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Abstract: Accurate monthly runoff estimation is crucial in water resources management, planning,
and development, preventing and reducing water-related problems, such as flooding and droughts.
This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model,
in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1)
and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application
in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern
region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected
as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the
Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected
and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration.
The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency
(NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff
stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE,
r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the
GR2M model was qualified and reliable to apply for determining monthly runoff variation in this
region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values
was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately
more than 0.90, gave the higher model’s performance.

Keywords: GR2M; inverse distance weighting; rainfall-runoff model; sensitivity analysis

1. Introduction

A tropical climate characterizes Thailand’s southern region since it is close to the
equator. Consequently, many areas have been experiencing flooding problems leading to a
vast majority of devastation to human beings’ lives and properties that hindered economic
growth and development. Each year, during a dry spell of approximately two months, this
region usually faces a drought situation due to increasing water demand from all activities
and insufficient water supply and storage. Accurate estimation of runoff quantity and time
variation benefits urban water management, e.g., planning for urban water supply and
distribution infrastructure. Besides, it helps water resources management-related issues
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personnel for effective disaster response planning, preventing and reducing the adverse
impact [1,2]. Hence, it is fundamentally imperative to obtain hydrological information
since the water supply is in demand from all activities, including domestic consumption,
agriculture, and various industries [3,4].

Although runoff is essential, most hydrologists cannot access it due to insufficient
runoff measuring stations than rainfall measuring stations equipped throughout the coun-
try’s regions [5]. Many research topics regarding the rainfall-runoff model have been
studied, developed, and applied by hydrologists and irrigation engineers to investigate dif-
ferent water management and planning issues. For example, Chen et al. [6], Kabiri et al. [7],
and Lin et al. [8] applied the rainfall-runoff model to assess runoff impacts due to climate
and land-use change. Kwak et al. [9] also used the rainfall-runoff model to reconstruct
the missing runoff time-series information. Similarly, Ballinas-González et al. [10] stud-
ied the sensitivity analysis of the rainfall-runoff modeling parameters in the data-scarce
urban catchment. Lerat et al. [11] proposed the alternative method for calibrating daily
rainfall-runoff models to monthly streamflow data when no daily streamflow data recorded.
Likewise, Abdessamed and Abderrazak [12] utilized a coupling HEC-RAS and HEC-HMS
modeling for evaluating floodplain inundation maps in arid environments. Zhang et al. [13]
tested the performance of the shuffled complex evolution (SCE-UA) as a global optimization
method to calibrate the Xinanjiang (XAJ) model. Lastly, Khazaei et al. [14] applied a simple
genetic algorithm to automatically calibrate the ARNO conceptual rainfall-runoff model.

The Rural Genius model (GR2M) model has recently been successfully applied as a
rainfall-runoff relationship model to comprehend the variation of watershed’s hydrological
characteristics and determine alleviation measures of unexpected hydrological situations
in many regions throughout the world. Dezetter et al. [15] applied the GR2M model for
study runoff in West Africa due to climate variability on hydrologic regimes for large-
scale water resources management and planning. Okkan and Fistikoglu [16] evaluated
the effects of climate change on runoff in the Izmir-Tahtali watershed, Turkey, using
statistical downscaling under the AR5 scheme GR2M model. They recommended that it
immediately took on the drought alleviating water supply and agriculture measures on
a national scale. Lyon et al. [17] utilized the GR2M model as the first step for screening
hydrologic data for evaluating the changes of hydrological response across the Lower
Mekong Basin. Zamoum and Souag-Gamane [18] developed regionalized parameters of
the GR2M model for predicting monthly runoff in the ungauged catchment of northern
Algeria. Boulariah, et al. [19] conducted a comparative study between two conceptual
non-linear models, i.e., the GR2M and the ABCD. The results showed that the GR2M
model outperformed the ABCD in the validation phase. Topalović et al. [20] compared
four monthly rainfall-runoff models based on the water balance concept, i.e., abcd, Budyko,
GR2M, and the Water and Snow Balance Modelling System (WASMOD), to simulate runoff
in the Wimmera catchment under changing climate conditions. Hadour et al. [21] applied
the GR2M model to study the effects of climate scenario on monthly river runoff in the
Cheliff, Tafna, and Macta in North-West Algeria. Rintis and Setyoasri [22] compared the
GR2M model’s performance to two well-known rainfall-runoff models in Indonesia: Mock
and NRECA. Using the Bah Bolon Basin in Indonesia as a studied area, they found the
GR2M model’s performance was comparable to Mock and NRECA methods requiring
fewer parameters. O’Connor, et al. [23] applied the GR2M hydrological model and an
Artificial Neural Network for reconstructing monthly river flow for Irish catchments.

