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Abstract: Fluoride pollution frequently occurs in many underground drinking water sources due
to discrepancies in the geological environment. To address this problem, a manganese-supported
activated alumina (MnOOH-supported AA) adsorbent was proposed in the present study. The
adsorbent was prepared with an impregnation method, then the morphology and microstructure
were systematically characterized. Further, the adsorption kinetics and thermodynamics were
systematically explored through static experiments to confirm the adsorption mechanism. The
results showed that MnOOH was successfully loaded on the activated alumina (AA), and irregular
and convex spinous structures were formed on the surface of particles. Compared with the AA,
MnOOH-supported AA exhibited a significantly higher defluoridation rate, which has been doubled.
The kinetic behavior of fluoride adsorption on MnOOH-supported AA was governed by the quasi-
second-order kinetics model with regression coefficients of 0.9862, 0.9978 and 0.9956, respectively.
The adsorption rate was mainly ascribed to the intra-particle diffusion. Additionally, the Freundlich
isotherm equation fitted the adsorption thermodynamic process reasonably well compared with the
Langmuir adsorption model. Specifically, the correlation coefficients were 0.9614, 0.9383 and 0.9852
at 25 ◦C, 35 ◦C and 45 ◦C, respectively. The adsorption–desorption isotherm plot was similar to
the Type V isotherm. The whole fluoride adsorption was a spontaneous endothermic reaction, and
controlled by chemical adsorption. These results demonstrated that MnOOH-supported AA as an
alternative to the conventional AA showed promising potential for defluoridation in drinking water
treatment.

Keywords: manganese-supported activated alumina (MnOOH-supported AA); fluoride; kinetics;
thermodynamics

1. Introduction

China has abundant groundwater resources, accounting for 30% of the total water
resources. Due to stable water temperature, simple water-supply facilities, reliable water-
supply capacity, favorable water quality and extensive distribution etc., the groundwater is
being developed on a large scale and has been a vital source of drinking water. However,
the water quality and safety cannot be guaranteed for nearly half of the groundwater. The
water could be polluted by fluoride because of human production activities and natural
geochemical processes. Long-term use of high-fluoride water will do harm to human health,
causing endemic fluorosis such as dental fluorosis and skeletal fluorosis. The intelligence
quotient of children could be significantly affected if excessive fluoride is ingested [1,2].
In China (Figure S1), high-fluoride shallow groundwater is mainly distributed in Heilong
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Jiang, Jilin, Liaoning, Shanxi, Jiangsu, Ningxia and Gansu Provinces, etc. The fluoride
content in groundwater is 2~5 mg/L, and sometimes even as high as 10 mg/L. Meanwhile,
the phenomenon of high iron ions generally occurs in Heilong Jiang, Jilin, Liaoning,
Shandong, Hubei and Hebei Provinces and the Nei Monggol Autonomous Region, etc. It is
noteworthy that groundwater is a significant drinking water source in northern rural areas
of China. In general, the occurrence of high-fluoride and high-iron are noticed depending
on the geological structure. However, due to the local geological structure and economic
environment conditions, there is still a lack of effective defluoridation measures in many
rural areas. Therefore, there is an urgent technical demand by livelihood problems to
relieve fluoride pollution.

At present, there are five major types of commonly used fluoride removal methods:
precipitation [3–5], ion exchange [6,7], membrane filtration [8,9], electrodialysis [10] and
adsorption [11,12], all of which have their own advantages and shortcomings, as shown in
Table 1. Among these methods, adsorption is widely applied for low operating costs and
simple operation process [13], and the most frequently used adsorbents include activated
alumina (AA), zeolite and chitosan [14,15]; among these, AA is the most commonly used.
Table 2 shows the related research on adsorbents and adsorption effects abroad. Although
the common adsorbents exhibit preferable adsorption capacity, there are still problems
occurring in defluoridation, including low saturation adsorption capacity and increasing
amounts of adsorbent dosage [16]. Recently, fabricating adsorbents coated with Ca, Zr,
La, Ce, Mn and other elements have attracted increasing attention for fluoride removal,
and the modified adsorbents have exhibited excellent removal. Calcium hydroxide used
for fluoride removal could produce sludge with a high water content and an unstable
fluoride concentration in the effluent. It is reported that manganese oxide (MnOOH) with a
large surface area and microporous structure [17–19] is prevalent in epigenetic geochemical
environments, which manifests excellent adsorption performance for anions [20]. At
present, there are few studies related to AA loaded with MnOOH for fluoride removal in
groundwater.

