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Abstract: The assessment of the impacts of climate change on hydrology is important for better wa-
ter resources management. However, few studies have been conducted in semi-arid Africa, even 
less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky 
river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool 
(SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s 
(2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways 
(SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good 
performance (R2 > 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–
4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 
5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This 
study found that future precipitation and temperature could significantly decrease annual runoff 
by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–
8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water 
resources, and water engineering. 
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1. Introduction 
As global environmental issues, climate change is anticipated to affect water re-

sources and hydrology [1]. The basin hydrology is impacted by the rise in temperature 
and change in precipitation distribution, resulting in the alteration of water quantity and 
availability [2]. Evaluating the impacts of climate change on streamflow is the key to sus-
tainable water resources management and efficient adaptation and mitigation strategies 
[1]. 

Significant temperature rise has been a common experience for several regions of the 
world; a rise is expected to continue in the future [3–6]. Regarding climate change at a 
regional scale, the tropical regions and the Sub-Saharan countries were considered one of 
the most vulnerable regions due to their weaker economies [7]. Overall in Africa, in-
creased the near-surface temperature by 0.5 °C has been recorded during the last 5 dec-
ades [5]. Among them, Madagascar is highly vulnerable to climate change and natural 
catastrophe as it is located in the Indian Ocean and with 5000 km of coastline [8]. Floods 
often occur in the North and Northeast, while drought conditions are present in the cer-
tain southern region [9]. In Madagascar, climate change will negatively influence hydro-
logical processes and streamflow regimes. 
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Mangoky river is the longest and most important river in Madagascar. The Mangoky 
river is located in a semi-arid region in the southwest part of Madagascar [10]. Under-
standing the impact of climate change on the hydrology in this river will provide useful 
insight for better water management and engineering for the semi-arid regions, given that 
the hydrology in the semi-arid is highly sensitive to climate change. A previous study 
conducted in semi-arid and arid regions showed that climate change would worsen water 
scarcity [11]. A study conducted on the semi-arid basin in Mexico showed decreased run-
off by about 60% due to climate change [12]. Despite the importance of the research in the 
semi-arid regions, a study conducted in the African rivers is rare. To the best of our 
knowledge, no research has been reported on the hydrological responses to future climate 
change in the Mangoky river, Madagascar. 

General circulation models (GCMs) are the most up to date accessible instrument for 
acquiring the projections of climate change at the global level [13], but their large resolu-
tion (250 km to 600 km) [14] makes them unreliable for a study that requires finer resolu-
tion such as hydrology [15]. The downscaling technique is one approach that can be used 
to reduce the coarse resolution of GCMs [16–18]. Therefore, in this study, we used an ar-
tificial neural network (ANN) to downscale outputs from the latest generation of coupled 
model intercomparison project (CMIP6). Compared to the previous version, CMIP6 is 
more skillful and showed better improvement [19–21]. 

A hydrological model can provide consistent information about the impact of climate 
change on the hydrology of a river [22]. In the present study, the soil and water assessment 
tool (SWAT) model was chosen to model the future flows under climate change. SWAT 
has been commonly used and successfully applied worldwide [23–27], but SWAT is lim-
ited in the African region. Besides, this is the first attempt to use SWAT in Madagascar. 
This research is the first to use a computer-based hydrological model and modeling runoff 
in a river in Madagascar.  

This study aims to assess and explore the impact of climate change on the hydrolog-
ical regime at the Mangoky river by using ANN for downscaling and the SWAT model 
for hydrological simulation. The specific objectives of the present study are: (1) to 
downscale the GCMs outputs for the Mangoky river using ANN and project the future 
climate in the river under both SSP3–7.0 and SSP5–8.5 emissions scenarios. It is worth 
noting that we do not discuss the likelihood of the two scenarios to occur in the future. 
We used them to explore and understand the hydrological responses if the world would 
follow the fossil-fuel emission as simulated with these two scenarios. (2) to calibrate and 
evaluate the performance of the SWAT model, (3) to assess the impact of future climate 
change on hydrology in a semi-arid region. 

