non-stationary part of the time series in extreme weather conditions,
simulation in Markov chain random field (MCRF) and transiograms can be used to con-
dition the manifold and improve the consistency of subsequent predictions. The method
of MCRF has been used widely in geostatistics for modeling categorical/discrete fields in
two or three spatiotemporal dimensions. This study treats the time-frequency domain as a
spatiotemporal domain. That is, when a time series is transformed into a series of wavelet
coefficients, the time series then has spatial neighbors in time and scale. The non-smooth
manifold can be imputed in this time-frequency domain [24]. MCRF is an ideal tool to make
the imputation. However, because of the property of Markov chain, the wavelet coefficients
must be quantized to categorical values before application of MCRF, and the neighbors are
grids of in the time-frequency coordinate. By such conversion, the transitional probabilities
can be estimated empirically as a standard process of a continuous Markov chain Li and
Zhang [28]. For increasing the predictability, the neighborhood can be further defined
on an abstract mathematical structure, called multi-point statistics [29]. In estimating the



Water 2021, 13, 1241 3 of 15

transiograms, multi-points and auxiliary variables can significantly increase the kriging
performance [30,31]. Similar to our Ising dipole structure, Ding et al. [32] develop a generic
dipole lattice on a graph and significantly accelerate the learning speed of the random field.

At the same time, our two-stage method involves machine learning models for pre-
cipitation modeling. The ensemble method is a hybrid method with multiple learners on
subgroups of training datasets. Ensemble learning with diversified datasets and learn-
ers is considered useful [33]. Hydrological applications have widely adopted this ma-
chine learning method [34–36]. The long-term prediction under the situation of climate
changes [37–39] and rainfall downscaling under extreme weather conditions, as in Pham
et al. [40], Diez-Sierra and del Jesus [41], has also been investigated. The neural network
method in convolutional and long short-term memory is also popular [42,43]. However,
due to the special characteristics of neural network, our MCRF cannot fuse with this
method. A technique in ensemble learning is called bootstrap aggregating (bagging), which
is effective for establishing diversity, but rare events still cause significant bias in the dataset
[44].

To make prediction stable, we dynamically split the time series from all weather
stations into disjoint bands. The ensemble learning method is used to forecast on a sparse
multi-scale functional time series, for which the learning goal is toward an optimally
weighted combination of goodness-of-fit (GOF) values for future precipitation patterns.

Our findings suggest that the proposed MCRF conditioning approach resists statistical
variation under increasingly extreme weather conditions. Based on a conditioned decompo-
sition in the sparse l1 space, the machine learning model correctly predicts the precipitation
distribution at the target year. The results reveal that our year-round prediction is accurate
and specific. That is, differing from simulation methods, our prediction is generated only
for the target year, not on any-other years. This year-specific accuracy continuously remains
high with increasingly extreme weather conditions.

2. Two-Stage Prediction and Conditioning

Given a sequence of observations {y1,1, . . . , y1,365, . . . , yτ,1, . . . , yτ,365}, in the dual in-
dex set by (year, day), the observations can be expressed as the following functional
time series: {

Y(t)|t ∈ {1, 2, . . . , T}, Y ∈ V ⊂ R365
}

. (1)

The functional Y(t) = {y1(t), . . . , y365(t)} at epoch t takes values on V, where t represents
years, and V represents the vector values taken on a fixed period of 365 days for years
{1, 2, . . . , T}. The functional Y(·) is considered an element in the l2 Hilbert space over
V [45,46].

Multiple methods are applied in the ensemble method to maximize the accuracy
of prediction and validated on multiple repetition bands for each subspace. This study
develops an ensemble of methods in a series of operations, as illustrated in Figure 1.
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Figure 1. Two-stage prediction and conditioning.