In the present study, a manganese-supported AA (MnOOH-supported AA) adsorbent
was evaluated for defluoridation from aqueous solutions. To be specific, AA with a size of
3~5 mm was selected, and MnOOH was loaded on AA using an impregnation method. The
morphology and microstructure of MnOOH-supported AA were analyzed using various
characteristic means. Moreover, the adsorption kinetics and adsorption thermodynamics
were determined by a quasi-first-order model, a quasi-second-order model, the Weber and
Morris model, the Freundlich isotherm equation and the Langmuir isotherm equation. The
adsorption mechanism was then discussed on the strength of the experimental results.
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Table 1. Comparative analysis of fluoride removal methods.

Technique Category Materials Advantages Limitations

Precipitation

Chemical
precipitation Calcium salt, etc. Low cost,

simple operation
High amount of retained water (sludge dewatering is

required prior to disposal)

Coagulant
sedimentation

Iron salt,
aluminum salt, etc.

Low cost,
simple operation

Can be expensive, efficiency depends on pH and the
presence of co-existing ions in water, adjustment and

readjustment of pH is required, elevated residual
aluminum concentration, formation of sludge with a high

amount of toxic aluminum fluoride complex

Ion exchange Ion exchange Ion exchange resin High efficiency High cost of installation and regeneration

Separation membrane

Electrodialysis Ion exchange
membrane High efficiency, no need to dosage agents

Expensive, vulnerable to interfering ions (sulfate,
phosphate, chloride, bicarbonate, etc.), high operation cost,

toxic concentrate generated
Reverse
osmosis Reverse osmosis membrane High efficiency, suitable for treating

high-fluoride water
High cost of installation and maintenance, replacement of

media after multiple regenerations
Ultrafiltration Ultrafiltration membrane No risk of secondary contamination,

suitable for treating high-fluoride water
High cost, pre-processing complexity, strict technical

requirementsNanofiltration Nanofiltration membrane

Adsorption Activated
alumina Activated alumina

Greater accessibility, low cost, simple
operation, availability of wide range of
adsorbents, produce high-quality water,

environmentally friendly

Common ions interfere with fluoride adsorption,
regeneration difficult, low adsorption efficiency under

high fluoride concentration
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Table 2. A summary of various adsorbents for fluoride removal from water.

S. No. Adsorbent Adsorption Capacity Concentration Range Contact Time pH

1 Fe-impregnated chitosan (Fe-CTS) 1.97 mg/g 10 mg/L 6 h -

2 Magnetic iron oxide fabricated hydrotalcite/chitosan
(Fe3O4HTCS) 5.03 mg/g 10 mg/L 20 min 5

3 Hydrous zirconium oxide-impregnated chitosan beads 22.1 mg/g 9.7–369.2 mg/L 160 h 5
4 Sn(IV) chloride impregnated chitosan La3+ modified 17.63 mg/g 5–100 mg/L 30 min 6

5 Lanthanum-aluminum loaded hydrothermal palygorskite
(La-Al-HP) 1.30 mg/g 4.89 mg/L 540 min 7.5

6 Fe3+-modified bentonite clay 2.91 mg/g 10 ppm 30 min 2~10
7 MnO2 coated Na-bentonite 2.4 mg/g 5 mg/L 30 min 8
8 Hydroxyapatite nanorods 1.49 mg/g 10 mg/L 3 h 7