2. Materials and Methods 
2.1. Study Area 

The Mangoky river is located on the southwest coast of Madagascar. The study area 
lies between 43.26′ and 47.26′ E and 21°15′ and 22°35′ S. The climate at the Mangoky river 
is a tropical semi-arid, with a mean annual rainfall of about 600 mm/year distributed from 
November to March. Mangoky basin is about 55,750 km2. The Mangoky river is the longest 
river in Madagascar (564 km) which flows from the central highland in Madagascar to the 
Mozambique channel (Figure 1).  
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Figure 1. Location map and DEM of the Mangoky river in Madagascar. 

2.2. Data Collection 
2.2.1. Meteorological Data 

In the downscaling procedure, two types of data were needed: the predictand data 
or target data (observed temperature and precipitation) and predictor data representing 
the large-scale data (GCM). Observed daily maximum temperature, minimum tempera-
ture, and precipitation of 25 meteorological stations were collected from the National Cen-
ters for Environmental Prediction Climate Forecast System Reanalysis (NCEP/CSFR). We 
used daily meteorological data collected from 1979–2013. However, meteorological data 
after 2013 is available only monthly and therefore discarded for the present study. Stand-
ardized reanalysis predictors data were obtained from the National Centers for Environ-
mental Prediction (NCEP/NCAR), with a spatial resolution of 2.5° × 2.5°. A total of 26 
predictors covering different pressure, airflow velocity, wind directions, divergence, rel-
ative humidity, air temperature data were collected from NCEP/NCAR. Detail list of pre-
dictors, including their code, can be found in supplementary material Table S1. These two 
data were used to train the ANN. Further details about training an ANN for downscaling 
can be found in Abrahart et al., 2004; Nourani et al., 2019; Vu et al., 2016 [28–30]. Before 
analysis, our data were quality-controlled. We checked for outliers and the homogeneity 
of the data using Xlstat. 

The trained ANN was fed with predictors from CMIP6 to project future temperature 
and precipitation. We used global climate data from two GCMs: The Norwegian Earth 
System Model version 2 (NorESM 2) with a resolution of 2.5° × 1.9° developed by the 
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Norwegian Climate Consortium [31]; and the Canadian Earth System Model version 5 
(CanESM5) with a resolution of 2.8° × 2.8°, developed by the Canadian Climate Centre 
[32]. It should be noted that even with some biases, previous studies using CMIP to re-
produce observed historical data have shown great performance in the regional hindcast 
run [15,21]. 

The GCMs were re-gridded to have the same resolution as the NCEP/NCAR predic-
tors using the inverse distance weighted (IDW). These two GCMs were collected from the 
website of the Earth System Grid Federation (ESGF). In this study, we considered two 
different shared socioeconomic pathways (SSP): SSP 3–7.0 (regional rivalry) and SSP 5–
8.5 (fossil fuel development) [33]. The latest CMIP6 combines representative concentration 
pathways (RCP) and SSP to make future scenarios more reasonable and reliable [34]. 
2016). SSP 3–7.0 is the new scenario added to the CMIP6 compared to the previous version 
(CMIP5), it reflects more plausible outcomes, and its use is recommended [35]. SSP3–7.0 
represents the middle range of baseline describing geographical competitiveness and dif-
ficult pathways (important challenges to mitigation and adaptation). In contrast, SSP5–8.5 
represents the highest emission scenario describing a rapid development based on using 
fossil fuel (High challenges to mitigation, low challenges to adaptation) [33]. A detailed 
explanation of SSP can be found elsewhere [36]. It is worth noting that not all the predic-
tors from NCEP/NCAR were available from the GCMs. Therefore, predictors should be 
chosen cautiously [30].  

2.2.2. SWAT Input 
To run, SWAT requires a diversity of information related to meteorology, land use, 

soil, and agriculture [25,37,38]. In general, SWAT needs spatial data and attribute data-
bases, which mainly include: Digital elevation model DEM (Figure 1), Land use and land 
cover (LULC) (Supplementary Material Figure S1), soil attribute data (Supplementary Ma-
terial Figure S2 and Table S2), hydrological data, and meteorological data. Table 1 sum-
marizes the data source and resolution of the data used in SWAT. 

Table 1. Description of the input data used in SWAT. 