2.1. Prediction Models in the First Stage

The first stage prediction model f is established to model the functional Y(t) in (1).
Therefore, the functional at time t + 1 is a function of Y at time t plus a fine-scale, uncorre-
lated modeling error ε(t):

Y(t + 1) = f (Y(t)) + ε(t). (2)

Model f in (2) is an l2−operator that needs to be estimated from the sequence of observation
data {Y(t)|t = 1, . . . , T}. The model f can be express by a kernel function β and Yi, the i-th
component in the functional Y, and

Yi(t) =
365

∑
j=0

Yj(t)βij + εi(t). (3)

Let Y(t) = ∑K
k=1 ctkψk(t), where ψk(t) and ck are the k-th basis function and coefficient

vector in V, respectively. In addition, let βij =
∫ T

s=0 ψi(s)btijψj(s)ds. The basis function can
be bind to a matrix Ψ(t) = (ψ1, . . . , ψK) and the component of kernel function can be bind
to a matrix B = {bij|i, j ∈ {1, . . . , 365}}. Therefore, we write (3) to

Ct+1Ψ = CtZBΨ + ε(t), (4)

where C = (c1, . . . , c365) and Z = (
∫ T

0 ψiψ
T
j (s)ds)i,j=1,...,365. Estimation of these coefficients

in B is straightforward in an equivalent Yule-Walker equation [47] or a Nadaraya-Watson
kernel estimator [48]. The method of partial least squares can reduce computation time [49].
This study adopts the standard method of partial least squares.

2.2. Learning Ensemble in the Second Stage

Multiple methods are hybridized into an ensemble for each subspace band to ensure
that the transformation results are stable. Learners are designed to take either the point
day-valued or the functional year-valued precipitation time series from the first stage. To
avoid over-fitting during the training phase, the combined regression at the second stage
includes all the prediction results from the first stage.

Ensemble prediction modeling is also multi-scaled in the form of discrete wavelet
bands. Therefore, individual learners in each band can adapt to the specific data charac-
teristics. Each learner is trained to fit the model matrix Ψi, based on the pairs of records
(xi, yi) in training and testing results of the first stage model (5). The challenge encountered
by individual learners during estimation involves the near-singular moment matrix X′X;
this problem is often resolved through regularization by adding a positive perturbation
constant or a Lagrange multiplier λ to the diagonals.
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To avoid over-fitting, we further generalized the second stage optimization problem
as follows (5) [50].

min
B
||Ct+1Ψ− CtZBΨ||22 + λ

{
(1− α)/2||B||22 + α||B||1

}
. (5)

The optimization (5) is regulated by the Lasso (Least Absolute Shrinkage and Selection
Operator) penalty (α = 1) or the ridge penalty (α = 0). The optimization in (5) takes
advantage of the l1 norm in evaluating solutions for an ill-posed problem.

Due to the properties of the l1 space, an optimization (e.g., minx ||x||1, s.t. (4))
will minimal non-zero solutions, and it will yield strong reconstruction performance
if several sparsity properties, such as restricted isometry and incoherence properties, are
satisfied [51–53]. In our multivariate transformation matrix Ψi, the lasso penalty tends
to reduce the coefficients of less important covariates to zero, thus generating more zero
solutions and fitting our assumption about the ratio of wet to dry days.

2.3. Markov Chain Random Field Conditioning

In the problem of extreme weather conditions, the coherency among periods of the
time series must be established before applying the learning algorithm. Conventional
prediction methods rely on the assumption that weather conditions repeat themselves
with a certain pattern. Due to the long-memory and fractal properties of precipitation, its
occurrence may exhibit similarity in certain subspaces. However, because this repetitive
pattern may vary even within the proximal region, the model must be carefully fine-tuned
to ensure that the particular realizations of a stochastic process will correctly express
the estimation. Increased variation hiders the prediction task under extreme weather
conditions. Thus, this study proposes a special method to restore coherency and mitigate
the influence of extreme precipitation conditions.

Most statistical approaches establish the model as sampling is performed. Because
the process of modeling itself is also an unknown process, some invariant properties could
be misguided by a particular pattern of sampling or a realization of precipitation. This
sampling variation is mostly observed in high-frequency subspaces or in non-smooth
manifolds. A yearly functional time-series can be decomposed into smooth seasonal
components and non-smooth stochastic components, which are no-where differentiable
manifolds. If the data in these manifolds can be “resample” in certain sense, the prediction
consistency can be improved. That is, the validation accuracy will close to the training
accuracy. This study utilizes Markov chain random fields (MCRFs) and transiograms
to condition the sample values. The transition probabilities of the MCRF are trained
based on the entire data history, and the distance lag is defined in the spatio-temporal
space. Therefore, MCRF conditioning stabilizes the coherency property, based on the
distribution of dry and wet days in the source years on a multi-scale time-frequency
decomposition space.