The spatiotemporal characteristic with a hydrological analysis of Southern Basins
of Thailand constitutes a vital platform for understanding the hydrological behavior.
Furthermore, it gives particular interest to the valorization of the hydraulic potential
of the region. Hydrological modeling is essential for studying the development and
management of water resources in the watershed. The main reason for choosing GR2M
in this study is that it requires little hydrological information (i.e., rainfall data, potential
evapotranspiration, and flow rates). Only two model parameters need to be calibrated.
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This article mainly focused on investigating the monthly hydrological rainfall-runoff
variation using the GR2M model in Thailand’s southern basins, namely, Songkhla Lake
Basin, West basin, and the Eastern Basin. The study’s novelty is that it is the first attempt
to apply a two-parameters monthly rainfall-runoff model, namely the GR2M model, in
Thailand’s southern basins. It is also drastically useful for water resources planning and
management in this region. This article is organized as follows: Section 1 reviews the
study area’s dominant characteristic and data analysis for model input. In Section 2, the
GR2M theory is briefly explained. The model’s calibration and verification are delineated
in Section 3. The performance criteria for evaluating the applicability of the GR2M Model is
depicted in Section 4. Our result findings and discussion are portrayed in Section 5. Finally,
in Section 6, we concluded significant contributions from our research work.

2. Study Area and Data Analysis

This research was conducted in Thailand’s southern basin. It encompasses five major
river basins, including the Peninsula-East Coast. Peninsula-West Coast, Mae Nam Tapi,
Thale Sap Songkhla, and Mae Nam Pattani, as shown in Figure 1. When investigating
monthly rainfall, evapotranspiration, and runoff data, we found only three river basins, i.e.,
the Peninsula-East Coast, Peninsula-West Coast, Thale Sap Songkhla. Thus, we focused our
analysis on these three basins. These river basins have an area of approximately in the range
of 13 to 6713 km2. Geographically, this portion is the peninsula between the Andaman
Sea, which is on the western side, and the South China Sea, which is on the eastern side.
The long western mountain range in the northern and central regions also extends to this
portion. The Phuket ridge along the west coast and the Nakhon Si Thammarat ridge at the
center of the lower portion of the ridge’s southern part is divided into two regions: the
east and the west coasts. Climate variability on both sides of the river basins is mainly
dominated by the north-eastern monsoon and the south-western monsoon winds. The
southwest monsoon wind typically starts in mid-May and ends in mid-October. In contrast,
the northeast monsoon typically begins in mid-October and ends in mid-February.

Figure 1. Location of rainfall, runoff, and weather stations selected in the southern basin of Thailand.
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The Peninsula-East Coast watershed covers an area of 26,023.91 km2 and encompasses
11 provinces. It also consists of areas covering all parts of Chumphon, Trang, Nakhon
Si Thammarat, Narathiwat, Prachuap Khiri Khan, Pattani, Phatthalung, Yala, Ranong,
Songkhla, and Surat Thani. The flat coast has a small plain from Chumphon to Narathiwat.
Additionally, most rivers are short rivers with approximately 150 km flowing into the
Gulf of Thailand. There are nine runoff stations in the Peninsula-East Coast watershed.
The Peninsula-West Coast Watershed, 18,841.20 km2, consists of seven provinces: Ranong,
Phang Nga, Phuket, Krabi, Nakhon Si Thammarat, Trang, and Satun. It also includes
Chumphon, Surat Thani, Phatthalung, and Songkhla, with similar topography to the
Peninsula-East Coast Watershed. It is a coastal area next to the Andaman Sea. The Phuket
Mountains go from Ranong Province to Phang Nga Province, the origin of various rivers
and streams. They are generally not long, and they flow mainly to the Andaman Sea in the
west and southwest directions. The nineteen runoff stations were used for our analysis.
Thale Sap Songkhla watershed, an area of 8484.35 km2, primarily covers three provinces,
the province of Nakhon Si Thammarat (Some portions of the district of Cha-Uat and the
district of Hua Sai), the province of Phatthalung, both provinces, and the province of
Songkhla, except for the district of Nathawi, the district of Chana, the district of Thepha
and the district of Saba Yoi). Thus, 147 sub-districts and 26 districts, with nine runoff
stations, were our study setting. Figure 1 shows the rainfall location, runoff, and weather
stations selected in Thailand’s southern basin.