Data Resolution/Date Source 

DEM 30 m × 30 m NASA 

LULC 800 m SWAT land use database 

Soil map 5 km FAO-soil database 

Meteorological data 1979–2013 NCAR/CSFR and Madagascar National Meteorological and Hydrological Service 

Monthly observed runoff 1982–1995 Global runoff database/Madagascar National Meteorological and Hydrological Service 

2.3. Methods 
2.3.1. Screening for Predictors 

The performance of the ANN to downscale GCM depends mainly on the choice of 
appropriate predictors. Using all predictors in the final model is not recommended and 
redundant because some of the predictors are intercorrelated. The predictors-predictand 
relations in this research were established using the correlation coefficient. The correlation 
test resulted in the most powerful predictors to be used as input for the ANN. The follow-
ing characteristics should be considered: “(1) physically and conceptually sensible con-
cerning the predictand, (2) readily available from archives of observed data and GCM 
outputs, and (3) accurately modeled by GCMs” [30]. We selected 3 to 5 predictors as in-
puts variable for the ANN model of each station. 
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2.3.2. Artificial Neural Network 
The ANN is a network of interconnected neurons, a computing system created to 

process information like the human brain [28,29] (Supplementary Material Figure S3). 
ANN is increasingly preferred [13,30,39,40] because it is inexpensive but efficient [13,41]. 
The ANN model developed and used in this study was a back-propagation algorithm 
feed-forward network (FNN-BP) [42,43] with three layers: an input layer, a hidden layer, 
and an output layer where each layer is connected by weights. The optimal set of weights 
is determined through the learning process, which consists of training ANN with known 
input and output values. The three-layer FNN-BP network model in this study was 
trained using the Levenberg-Marquardt optimization algorithm [29,40]. In this study, we 
used the sigmoid and linear transfer function in the hidden and output layer.  

The number of hidden layers used in the ANN is important because an excessive 
hidden layer will cause over-fitting [44], which means that the network overestimated the 
complexity of the problem. With our problem, only one hidden layer was needed, and 
increasing the number of layers did not significantly improve the output from the model. 
Rather it increases the complexity of the model and the risk of overestimation. The calcu-
lation in the ANN is given by Equation (1): 

y = g w f v x + b + b  (1)

where ŷ is the predicted variable (temperature/precipitation), bj and bk is the bias, xi is the 
inputs variable (predictors), wk and vi are the weights, g and f are the transfer function 
(logsig and purelin).  

2.3.3. Bias Correction 
Before feeding the downscaled climatic data to the hydrological model, the outputs 

(predicted precipitation and temperature) must go through a bias correction process. In 
this study, we used the linear scaling correction. The correction in precipitation used a 
multiplier, and the temperature used the additive term as given by Equations (2) and (3): T = T + (T −T ) (2)P = P × PP  (3)

where Tcor and Pcor: the temperature and precipitation bias-corrected, Tpred and Ppred: the 
downscaled data, and Tobs and Pobs are the observed data. 

2.3.4. SWAT Model 
SWAT hydrological model is a semi-distributed and dynamic hydrologic and water 

quality model developed by the United States Department of Agriculture, Agricultural 
Research Service (USDA-ARS) for watershed-scale [25]. In SWAT, the catchment is split 
up into sub-basins divided into a smaller unit called hydrological response unit (HRU) 
[45]. HRU is defined by consolidating the same LULC, soil type, and optionally inclination 
characteristics; it is the smallest unit involved in the hydrological calculation. The water 
balance at the HRU level is calculated using Equation (4), and the outputs are aggregated 
at the sub-basin level [22]: SW = SW + Σ   (R − Q − E − W − Q ) (4)

With SWt: the final soil water content (mm H2O), SW0; the initial soil water content 
(mm H2O), t: the time (days), Rday: the amount of precipitation on day i (mm H2O), Qsurf: 
the amount of surface runoff on day i (mm H2O), Ea: the amount of evapotranspiration on 
day i (mm H2O), Wseep: the amount of percolation and bypass flow exiting the soil profile 
bottom on day i (mm H2O), Qgw is the amount of return flow on day i (mm H2O). 
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To estimate the surface runoff, a modified soil conservation service curve number is 
applied by the SWAT model [22,25]. SWAT model has three different techniques for cal-
culating evapotranspiration: Priestley–Taylor, Hargreaves, Penman–Monteith method, 
and we used the latter in this study. A comprehensive explanation of the hydrological 
model SWAT is available in J. G. Arnold et al., 2012; Neitsch et al., 2011 [25,45]. 