The conditioning method employs the method of MCRF. An MCRF models the spatial
dependencies between the vicinity nodes as a Markov chain and applies Bayesian updating
to the neighbourhood of a lattice structure. The purpose of MCRF conditioning is to
impute missing information over the realizations of the stochastic yearly precipitation.
In the subsequent regression steps, the coherence between years may be destroyed by
the realizations of random events in the yearly time series. Without conditioning, the
predictor may have insufficient information to capture the coherency for the prediction.
In this study, the Markov transition probabilities in the MCRF are trained to enhance the
accuracy of regression predictors in the functional time series analysis. This conditioning
method improves the effectiveness of ensemble learning and accommodates extreme
weather conditions.

By using MCRF conditioning, the distribution of dry and wet days in the source years
is modeled on a multi-scale time-frequency decomposition space. Let {Z(u) : u ∈ D}
be a finite random field on a fixed subset D of a d-dimensional space with state space
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S = (1, . . . , n), in which M nodes reside on the observable manifold and the remaining N
unobserved nodes are to be estimated in the unobservable manifold, where |D| = K =
M + N. The quantized states over the random field are visualized as shown in Figure 2. Let
yi(t) = ∑m

j=1 αijκ(xij(t), xj(t))+φi(t)+ ξi(t), for i = 1, · · · , L, and let Λ = {j ∈ S : |j| ≤ K}
be a symmetric finite hypercube on S. Then, a probability measure can be defined on the
set of Borel σ-fields as B(ΩΛ), where ΩΛ is the configuration space of all sequences
ω = {ωj}j∈Λ; that is, ΩΛ = {1, . . . , n}Λ.

(a) MCRF training (b) Imputation bands

(c) Before imputation (d) After imputation

Figure 2. Quantized spectral maps. Because Markov chains take categorical values, the CWT must
be quantized to levels. (a) The target transiogram extracted from training datasets (X represented
time point, Y represented frequency). (b) Imputation bands specified how MCRF performed for
each frequency (The top one had the lowest sampling density on the mask, and the bottom one
had the highest sampling density on the mask. The horizontal axis represented frequency). (c) The
transiogram masked by the imputation bands. (d) the imputed transiogram by MCRF.

For each ω ∈ ΩΛ, the product measure in S is given by µΛ{ω} = 2−|Λ|, where |Λ| =
2N + 1. The Hamiltonian in ω ∈ ΩΛ is defined as HΛ,h(ω) = − 1

2 ∑i,j∈Λ Φ({i, j})ωiωj −
h ∑j∈Λ ωj, where Φ is a non-negative potential function on S, and h is a real number that
describes gives the strength of an external influence acting at each site in Λ. A control
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parameter is defined as β = 1/T > 0. The probability measure or finite-volume Gibbs state
µΛ,β,h on B(ΩΛ) is defined as

µΛ,β,h{ω} = exp[−βHΛ,h(ω)]πΛµρ{ω} ·
1

Z(Λ, β, h)
, (6)

where Z(Λ, β, h) is the partition function defined as follows:

Z(Λ, β, h) =
∫

ΩΛ

exp[−βHΛ,h(ω)]πΛµρ(dω)

= ∑
ω∈ΩΛ

exp[−βHΛ,h(ω)]
1

2|Λ|
. (7)

From the invariance requirement, it follows that the conditional probabilities

αk(i, j) = µΛ,β,h[ω(x) = i|ω(Nk(x)) = j] , for 0 ≤ k ≤ K + 1 i, j ∈ S (8)

can be determined by K + 2 parameters. Therefore, the transition matrix can be identified
using a conventional machine learning method based on the maximal likelihood algorithm.

The random field D is designed as a space of multi-scale time-frequency represen-
tation, which is obtained from a continuous wavelet transformation (CWT) X(a, t) =∫ 1√

a ξ
(

τ−t
a
)

x(τ)dτ, with mother wavelets ξ(·, ·) performing dilation in scaling a and
shifting t.