We collected the monthly meteorological and hydrological data from the Royal Irriga-
tion Department (RID) and the Thai Meteorological Department (TMD), including runoff
(37 stations), rain (38 stations), and air temperature (13 stations) as shown in the statistical
values in Figure 2. We also investigated and analyzed the time corresponding among those
three meteorological and hydrological data to select the suitable periods of model’s calibra-
tion and verification, as shown in Table 1. The Thiessen polygon was used to determine
the mean areal precipitation in the considered basin from rain gauge observations. The
monthly evapotranspiration, which is one of the input data for the GR2M model, was
calculated from the average monthly air temperature (Ti) data by Thornthwaite [24], as
shown below:

• Monthly values of the heat index

Ii =

(
Ti

5

)1.514
(1)

• Annual temperature efficiency index

J =
12

∑
i=1

(Ii) (2)

• Evapotranspiration

PETi(0) = 1.6
(

10Ti

J

)C
(3)

• The C value can be obtained from:

C = 0.000000675J3 − 0.0000771J2 + 0.01792J + 0.49239 (4)

• Potential Evapotranspiration

PETi(L) = K × PETi(0) (5)

where Ti = Monthly average temperature (◦C), K = PET constants at different latitudes.
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Figure 2. Statistical values of monthly (a) runoff, (b) rainfall, and (c) evapotranspiration data used in this analysis.
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Table 1. The periods of data used for the GR2M model’s calibration and verification.

No. Code Basin Name
Period

All Warm-Up Calibration Validation

1 X.44 TSS April 2004–March 2009 April 2004–September 2004 October 2004–February 2007 March 2007–March 2009
2 X.67A TSS April 2005–March 2009 April 2005–October 2005 November 2005–September 2007 October 2007–March 2009
3 X.71B TSS April 2004–March 2009 April 2004–October 2004 November 2004–April 2007 May 2007–March 2009
4 X.90 TSS April 2003–March 2009 April 2003–October 2003 November 2003–July 2007 August 2007–March 2009
5 X.109 TSS April 2003–March 2008 April 2003–October 2003 November 2003–December 2006 January 2007–March 2008
6 X.113 TSS April 2003–March 2009 April 2003–October 2003 November 2003–November 2006 December 2006–March 2009
7 X.170 TSS April 2003–March 2009 April 2003–October 2003 November 2003–February 2007 March 2007–March 2009
8 X.174 TSS April 2003–March 2009 April 2003–October 2003 November 2003–January 2007 February 2007–March 2009
9 X.240 TSS April 2004–March 2009 April 2004–September 2004 October 2004–February 2007 March 2007–March 2009