2.3.5. ANN and SWAT Model Calibration and Validation 
The qualitative performance of the ANN model was assessed using the coefficient of 

determination (R2). If the R2 was satisfactory (R2 > 0.50), we stopped the training, which 
indicated that the ANN is sufficiently trained and is ready for use. However, if the R2 was 
lower than 0.50, the ANN was re-trained. 

The goodness of fit of the SWAT model was estimated using R2, Nash and Sutcliffe 
efficiency (NSE) shown in Supplementary Material Equation (S1), and PBIAS is given by 
Supplementary Material Equation (S2). The SWAT performance was assessed using the 
criteria given by [46] (Table 2). The SWAT calibration and uncertainty program (SWAT-
CUP) was used to calibrate and validate SWAT. The sequential uncertainty fitting (SUFI-
2) was selected among all the algorithm provided by SWAT-CUP. The general research 
methodology followed in this study is summarized in Supplementary Material Figure S4. 

Table 2. SWAT model evaluation criteria based on [46]. 

Variable Value Performance Rating 

NSE 
>0.65 Very good 

0.54 to 0.65 Good 
<0.5 Satisfactory 

P-BIAS 
<20% Very good 

20% to 40% Good 
>40% Unsatisfactory 

R2 
R2 > 0.7 Very good 

0.5 < R2 < 0.7 Good 
R2 < 0.5 Satisfactory 

3. Results and Discussion 
3.1. Selection of Predictors 

In this study, the correlation matrix was used to select the set of predictors to be used 
as inputs for the downscaling with ANN (Supplementary Material Table S3). It is recom-
mended to use more than just one predictor since the combination of predictors has 
stronger correlations with downscaled results, but using many predictors lowered the 
correlations [47]. Thus, we chose 3 to 5 predictors with the highest correlation coefficient 
with the temperature and precipitation at each station. The selected predictors were used 
as input during the training of the ANN. The set of predictors may vary from station to 
station, but the results are relatively consistent between stations. Overall, surface temper-
ature (temp), geopotential height (p_500, p_850), humidity (rhum, shum) are common 
predictors for maximum and minimum temperature; surface temperature (temp), geopo-
tential height (p_500, p_850), near-surface humidity (rhum, shum), and mean sea level 
pressure (mslp) are common predictors for precipitation. 

3.2. ANN and SWAT Model Assessment 
3.2.1. ANN Performance 

The goodness, precision, and reliability of the climate projections depend mainly on 
the performance of the ANN. The ANN performance was good for both precipitation and 
temperature. The R2 (at randomly chosen station id 214447) for the precipitation, maxi-
mum temperature, and minimum temperature was 0.79, 0.80, and 0.92, respectively (Sup-
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plementary Material Figure S5). In general, precipitation is one of the most difficult cli-
mate variables to downscale and great uncertainties still affect the performances of both 
stochastic and deterministic precipitation prediction models. However, the R2 indicates 
the good performance of the ANN in downscaling precipitation. 

3.2.2. SWAT Model Calibration and Validation 
The SWAT model was calibrated from 1982–1988. The model was warmed up during 

the first three years, i.e., 1979 to 1981, and validated from 1989–1995 (Figure 2). Due to the 
unavailability of observed runoff data, we could not carry out the calibration and valida-
tion of SWAT from 1996–2013. However, 7 years of calibration and 7 years of validation 
should serve our current SWAT modeling purpose. 

 
Figure 2. Observed and simulated runoff during the calibration and validation at the Mangoky river. 

Altogether, 10 parameters were used to calibrate the SWAT model. Their description 
and fitted values are outlined in Table 3. The SWAT statistical performance during cali-
bration and validation was good. 

Table 3. Parameters selected for the calibration and validation of the SWAT model at Mangoky river, using SUFI-2. 

Inputs Variable Name Variable Description Fitted Value Method of Change 

CN2.mgt Curve number 0.18 Relative 1 

ALPHA_BF.gw Baseflow alpha factor (1/days) 0.55 Replace 2 

GW_DELAY.gw Groundwater delays time (days) 180 Replace 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return flow 

to occur (mmH2O). 
175 Replace 

ESCO.bsn Soil evaporation compensation factor 0.45 Replace 

SURLAG.bsn Surface runoff lag coefficient 4.15 Replace 

CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm/hr) −0.1 Relative 

SOL_AWC.sol Available water capacity of the soul layer (mmH2O/mmsoil) −0.27 Relative 