The wavelet time-frequency representation reflects the local properties of the time
series. For example, the CWT of yearly precipitation clearly exhibits self-similarity in the
subspace (Figure 3). The vertical axis in Figure 3 represents the period (frequency) of
the CWT in a log scale, starting from the 1-year period at the top to the 1-day period at
the bottom.

(a) Continuous Wavelet Transform (b) Before and after the CWT

Figure 3. Local properties of a time series in its time-frequency representation. (a) The vertical axis represents the period
(frequency) of the CWT in a log scale, starting from the 1-year period at the top to the 1-day period at the bottom. (b) The
CWT reserves the original time series after reconstruction from the transformation in (a).

Figure 2a indicates that the transitional probabilities or transiograms are learned
based on wavelet coefficients, which are quantized into discrete intervals and served as
the state spaces of each Markov chain of all nodes. We take 60 levels for the quantization.
In the control of the balance between a stochastic realization and the MCRF resampling,
an imputation mask is provisioned on the ridge curves and the areas of high frequency
components, as shown in Figure 2b,c. Due to the semi-periodic nature of storm activities,
the ridge amplitudes after imputation are stronger for components in the vicinity of storm
seasons, as shown in Figure 2d. Wavelet ridge analysis is used to compute ridge points
over the time-frequency representation of a time series x(t). Then, an amplitude ridge
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point and phase ridge point form a time-scale pair (a, t), with a strict local maximum of
<{ln |Wφ(a, t)|} on the a axis and ∂

∂t=
{

ln |Wφ(a, t)|
}
= ωφ/a the t axis. The sets of ridge

points collectively form wavelet ridge curves. Notably, Figure 2 shows only the amplitude
of the complex numbers for ease of explanation, and the modulus of the complex wavelet
coefficients is not shown in the graph.

Power spectra are compared in Figure 4, and subgraph (a) shows the original power
spectrum in a particular year. Figure 4b shows the imputed result after adding coherence
components in the spectrum according to the simulation of the trained transiograms and
the sampling masks obtained through ridge analysis. Figure 4c demonstrates and compares
the rainfall distribution after MCRF conditioning. The conditioned distribution differs from
the original one because the constant trend has been suppressed, and repetitive information
from other years has been imputed. Therefore, as shown in the right-hand-side of the
Equation (2), Y(t) has additionally inserted rich information for parameter estimation.

(a) CWT before MCRF conditioning (b) CWT after MCRF conditioning

(c) Imputation results

Figure 4. Given a time series, the CWT before the MCRF (a) and after the MCRF conditioning (b)
shows a minor imputation on the time-frequency representation. The coherent components are
restored to the spectrum according to the simulation of the trained transiograms and the sampling
masks obtained through ridge analysis. (c) The comparison of two time series manifests the difference
of MCRF conditioning. The blue graph is the original, and the red graph is the reconstructed
components. The red line had been imputed additional extreme events according to the history of
the time series. The low frequency mean-value in the blue line had been removed for the red line.
The vertical scales play no roles in this stage because the red graph is only an intermediate coefficient
and will be rescaled to other scales.
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2.4. Data Provisioning

The data source for this study was collected from the Central Weather Bureau (CWB)
of Taiwan. From 1994 to 2020, structured data have been recorded at 54 stations across the
island (area of 36,193 km2). Because a large portion of the territory has high mountains, data
collection is difficult in remote areas. Therefore, the recorded data may not be continuous
or consistent because stations and equipment may fail or switch in each location. Data
cleaning and screening must be performed to provision and populate the data cubes.

Original precipitation data records hourly. The values are aggregated into a daily
format. Data from stations with a sufficient number of years of successive data and similar
climate conditions are retained in this study. Finally, 26 years of precipitation data from
12 stations are selected for model training. As required for machine learning processes,
the data are divided into training and validation sets. Validation is performed based on a
hold-out year. Notably, in the validation, high GOF of prediction in the target year and low
GOF in non-target years is expected. The functional bandwidth is naturally selected to be
365 days, and each functional is split into three discrete wavelet transform bands for the
application of suitable learners for each band.