10 X.53A PEC April 2003–March 2010 April 2003–July 2003 August 2003–December 2006 January 2007–March 2010
11 X.64 PEC April 2004–March 2009 April 2004–September 2004 October 2004–September 2007 October 2007–March 2009
12 X.158 PEC April 2004–March 2009 April 2004–August 2004 September 2004–September 2007 October 2007–March 2009
13 X.212 PEC April 2005–March 2012 April 2005–July 2005 August 2005–June 2009 July 2009–March 2012
14 X.55 PEC April 2005–March 2009 April 2005–October 2005 November 2005–November 2007 December 2007–March 2009
15 X.70 PEC April 2005–March 2009 April 2005–September 2005 October 2005–May 2008 June 2008–March 2009
16 X.149 PEC April 2005–March 2009 April 2005–October 2005 November 2005–April 2008 May 2008–March 2009
17 X.167 PEC April 2003–March 2009 April 2003–October 2003 November 2003–October 2006 November 2006–March 2009
18 X.203 PEC April 2005–March 2009 April 2005–October 2005 November 2005–December 2007 January 2008–March 2009
19 X.186 PWC April 2003–March 2009 April 2003–September 2003 October 2003–December 2006 January 2007–March 2009
20 X.187 PWC April 2003–March 2009 April 2003–August 2003 September 2003–August 2006 September 2006–March 2009
21 X.191 PWC April 2003–March 2009 April 2003–August 2003 September 2003–May 2007 June 2007–March 2009
22 X.192 PWC April 2003–March 2009 April 2003–September 2003 October 2003–August 2006 September 2006–March 2009
23 X.196 PWC April 2003–March 2009 April 2003–August 2003 September 2003–August 2006 September 2006–March 2009
24 X.205 PWC April 2005–March 2012 April 2005–August 2005 September 2005–May 2009 June 2009–March 2012
25 X.207 PWC April 2003–March 2010 April 2003–August 2003 September 2003–September 2007 October 2007–March 2010
26 X.208 PWC April 2005–March 2009 April 2005–July 2005 August 2005–September 2007 October 2007–March 2009
27 X.209 PWC April 2005–March 2011 April 2005–July 2005 August 2005–May 2009 June 2009–March 2011
28 X.245 PWC April 2005–March 2009 April 2005–July 2005 August 2005–June 2007 July 2007–March 2009
29 X.56 PWC April 2004–March 2009 April 2004–August 2004 September 2004–August 2007 September 2007–March 2009
30 X.150 PWC April 2005–March 2009 April 2005–September 2005 October 2005–July 2007 August 2007–March 2009
31 X.228 PWC April 2003–March 2009 April 2003–October 2003 November 2003–September 2006 October 2006–March 2009
32 X.229 PWC April 2003–March 2009 April 2003–October 2003 November 2003–March 2007 April 2007–March 2009
33 X.234 PWC April 2004–March 2009 April 2004–September 2004 October 2004–August 2007 September 2007–March 2009
34 X.235 PWC April 2004–March 2009 April 2004–September 2004 October 2004–September 2007 October 2007–March 2009
35 X.236 PWC April 2004–March 2009 April 2004–July 2004 August 2004–December 2006 January 2007–March 2009
36 X.237 PWC April 2004–March 2009 April 2004–August 2004 September 2004–January 2007 February 2007–March 2009
37 X.239 PWC April 2004–March 2009 April 2004–July 2004 August 2004–December 2007 January 2007–March 2009

Remark: TSS = Thale Sap Songkhla; PWC = Peninsular-West Coast; PEC = Peninsular-East Coast.
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3. GR2M Model

The GR2M, a conceptual model, was first introduced by Demagref in the late 1980s
and it has been widely applied for water resources management [25]. The model aims to
simulate the relationship between monthly rainfall and runoff and reproduce the hydrolog-
ical system’s response. It has been continuously being developed to improve its efficiency
by Kabouya [26], Makhlouf and Michel [27], Mouelhi [28] until Mouelhi et al. [29]. The
model selected in this study was the latest version, GR2M 2006. It is the most popular and
efficient compared to other models [13]. The GR2M model’s advantage requires only two
parameters: production store: X1 (mm) and groundwater exchange rate (X2). Additionally,
it needs only three monthly meteorological and hydrological data, i.e., rainfall, runoff, and
evapotranspiration [30,31]. The GR2M model results give runoff hydrograph and other
elements such as soil moisture content, surface runoff, the groundwater flow.

The structure of the GR2M model consisted of two reservoirs, as presented in Figure 3.
The first reservoir represents soil moisture (S) of the basin-controlled production store:
X1 (mm). Furthermore, the second reservoir is water flow through the river (R). Its capacity
is up to 60 mm and is regulated by the groundwater exchange rate (X2). This model starts
with the precipitation infiltrated into the soil, causes soil moisture at the level: S1 (mm).
When the soil reaches a saturation point, the remnants of infiltration rain become rainfall
excess: P1 (mm). The soil moisture loss from evapotranspiration: E until the remaining
moisture level: S2 (mm).

Figure 3. Structure of the GR2M model. (Source: Adapted from Bachir et al. [31]; Rwasoka et al. [32]).