GW_REVAP.gw Groundwater revap coefficient 0.17 Replace 

RCHRG_DP.gw Deep aquifer percolation fraction 0.75 Replace 
1 relative change of spatial parameters and multiplies the existing parameter’s value by (1 + an increment); 2 replace the 
value of the parameters by the fitted value. 
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The statistical performance of SWAT during the calibration and validation are sum-
marized in Table 4. During the calibration, the daily NSE of 0.52 suggested that the model 
was well-calibrated. The PBIAS is relatively small indicated good agreement in the flow 
volume [23]; the same results can be deduced from the value R2 of 0.70. The validation 
also showed a good performance with NSE 0.47, PBIAS 2.9%, and R2 0.66. 

Table 4. Performance of the SWAT model during the calibration and validation. 

 R2 NSE PBIAS 

Calibration 0.70 0.52 −12.20 

Validation 0.66 0.47 −2.90 

3.3. Future Climate in the Mangoky 
3.3.1. Future Precipitation 

In this study, the change in average future precipitation was measured regarding 
baseline precipitation (1982–2013) in mid-term 2040s (2040–2050); and long-term 2090s 
(2090–2100). The ensemble from NorESM and CanESM was estimated by simple aggrega-
tion. Table 5 displays the relative change in annual precipitation in the 2040s (−6.75% and 
−17.44%) and in the 2090s (35.74% and 52.61%) under SSP3–7.0 and SSP5–8.5, respectively. 
The annual precipitation at the Mangoky is projected to decrease in the 2040s but increase 
in the 2090s, indicating a serious drought in the mid-21st century. The intensity and se-
verity of future drought may vary from region to region. However, previous studies agree 
with the increase in drought in the 21st century over most parts of Africa [48,49]. 

In the Mangoky river, most of the rain (>90%) falls between November and March 
[10]. The rest of the year is considered a dry season or winter with less than 10% of the 
precipitation. Seasonal changes in precipitation are summarized in Table 6. Seasonal 
changes in precipitation were calculated as the difference between future seasonal precip-
itation and the seasonal precipitation in the baseline. Like the change in the annual pre-
cipitation, in the 2040s, the summer precipitation is projected to decrease, but in the 2090s, 
increased summer precipitation will be expected. The change in summer precipitation will 
be significantly higher under SSP 5–8.5 (p < 0.0001) and higher in the 2090s (p < 0.0001). In 
winter, the precipitation will increase under the two-time horizons, with a higher increase 
in the 2090s (103.5% and 111.25%) (p < 0.0001). These findings suggest that climate change 
will affect the seasonal distribution of precipitation in the Mangoky river. In the 2040s, the 
GCMs agree to a reduction in annual and summer precipitation and a rise in precipitation 
in winter. An increase in annual and seasonal precipitation is expected under both scenar-
ios in the 2090s, suggesting stronger precipitation anomalies at the end of the 21st century 
[50,51]. A previous study also found a decrease in future precipitation during the begin-
ning of the summer, suggesting a delay at the beginning of the wet period over some parts 
of southern Africa [5]. In line with a previous study conducted in Southern Africa, our 
findings suggest a major decrease in precipitation in the mid-21st century [3]. However, 
increased heavy precipitation and a number of extreme wet days are projected over Africa 
at the end of the 21st century [52,53]. 
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Table 5. Absolute change in annual temperature (Tmax and Tmin) and relative change in precipitation in the 2040s and 
2090s regarding the baseline (1982–2013). 

 Precipitation (%) Tmax (°C) Tmin (°C) 

 SSP 3–7.0 SSP 5–8.5 SSP3–7.0 SSP5–8.5 SSP3–7.0 SSP5–8.5 

Change 2040s −6.75 −17.44 2.59 2.42 1.05 0.85 

Change 2090s 35.74 52.61 4.26 4.69 2.74 3.01 

Table 6. Relative change in seasonal precipitation and absolute change in seasonal temperature. 