3. Results and Discussion

The proposed algorithms are tested using CWB data covering 26 years and 12 stations.
In the quantification of the prediction stability for various levels of weather extremity,
experiments are designed to verify whether the prediction accuracy drops significantly
as the weather extremity is controlled to be increased. For providing a compatible level
of comparing experiment, the prediction algorithms are performed for three levels of
weather extremity, which are established based on controlled logarithmic and exponential
transformations of the raw data. As shown in Figure 5, the original precipitation data
are labeled original, and the smooth and extreme precipitation data are logarithmic and
exponential transformed, respectively, while maintaining the same level of yearly mean.

(a) Original (b) Smooth (c) Extreme

Figure 5. Data provision for three variations in daily precipitation at a weather station over 26 years. (a) The original time
series. (b) The time series in logarithmic transformation. (c) The time series in exponential transformation.

Applying MCRF conditioning, as described in (6), significantly improved the predic-
tion accuracy. As shown in Figure 6, MCRF conditioning improved prediction accuracy
for not only the training years, but also the validation years. In the ensemble method
in the second stage of precipitation prediction modeling, multiple learners are used to
combine the intermediate predictions from the first stage, including ordinary generalized
matrix inverse, ridge, lasso, and elastic net multivariate regression. For comparison, a deep
convolutional neural networks (VGG19 [54]) is also included in the learner ensemble. The
experiments demonstrated that the combination of lasso and ridge estimation effectively
reconstructed the precipitation time series in the training and validation phases.
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(a) Training (the horizontal axes present each
day of a training year)

(b) Validation (the horizontal axes present each
day of a validation year)

Figure 6. An example of the prediction results for training and validation sets with MCRF con-
ditioning. From the qualitative point of view, the result demonstrated good predictability but not
over-fitted from training data to validation data. Through the rough comparison, a certain degree of
errors exists is necessary for future uncertainty.

Kling–Gupta efficiency (KGE) values are applied to assess the GOF for the developed
hydrological models [55,56].

KGE = 1−

√
(r− 1)2 +

(
σsim
σobs
− 1
)2

+

(
µsim
µobs
− 1
)2

. (9)

In Equation (9), the statistics between simulated and observed time series are com-
pared and exhibit a tendency of similarity. A positive KGE value is firmly considered accept-
able. To meet the goal of year-specific prediction, the notion of KGE is extended to assess
GOF over all testing years. We define a difference KGEDi = KGEi −max{KGEj|∀j 6= i}
for a metric in the target year i. This quantity reflects the fact that an accurately targeted
prediction must be of high GOF at KGEi but of low GOF for all other KGEj. Therefore, a
high KGEDi indicates a good prediction for the year i.

For a water resource manager or a farmer, without our analysis, she only can roughly
guess a wide range of precipitation for a large period of time by averaging past several
years. For example, in Figure 7, we illustrated March’s daily precipitation from 1996 to
2019. If a water resource manager lives in the beginning of year 2018 and wants to plan
for March, she can only ponder the decisions from past experiences without a suitable
tool. Looking up the past years, we found that most years had high precipitation at the
beginning of March. However, it is challenging to know that when the peak rainfall arrives.
Without a tool, it is not easy to make a plan. The manager needs a specific day for planting
the crops because a large amount of human resources and machinery need to be booked in
advance. Our prediction offers the manager a handy tool to schedule her jobs through a
clear prediction of raining amount at each specific date in March.

The last row in Figure 7 showed our predictions. The 2016 and 2017 belonged to the
training set, and we list them here only for reference. The prediction performance should
look at the accuracy of new data from 2018 and 2019. The data of 2018 and 2019 were
pre-excluded from the training set for validation. Therefore, the data of 2018 and 2019 were
entirely new to the predictor.

After all testing iterations, the accuracies converged to a stable result for the validation
years. Based on the prediction results in Table 1, MCRF conditioning significantly improved
the prediction accuracy (KGE) and specificity (KGED) in the proposed two-stage prediction
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ensemble learning model. The improvement is particularly prominent in the case of
extreme weather conditions.