Additionally, some moisture content is released as surface water: P2 (mm) and gradu-
ally released with rainfall excess. This water section is called surface runoff or net rainfall:
P3 (mm), which moved into the flow path combined with the remaining water from the ini-
tial or existing water in the river: R (mm). It causes the water content at level R1 (mm). The
water volume movement may change because some water may be lost, causing the residual
water volume at the level: R2 (mm). Ultimately, the total amount of water discharge into
the runoff streamflow gauging station conducted the assessment.
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4. Model’s Calibration and Verification

In achieving our aims in evaluating a Two-Parameters Monthly Rainfall-Runoff
Model’s performance, the GR2M model applied in Thailand’s southern basin was cal-
ibrated and verified. It included two steps, i.e., the warm-up period and calibrating and
verifying the GR2M Model.

4.1. Warm-Up Period

In this process, the appropriate initial parameters of X1 and X2 are determined. It
enables the model to mimic the basin’s existing hydrological behavior at the considered
runoff stations before conducting the model’s calibration and verification. The R-value,
the initial or existing water capacity in the river, is varied between 10 mm and 60 mm to
determine the suitable warm-up period. In our study, we found the warm-up periods of
approximately 4 to 7 months.

4.2. Calibrating and Verifying the GR2M Model

As widely known, the calibration and verification processes are imperative for apply-
ing the mathematical model to find the most suitable model’s parameters. The model can
simulate the behavior of our concerning water system. For the GR2M model, only two
parameters: the production store (X1) and the groundwater exchange rate (X2), must be
calibrated and validated. Microsoft Excel solvers help by giving an objective function and
practical constraints, which can automatically solve the fair values of X1 and X2 parameters
for each runoff station. The GR2M model was calibrated and verified for 37 different runoff
stations in the Southern Basins in this study. The details of the intervals for the calibration
and verification of the model are presented in Table 1. The lowest and the highest periods
used for running the GR2M model are 41 and 80 months. The used range of the calibration
and verification periods consists of 22 and 48, and 10 and 39 months, respectively.

5. Performance Criteria for Evaluating the Applicability of the GR2M Model

In this study, three performance criteria were used for evaluating the performance
and applicability of the GR2M Model. They included Nash–Sutcliffe Efficiency (NSE),
Correlation Coefficient (r), and Overall Index (OI). The details for each performance criteria
can be delineated as shown the following:

Nash-Sutcliffe Efficiency (NSE) [32] is a popular index used to tell model accuracy or
efficiency-effectiveness of the model (Model Performance) in estimating the desired value.
As the equation below:

NSE = 1 − ∑n
i=1(Qcal − Qobs)

2

∑n
i=1
(
Qobs − Q́obs

)2 (6)

NSE is between −∞ to 1. Suppose the Nash values are close to 1. In that case, the
model results and the measurement results are similar. They are considered the model of
efficiency or accuracy in forecasting [33].

Correlation Coefficient (r) is a simple linear regression equation. It is a simple linear
regression equation that can be used to estimate the Y as well. If X and Y are correlated well.
The correlation coefficient between X and Y can be calculated from the following equation.

r =
∑n

i=1
(
Qobs − Qobs

)(
Qcal − Qcal

)√
∑n

i=1 (Qobs − Qobs)
2 ·
√

∑n
i=1 (Qcal − Qcal)

2
(7)

The r-value is between −1 and 1. The squares of r or R2 will always be between
0–1, and in this sense, if R2 is 0, then the two variables have no linear correlation. If R2
is equal to 1, then there is an entirely linear correlation. If the r-value approaches 1, the
model results and the measurement results are related. The plus sign (+) or minus sign can
also tell the direction of the data set’s relationship. The plus sign (+) means the dataset is
related. Suppose the data obtained from the model is precious. The data obtained from
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the measurement is also precious. The minus sign (−) means the dataset is in the opposite
relationship. If the information is valuable More information will be less [34–36].

Overall Index:

OI =
1
2

[
2 − RMSE

Qobs,max − Qobs,min
− ∑n

i=1(Qobs − Qcal)
2

∑n
i=1
(
Qobs − Qobs

)2

]
(8)

The OI value is a criterion that indicates model performance. It is between −∞ to 1. If
the higher OI is closer to 1, the model’s performance is favorable [37,38]. where; Qobs is the
amount of runoff obtained from the measurement, Qcal is the amount of runoff obtained
from the calculation, Qobs is the average runoff from the measure, Qcal is the average runoff
from the calculation, Qobs,max is the runoff from the highest measurement Qobs,min is the
runoff from the lowest measurements, and n is the amount of information.