9 Sulfate-doped hydroxyapatite hierarchical hollow
microspheres 28.3 mg/g 2–100 mg/L 2 h 3.0~10.0

10 Hydroxyapatite decorated with carbon nanotube composite
(CNT-HAP) 11.05 mg/g 15 mg/L 300 min 6

11 Hydroxyapatite montmorillonite (HAP-MMT) 16.7 mg/g 30 mg/L 30 min 5
12 Zirconium impregnated activated carbon (ZrAC) 5.4 mg/g 2.5–20 mg/L 180 min 4
13 Mg-Mn-Zr impregnated activated carbon (ACMg-Mn-Zr) 26.27 mg/g 5–30 mg/L 3 h 4
14 Alumina impregnated activated carbon 2.86 mg/g 10 mg/L 3 h 6.1
15 Activated alumina - 2–20 mg/L 24 h 6~8
16 Acid activated alumina 69.52 mg/g 10–60 mg/L 3 h 6.5
17 Nitric acid activated alumina 45.75 mg/g 40 mg/L 3 h 3.5
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2. Materials and Methods
2.1. Chemicals

In this study, AA, sodium fluoride (NaF), ammonia (NH3·H2O), ammonium ferrous
sulfate ((NH4)2Fe(SO4)2·6H2O) and hydroxylamine hydrochloride (H4ClNO) were pur-
chased from Sinopharm Chemical Reagent Co., Ltd. (CHN). Aluminum sulfate (Al2(SO4)3),
manganese sulfate (MnSO4), hydrochloric acid (HCl), phenanthroline (C12H8N2), ammo-
nium acetate (CH3COONH4) and glacial acetic acid (CH3COOH) were provided by Tianjin
Kemiou Chemical Reagent Co., Ltd. (CHN). Hydrogen peroxide (H2O2) and SPADNS
reagent were purchased from Tianjin Damao Chemical Reagent Factory (CHN) and Amer-
ica HACH company (USA), respectively. As shown in Table 3, a fluoride solution was
prepared by dissolving a certain amount of NaF and (NH4)2Fe(SO4)2·6H2O in deionized
water (DI water). Note that the actual initial concentration of the pollutant solution is
subject to the actual measured value on that day. All chemicals were all of analytical grade
and DI water (resistivity of 18.2 MΩ·cm) was used in all experiments.

Table 3. Reference sample preparation.

F− Total Fe

Concentration
(mg/L)

2 ± 0.5 2 ± 0.5
5 ± 0.5 2 ± 0.5
10 ± 0.5 2 ± 0.5

2.2. Fabrication of MnOOH-Supported AA
2.2.1. Modification of AA

As shown in Figure 1a, 100 g of AA particles was added in 200 mL of an Al2(SO4)3
solution with a concentration of 4%. Subsequently, the solutions were mixed for 24 h at a
speed of 120 r/min. After that, the obtained solutions were washed with DI water several
times until the pH of the effluent was stable, then dried in an oven for 2 h at 103 ◦C. The
modified AA was used after cooling to room temperature. It was noteworthy that SO4

2−

in the solution could combine with AA by electrostatic or chemical adsorption, forming
sulfate-type AA. The chemical reaction is expressed as follows:

(Al2O3)n·2H2O + SO4
2− → (Al2O3)n·H2SO4 + 2OH− (1)
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2.2.2. AA Coated with MnOOH

Figure 1b shows that MnOOH-supported AA was fabricated using an impregnation
method. Firstly, 50 g of the modified AA particles was dispersed in 250 mL of a MnSO4
solution (0.06 mol/L). Thereafter, the mixture was continuously stirred, injected with
5.1 mL of H2O2 with a concentration of 30%, and heated to 95 ◦C. Next, 75 mL of 0.2 mol/L
NH3·H2O was poured into the above solution. The brown precipitates generated on the
surface of AA were MnOOH. To increase the contact area, the as-obtained mixture was
continuously stirred at 165 r/min for 6 h. After that, the samples were firstly dried at
100 ◦C for 2 h, then washed thoroughly 8 times with 70–80 ◦C hot DI water, and finally
dried for 4 h at 100 ◦C. As presented in Figure 1c, the MnOOH-supported AA was cooled
in an indoor environment naturally for further use.