  Precipitation Tmax Tmin 

  Summer (%) Winter (%) Summer (°C) Winter (°C) Summer (°C) Winter (°C) 

 Baseline (mm) 887.6 75.9 30.9 27.6 20.2 14.8 

2040s SSP 3–7.0 −18.35 18.13 1.6 3.6 −0.2 2.3 

 SSP 5–8.5 −29.08 14.8 1.3 3.6 −0.8 2.1 

2090s SSP 3–7.0 16.47 103.85 3.7 4.9 1.6 3.9 

 SSP 5–8.5 34.19 111.21 4.1 5.3 2.1 4.2 

3.3.2. Future Temperature 
Both CanESM and NorESM projected a rise in future maximum temperature and 

minimum temperature. The absolute change in average annual maximum and minimum 
temperature is shown in Table 5. A rise in annual maximum and minimum temperature 
is expected under both SSP 3–7.0 and SSP 5–8.5 scenarios. In the 2090s, the increment in 
maximum temperature (4.26 °C and 4.69 °C) is expected to be significantly higher than in 
the 2040s (2.59 °C and 2.42 °C) (p < 0.0001). Similar results are projected for the annual 
minimum temperature. The maximum and minimum temperature are both expected to 
greatly increase under SSP 5–8.5, suggesting that the continued increase in GHG emission 
will lead to a further rise in temperature. Our finding is consistent with Tadross et al., 2008 
[9] and Nematchoua et al., 2018 [54], which found that minimum and maximum temper-
ature in Madagascar are expected to increase with the increase in minimum temperature 
to exceed 1.5 °C and maximum increases about 2.6 °C. An important increase in tempera-
tures over several countries in Africa is projected with CMIP6 compared to the previous 
generation CMIP5 [3]. 

For the seasonal temperature, increased maximum temperature will be more im-
portant in winter with an increase of about 5.3 °C in the 2090s, under SSP 5–8.5. The max-
imum summer temperature is projected to rise by 4.1 °C in the 2090s under SSP 5–8.5. An 
increase in the minimum temperature is also anticipated to be more important in winter. 
However, a decrease in minimum temperature is projected in summer in the 2040s. This 
decrease in minimum temperature suggests a cooling from the surface water near the 
coast, neutralizing the warming effect [55]. The highest increase in seasonal minimum 
temperature is projected under SSP5–8.5 in the 2090s, with an increase of about 4.2 °C. 
Consistent with previous studies, we found that seasonal and annual temperatures in Af-
rica are expected to increase rapidly than the global average in the 21st century [5]. A 
previous study using the CMIP5 showed that the increase in temperature would be 2 °C 
higher than the 20th-century baseline in the mid-21st century and 4 °C higher at the end 
of the 21st century [5]. Over the Southern part of Africa, the annual and seasonal temper-
ature is expected to top the global mean [5,56]. The average temperature in Southern Af-
rica will increase by about 2.5 °C to 3 °C by 2100 [5], suggesting that the temperature in 
the Mangoky will exceed the mean temperature in Southern Africa. 
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3.3.3. Climate Change Impact on Streamflow 
This section describes the future change in the surface runoff if the world would be-

have as simulated with SSP 3–7.0 and SSP 5–8.5. The water balance components in a wa-
tershed can be impacted by climate change, especially if the basin is located in the arid or 
semi-arid region. Climate change is expected to alter the flow regime of a river [23]. Table 
7 shows the future change in runoff at the Mangoky river under SSP 3–7.0 and SSP 5–8.5. 
Figure 3 shows the surface runoff in the Mangoky river under the two chosen scenarios 
SSP 3–7.0 and SSP 5–8.5, in the 2040s and 2090s. 

 
Figure 3. Future surface runoff at the Mangoky river under SSP 3–7.0 and SSP 5–8.5 in the (a) 2040s and (b) 2090s. 

In this study, the change in the future runoff was calculated regarding the average 
annual runoff of 589.28 m3/s. Under both scenarios, the average runoff is projected to de-
crease in the 2040s, and in the 2090s, with a significant decrease in the 2040s (p < 0.0001). 
Resulting from the decrease in precipitation in the 2040s, an important decrease in surface 
runoff in the Mangoky river is projected in the mid-term future. While the increase in 
precipitation in the 2090s should result in increased runoff, we found a decrease in the 
runoff in the 2090s. This could be correlated with larger evapotranspiration due to the rise 
in maximum and minimum temperature [23]. Similar to our findings, the annual average 
river runoff over some dry regions, dry tropics, and Southern Africa are expected to ex-
perience water scarcity by the mid-21st century [57]. 