6. Results and Discussion
6.1. The Results of Calibrating and Verifying the GR2M Model

Table 2 shows the results of the model’s calibration and verification. It explicitly
indicated that the GR2M model could be applied for modeling monthly rainfall-runoff in
the southern region of Thailand.

Table 2. Results of calibrating and verifying the GR2M model.

No. Code

Performance Criteria

No. Code

Performance Criteria

Calibration Validation Calibration Validation

NSE r OI NSE r OI NSE r OI NSE r OI

1 X.44 0.942 0.973 0.949 0.465 0.705 0.657 20 X.187 0.563 0.756 0.668 0.349 0.654 0.548
2 X.67A 0.978 0.99 0.974 0.719 0.852 0.795 21 X.191 0.177 0.492 0.505 0.664 0.831 0.749
3 X.71B 0.688 0.954 0.793 0.605 0.797 0.733 22 X.192 b 0.165 0.462 0.493 0.167 0.670 0.451
4 X.90 0.772 0.887 0.85 0.468 0.502 0.478 23 X.196 0.333 0.691 0.544 0.283 0.691 0.505
5 X.109 0.925 0.987 0.94 0.577 0.849 0.696 24 X.205 c 0.518 0.755 0.693 −0.119 0.663 0.289
6 X.113 0.736 0.91 0.821 0.479 0.796 0.648 25 X.207 0.758 0.878 0.798 0.836 0.920 0.856
7 X.170 0.805 0.903 0.867 0.038 0.451 0.392 26 X.208 0.796 0.906 0.838 0.751 0.894 0.808
8 X.174 0.725 0.975 0.821 0.385 0.731 0.61 27 X.209 a 0.880 0.943 0.896 0.870 0.935 0.883
9 X.240 0.975 0.993 0.973 0.511 0.735 0.687 28 X.245 0.476 0.715 0.636 0.199 0.503 0.457

10 X.53A 0.822 0.908 0.868 0.714 0.847 0.793 29 X.56 0.813 0.911 0.868 0.676 0.866 0.746
11 X.64 a 0.787 0.888 0.838 0.941 0.970 0.942 30 X.150 0.833 0.915 0.871 0.226 0.623 0.461
12 X.158 0.573 0.759 0.714 0.752 0.869 0.818 31 X.228 0.111 0.527 0.450 0.346 0.702 0.554
13 X.212 b 0.383 0.668 0.594 0.173 0.431 0.467 32 X.229 c 0.564 0.794 0.730 −0.437 0.407 0.120
14 X.55 0.654 0.903 0.761 0.987 0.996 0.980 33 X.234 0.854 0.934 0.890 0.713 0.882 0.773
15 X.70 a 0.780 0.943 0.845 0.923 0.976 0.916 34 X.235 0.430 0.758 0.648 0.404 0.679 0.596
16 X.149 0.557 0.912 0.702 0.957 0.986 0.950 35 X.236 0.801 0.896 0.857 0.513 0.719 0.647
17 X.167 0.892 0.973 0.912 0.278 0.803 0.534 36 X.237 c 0.734 0.277 0.411 −0.305 0.497 0.202
18 X.203 0.732 0.970 0.809 0.897 0.973 0.904 37 X.239 0.376 0.754 0.602 0.055 0.673 0.388
19 X.186 b 0.400 0.660 0.580 0.405 0.680 0.620

Maximum 0.978 0.993 0.974 0.987 0.996 0.980

Minimum 0.111 0.277 0.411 −0.437 0.407 0.120

Average 0.657 0.825 0.757 0.472 0.750 0.639

Standard Deviation 0.233 0.170 0.153 0.350 0.166 0.213

Remark: TSS = Thale Sap Songkhla; PWC = Peninsular-West Coast; PEC = Peninsular-East Coast. a the green text shows the best top-three
model performance stations, b the red text shows the worst top-three model performance stations, c the blue text shows stations having the
overfitting models.