Figure 8 illustrated a prediction result for the proposed ensemble approach. Based on
the GOF articulated in Table 1, three predictions are demonstrated in the yearly functional
form. The trained model can predict the precipitation of the entire next year. Even in the
case of extreme weather conditions, the prediction still maintained robustness without
losing statistical details.

Our algorithm is superior to other algorithms because we avoid over-fitting, and the
prediction is made specifically for a target year. For example, despite small residuals for the
unseen 2018 data, this prediction was still specific for 2018, not for any other years . Our
goal of prediction satisfies two criteria: statistical error should be small for the unseen years,
and should not close to other years (the error difference between target and non-target
years should be large). For one more future year, 2019, consistent with our expectations,
the prediction became inaccurate for a longer future. Therefore, the prediction in 2019 is
less trustful than expected.

Figure 7. Row 1 to Row 4: Historical data for March’s daily precipitation from 1996 to 2019. Row 5:
Prediction results from 2016 to 2019. Old training set: 1996 to 2017. New validation set: 2018 to 2019.
A water resource manager lives in the beginning of year 2018 and obtains the prediction in March
2018. The daily amount of prediction can be a basis for her usage planning.

Table 1. Prediction accuracies for the validation years.

Metrics Extremity Before MCRF After MCRF

KGE normal 0.65 0.68
KGE smooth 0.73 0.74
KGE extreme 0.40 0.58
KGED normal 1.22 1.29
KGED smooth 1.14 1.16
KGED extreme 1.10 1.27

MCRF = Markov Chain Random Field, KGE = Kling–Gupta Efficiency, KGED = KGE Difference.
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Note also that our algorithm remains consistent even when weather conditions become
increasingly extreme. Therefore, in Figure 8c, when weather conditions become extreme,
the manager still can rely on the tool to schedule the work without being interfering by
weather extremity.

(a) Original (the horizontal axes present each day of 2018)

(b) Smooth (the horizontal axes present each day of 2018)

Figure 8. Cont.
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(c) Extreme (the horizontal axes present each day of 2018)

Figure 8. Subgraphs (a–c) show the stability under extremity. The validation were from 2018 to 2019
for three levels of weather extremity. The 2018 and 2019 were pre-excluded from training data and
were entirely new to the predictor. Vertical axes are daily precipitation in mm/day and horizontal
axes are date. The top and the second panel is the time series of current year (2018, in blue color), the
next year (2019, in red color), respectively. The third panel is the predicted time series of the target
year (2019, in black color). The fourth panel is merely a time series of a non-target year (2020, in
green color). Together with Table 1, the graphs demonstrate that the prediction is accurate for 2019
(the third is similar to the second) but not for 2020 (the third is not similar to the fourth). Even the
weather condition becomes extreme, the prediction and KGE in (c) still remains accurate for 2019.

4. Conclusions

This study proposes conditioning and ensemble learning methods to perform fore-
casting on multi-scaled functional time series over a sparse l1 space. In contrast to other
long-range simulations that can yield only a generic rainfall distribution, the proposed
long-range prediction method has high yearly-specificity; that is, the performance metric
in the present study includes the difference of the GOF of the target year to the GOFs of
other years.

The present finding suggests that the MCRF conditioning approach resisted statistical
variation due to increasingly extreme weather conditions. The machine learning model
accurately predicts the precipitation distribution for the conditioned decomposition in the
sparse l1 space. In the results, year-specific accuracy remained high despite increasingly
extreme weather conditions. This long-range prediction algorithm may be helpful in certain
applications, such as maximizing water usage and increasing yields in agriculture.

Farmers can foresee the precipitation on the planned planting dates. Our tool is even
more helpful when the weather conditions become extreme. The difference between with
and without the tool reflects on the stability of prediction. The past experiences easily fail
at extreme weather. However, we demonstrated that our prediction remains stable when
weather conditions become extreme. Therefore, farmers can rely on our method to make
their production schedule without being interfering by extreme weather conditions.

Because this study uses conditioning method in conventional kernel model to address
the prediction problem of functional time series, the modeling suitability is limited by
the Gaussian assumption in the kernel model. We will relax the Gaussian assumption in
the future.
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