Seasonal runoff is also influenced by the change in precipitation and temperature. As 
a consequence of the decrease in seasonal precipitation in the 2040s, both winter and sum-
mer runoff is expected to decrease with a significant change under SSP 5–8.5 (p < 0.0001). 
In the 2090s, a similar change will be observed with the summer runoff. However, in the 
2090s, increased winter runoff is expected under SSP 3–7.0 due to increased precipitation 
by about 103.85%. In the 2090s, under SSP 5–8.5, even with increased precipitation, the 
important increase in temperature will increase evapotranspiration. Hence the runoff will 
decrease. Our findings suggest that more serious changes in the surface will happen in 
summer with a major reduction in streamflow. 
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Table 7. Annual and seasonal relative change in average runoff at Mangoky. 

 2040s 2090s 

 SSP 3–7.0 SSP 5–8.5 SSP 3–7.0 SSP 5–8.5 

Annual runoff (%) −60.59 ** −73.77 ** −25.18 −23.45 

Summer runoff (%) −62.84 ** −69.82 ** −33.08 −18.69 

Winter runoff (%) −27.01 −88.42 62.95 −20.12 
** significant at 0.05 and 0.1. 

Surface runoff has a powerful correlation with temperature and precipitation [1]. 
Therefore, a change in those two climates variable is expected to impact the runoff and 
availability of water resources in the semi-arid region of Madagascar. Climate change, 
primarily reduced precipitation and increased temperatures, is likely to affect water re-
sources and associated sectors such as agriculture, household consumption, and energy 
generation in the Mangoky river. A rise in temperatures combined with a decrease in pre-
cipitation will reduce the availability of water resources, exacerbate the water scarcity, 
and increase demand for water resulting in a further water shortage in the semi-arid re-
gions [9]. 

The findings of this study will be valuable for decision-making in the arid and semi-
arid regions, especially in Africa, where research on the impact of climate change is lack-
ing. The change in the hydrology in a semi-arid region will follow the change in precipi-
tation, but a higher increase in temperature will lead to a reduction in runoff. Future en-
gineering in the semi-arid regions should be designed and adapted to the likely future 
climate condition to limit the impact of climate change on the water resources. 

In this study, we considered the impact of climate change on water resources. How-
ever, several parameters like LULC may evolve and affect hydrology. The change in 
LULC will influence the flow of a river by changing the evapotranspiration [58,59]. How-
ever, the impact of climate change on hydrology is stronger than the impact of the change 
in LULC [59]. 

We also found that the high-emission narrative SSP 5–8.5 may overestimate future 
climate change, in line with Pielke Jr. and Ritchie [60] and Burgess et al. [61]. Thus, outputs 
from the high fossil fuel narrative can be described as high-risk future, not as “business 
as usual” because the probability of the scenario remains uncertain. According to Haus-
father and Peter, SSP 5–8.5 could be described as low probability worst cases rather than 
as “business as usual” [35]. We did not introduce our results as the hydrological responses 
of the “business as usual” or worst-case scenario because our results describe the hydro-
logical responses in Madagascar if the world would behave as simulated by SSP 5–8.5 and 
SSP 3–7.0. Despite the engagement of improvement of scenarios in CMIP6, future climate 
model developers should update the scenarios embedded in GCMs for an improvement 
in climate modeling, especially for the high-emission scenarios. 

4. Conclusions 
The impact of climate change on hydrology in the Mangoky river was assessed using 

ANN and SWAT hydrological models. We downscaled outputs from the latest climate 
model CMIP6 and simulated future precipitation and temperature. This study indicates 
that the maximum and minimum temperature will increase in the future, with a higher 
increment in the late 21st century. We also found that the precipitation will decrease in 
the 2040s but increase in the 2090s, which could be related to the precipitation anomalies 
expected in the late 21st century. Future changes in temperature and precipitation have a 
significant effect on the surface runoff; hence the average runoff will decrease significantly 
in the 2040s and 2090s. This research improved the understanding of the impacts of cli-
mate change on water resources and availability in semi-arid Africa. Our findings could 
be used to implement effective water resources management. However, future research 



Water 2021, 13, 1239 12 of 14 
 

 

should look into the influence of the change in land cover on water resources. Further-
more, future climate model developers should update the scenarios embedded in GCMs 
to improve climate modeling, especially for the high-emission scenarios. 
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S3. Structure of the ANN developed in this study. Figure S4. Conceptual model of the present study. 
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