The average performance criteria gave NSE, r, and OI values for the calibration stage
of 0.657, 0.825, and 0.757. Those values for the verification stage of 0.472, 0.750, and 0.639,
respectively. Lian, et al. [39] suggested that the model had a good prediction since NSE was
in the range of 0.36 to 0.75. By obtaining an r-value of more than 0.70, it indicated a strong
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positive linear relationship between simulated and observed runoff [36]. Moreover, the OI
value of more than 0.60 showed the model had relatively high forecasting accuracy. The
three performance criteria previously mentioned emphasized a strong consistency between
the runoff data obtained from the measurements and model-simulated for our study.

Considering the best top-three model performance stations obtaining from X.64, X.70,
and X.209, NSE, r, and OI values for both calibration and verification processes gave more
than 0.76, it showed the GR2M model performed quite satisfactorily for simulating monthly
runoff. Conversely, the worst top-three model performance stations were X.212, X.186, and
X.192. They gave NSE, r, and OI values for both calibration and verification processes less
than 0.690. However, some runoff stations, i.e., X.205, X.229, and X.237, had a negative NSE
value. It represented overfitting models for those three runoff stations and could not be
generally applied. Although many attempts were being made for the model’s calibration and
verification processes, the quality and accuracy of measured hydrological and meteorological
data are the most important things to concern and check the consistency. Figure 4 illustrates
the relationship between rainfall and runoff obtained from running the GR2M model. Herein
present six examples of runoff stations, i.e., X.64, X.70, X.209, X.212, X186, and X.192. The best
top-three and the worst top-three model performance stations are presented.

Likewise, the bar chart in blue represents rainfall time-series variation. The line graphs
in orange and green also show the observed and simulated runoff time-series variation, re-
spectively. For both runoff time-series variations, the solid and dot lines mean calibration and
validation periods, respectively. A slight difference runoff time-series value was observed for
the best top-three model performance stations. A significant difference was observed among
runoff time-series values for the worst top-three model performance stations. However, both
cases underestimated runoff value; that is, the simulated runoff was lower than the observed
runoff. It could realize when using the calibrated and verified GR2M model, especially for
water resources management and planning for rainy and dry seasons.

6.2. The Optimal Values of Production Store Capacity (X1) and Groundwater Exchange Rate (X2)

Figure 5 shows suitable X1 and X2 parameters of the GR2M model for each runoff
station obtained from the model’s calibration and verification.

The production store (X1) value results ranged from 2.00 mm to 10.00 mm. It showed
a spatial variation of X1 value, and its values ranged from the minimum (2.00 mm) and
maximum (10.00 mm) values. The average and standard deviation values of X1 were
5.71 mm, and 2.49 mm, respectively. Furthermore, the skewness and kurtosis values of
X1 were −0.52 and −1.03, respectively. It could physically explain river basin character-
istics in terms of production store (X1). It had left skew, platykurtic, and non-symmetric
distributions. The groundwater exchange rate (X2) value results ranged from 0.54 to 1.00.
Those X2 values mostly reached the maximum value (1.00). The average and standard
deviation values of X2 were 0.93 and 0.12, respectively. Moreover, the skewness and kurto-
sis values of X2 were −2.01 and 3.69, respectively. It could physically explain river basin
characteristics in terms of the groundwater exchange rate (X2). It had left skew, leptokurtic,
and non-symmetric distributions. The positive value of groundwater exchange rate (X2)
displayed no groundwater flows outside the basin.

6.3. The Spatial Distribution of X1 and X2 Values Using the Inverse Distance Weighting
(IDW) Method

Figure 6 shows the spatial distribution of X1 and X2 values using the IDW method.
As seen from Figure 5a, the low production store (X1) value (yellow and green color) was
generally located on the Peninsular-West Coast. The significant area roughly was covered
by the average production store (X1) value (5.71 mm). Most areas were a light blue color.
Only the northern part of Surat Thani province shows the high production store (X1) value,
which shows the dark blue zone. For the groundwater exchange rate (X2), as depicted in
Figure 5b, most areas were governed by the dark blue zone. It indicated that most areas in
the southern basin, Thailand, had a high groundwater exchange rate (X2).
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Figure 4. Cont.



Water 2021, 13, 1226 12 of 18

Figure 4. The relationship between rainfall and runoff of models (GR2M) stations.
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Figure 5. The suitable X1 and X2 parameters of the GR2M model: (a) Production Store: X1, and (b) Groundwater exchange
rate: X2.