2.3. Adsorption Experiment

The adsorption kinetic experiment was carried out as follows: 200 mL of a fluoride
solution was treated with the addition of a certain amount of MnOOH-supported AA at
pH 4 and a temperature of 25 ◦C. The mixture was then oscillated at a moderate speed
of 120 r/min using a thermostatic oscillator. To reduce variations, measurements were
conducted in three parallel experiments, and the results presented were the average values.
The adsorption kinetic model on MnOOH-supported AA was established on the basis of
the experimental data.

With respect to the adsorption thermodynamic experiment, 7 g/L of MnOOH-supported
AA was added into the fluoride solution at pH 4 and oscillated for 12 h to attain adsorp-
tion/desorption equilibrium. The initial concentrations of the fluoride solution were 2, 5,
10, 15 and 20 mg/L. In addition, the iron ion content was 2 mg/L. To study the effect of
temperature on adsorption, the temperatures were controlled at 25 ◦C, 35 ◦C and 45 ◦C. The
adsorption thermodynamic model was established, and the thermodynamic parameters
of the adsorption process were also calculated. The mechanism of fluoride adsorption on
MnOOH-supported AA was further discussed.

2.4. Mathematical Model and Basic Parameter Expression
2.4.1. Adsorption Kinetic Model

To get insight into the adsorption properties and rate-limiting step during the adsorp-
tion process, the adsorption kinetics of fluoride were investigated with a quasi-first-order
model, a quasi-second-order model [21] and the Weber and Morris model [22,23]. The
mathematical expressions are shown as Equations (2)–(4).

ln(qe − qt) = lnqe − k1t (2)

t
qt

=
1

k2qe2 +
t
qe

(3)

qt = kpt1/2 + C (4)

where qe and qt (mg/g) represent the adsorption quantity at equilibrium and time, re-
spectively; k1 and k2 are the rate constant of the quasi-first-order reaction and the quasi-
second-order reaction, respectively; kp (mg/(g·min1/2)) represents the particle diffusion
rate constant; t (min) is the adsorption time and C is a constant which characterizes the
extent of diffusion.

2.4.2. Adsorption Thermodynamic Model

The Langmuir isotherm model and Freundlich isotherm model were applied to fit
the equilibrium adsorption data. The Langmuir and Freundlich models are shown as
Equations (5) and (6):

Ce

qe
=

Ce

qmax
1

KLqmax

(5)
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lnqe = lnKF +
1
n

lnCe (6)

where qmax (mg/g) represents the maximum adsorption capacity, Ce (mg/L) is the con-
centration of adsorbate at equilibrium, KL is the Langmuir constant, KF is the Freundlich
constant, n refers to a measure of adsorption intensity (1/n = 0.5~1, the adsorption process
is conducted easily; 1/n > 2, the adsorption process is arduous) [24].

2.4.3. Adsorption Thermodynamic Parameters

To better expound the adsorption mechanism, the adsorption thermodynamic param-
eters, i.e., adsorption enthalpy (∆H), adsorption free energy (∆G) and adsorption entropy
(∆S), were assessed.

∆H could be calculated through the Van’t Hoff equation, as shown in Equation (7):

ln
1

Ce
= −∆H

RT
+ lnK0 (7)

where ∆H (kJ/mol) is the isosteric enthalpy variation of adsorption, Ce (mol/L) is the
equilibrium concentration of the solution at the absolute temperature T (K), R is the gas
constant (8.314 J/(mol·K)) and K0 is the equilibrium adsorption distribution coefficient.