Furthermore, it agreed to the average X2 value of 0.93. The northern part of Surat Thani
province and some Chumporn, Trang, and Satun provinces show the low groundwater
exchange rate (X2) value, as portrayed in the yellow and green zone. Suppose we do not
have a measured gauged or ungauged. In that case, we can use these figures to determine
the values of X1 and X2 roughly. If we know areal rainfall and evaporation, we can also
estimate the runoff via the GR2M model.
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Figure 6. The spatial distribution of X1 and X2 values using IDW method: (a) Production Store: X1, and (b) Groundwater
exchange rate: X2.

7. Sensitivity Analysis

The sensitivity analysis [10] was conducted in this study to understand the effects of
the two model parameters (i.e., X1 and X2). We randomly selected three runoff stations
(X.44, X.64, and X.240) as the representative for all 37 runoff stations due to the analysis
sensitivity. By fixing the optimal X2 value obtained from calibration and verification stages
and then varying the X1 value in it ranges from the minimum to maximum (2 mm to
10 mm) [31,36], we received the results of X1’s sensitivity analysis. Similarly, by fixing the
optimal X1 value obtained from calibration and verification stages and then varying the
X1 value in it ranges from the minimum to maximum (−1 to 1) [31,34], we got the results
of X2’s sensitivity analysis. It was rarely reported about the sensitivity analysis for the
GR2M model’s two parameters to our best knowledge. Thus, it was the early attempt
to conduct their sensitivity analysis. As evidentially presented in Figure 7, the X1 value
was sensitive. Apart from the optimal value obtained from the calibration and verification
stages, the other value gave a lower model’s performance. Considering the X2 value, we
found that the higher value (approximately more than 0.90) was trial, it gave the higher
model’s performance. It also confirmed and corresponded with the results, as found in
Figures 5 and 6.
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Figure 7. The sensitivity analysis of the GR2M model’s two parameters: X1 and X2.

Rainfall-runoff modeling is among the most challenging task for hydrologists, par-
ticularly in regions with scarce rainfall and runoff data records. The complexity of the
rainfall-runoff modeling also comes from the non-stationary features of its components,
such as seasonality, potential trend, and the non-linear behavior of the variables involved
in the modeling process [11,40]. Geomorphological features characterizing the watershed
influence significantly the runoff regime; namely, in urban areas, high imperviousness areas
cause increased runoff by originating floods while the same behavior is not observed in
fewer imperviousness areas [1,3]. Thus, it is crucial to know the sensitivity of parameters in
the rainfall-runoff modeling, especially in the urban areas, making the calibration process
more efficient by focusing only on the parameters for which the modeling results are more
sensitive [10]. The findings resulted from this study contribute to enhance the understand-
ing of the hydrological parameters and processes that govern a watershed system. Also, it
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offers new insights on the application of the GR2M model in regions characterized by a
similar climate and geomorphological conditions to support decision-makers and optimize
the planning and operation rules of water resources systems [21,40]. Last, for areas, espe-
cially large basins suffering from a lack of hydrometeorological data records it is important
to assess the areal inhomogeneity of the investigated gauging station network [41,42]. In
that regard, knowing the fractal dimension of the hydrometeorological network and its
limits of validity is the key to understanding the limits of reliability of an inhomogeneous
distribution of gauging stations [42].

8. Conclusions

With only two parameters, namely, the production store (X1) and the groundwater
exchange rate (X2), our research work explicitly indicated GR2M model could be applied
for modeling monthly rainfall-runoff in the southern region of Thailand. The model’s
calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825,
and 0.757. Those values for verification of 0.472, 0.750, and 0.639, respectively. The range
of X1 was between 2.00 and 10.00, and the range of X2 was between 0.54 and 1.00. It
was sensitive to the X1 value. The other value indicates lower model efficiency, apart
from the optimum value obtained from the calibration and verification phases. We also
found that the higher value of X2 (approximately more than 0.90) gave the higher model’s
performance. Personnel concerning water resources planning and management can apply
our work for a guideline for utilizing the GR2M model to determine monthly runoff in
other runoff stations located in the southern region, Thailand. It is because there are similar
hydrological, geological, and topological basin characteristics. However, to further enhance
the GR2M model’s reliability, a more extended period of recorded hydrological data is
required. Also, more runoff gauging station installation will cover the variety of existing
watershed characteristics.
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