∆G can be obtained with the Gibbs free energy equation. If the adsorption isotherm
can be described using the Freundlich equation model, the ∆G obtained is independent of
q when the mass concentration of the adsorbate is low, expressed as follows:

∆G = −nRT (8)

where ∆G (kJ/mol) is the change of adsorption free energy and n is the Freundlich exponent.
∆S could be obtained using the Gibbs–Helmholtz equation, as shown in Equation (9):

∆S =
∆H− ∆G

T
(9)

2.5. Analytical Methods

The water quality indexes were detected by the Standard Test Method for Drinking Water
(GB/T 57750-2006). The detection and analysis method, and standard limits for drinking water
are displayed in Table 4. The surface morphology of MnOOH-supported AA was observed
by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-
EDS) (S-4800, Hitachi, Japan), and the photomicrographs were recorded at an acceleration
voltage of 5 kV and a constant temperature. The specific surface was measured by N2 air-
suction desorption on an automatic static physical adsorption instrument (Autosorb-IQ2-MP,
Quantachrome, America). The total specific surface was calculated based on the multi-point
Brunauer, Emmentt and Teller equation (P/P0 = 0.005–0.3) with point range of 30 points for
adsorption and 30 points of desorption. X-ray photoelectron spectra (XPS) were measured
utilizing ESCALAB 250Xi (Thermo Fisher Scientific, China) with an Al (hv = 1486 eV) X-ray
source at the standard mode. Prior to measurement, conductive tape was stuck on the tinfoil,
and the sample powder was evenly spread on the surface of conductive tape. The sample
surface was then covered with flat tinfoil, which was placed on the table press at a pressure
of 1.5 T for 1 min. Lastly, the sample sheet was placed on the sample table to determine
the XPS spectra. Fourier-transform infrared spectrometry (FTIR) (NICOLET iS50, Thermo
Nicolet Corporation, America) was applied to analyze the infrared adsorption spectroscopy
in transmission mode. Specifically, 10 mg of the sample was mixed evenly with 500 mg
of potassium bromide powder using a sample mixer and compressed into a thin slice for
examination. The infrared range was set to 4000–400 cm−1 and each scan was checked
32 times.
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Table 4. Experiment detection method.

Test Item Detection and Analysis Method Standard Limits for
Drinking Water (mg/L)

F− Fluorometric
spectrophotometry 1.0

Fe Phenanthroline
spectrophotometry 0.3

T Direct-reading method -

3. Results
3.1. Characterization of MnOOH-Supported AA
3.1.1. Surface Morphology and Phase Composition

It is well known that the adsorption reaction on the particle surfaces is directly affected
by the surface morphology. Hence, the surface morphologies of three kinds of AA were
directly observed by SEM, as depicted in Figure 2. It was discovered that the surface
appearance of modified AA was markedly different from ordinary AA. To be specific,
obvious bulks were heaped up on the ordinary AA surface, and the porous structure
was also inconspicuous. By contrast, the pre-treated AA had a certain pore structure,
which contributed to fluoride adsorption. This phenomenon could be explained by the
fact that the impurities present in AA were removed by the modification, leading to an
increase of porosity. It can be seen in Figure 2b that the surface of MnOOH-supported AA
formed an irregular and convex spinous structure. It was noticed that a well-developed
pore structure was achieved, which was consistent with the finding of Wang et al. [25].
Meanwhile, the EDS analysis in Figure 3 indicates that MnOOH-supported AA clearly had
more surface oxygen content than the ordinary AA, and a small amount of Mn element was
also observed. To this end, it can be concluded that MnOOH was successfully loaded on the
AA surface. Apparently, better dispersion of MnOOH could be achieved, and the surface
of MnOOH-supported AA was rougher than that of the original AA, resulting in excellent
adsorption ability. As compared with the unmodified AA, the specific surface of MnOOH-
supported AA increased from 2.684 m2/g to 3.311 m2/g, and MnOOH-supported AA
contained a range of pores with different sizes, exhibiting better porosity properties. The
above results showed that the MnOOH-supported AA with a large amount of adsorption
sites enhanced the fluoride adsorption capacity.
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3.1.2. XPS Analysis

The XPS spectra of AA before and after modification are presented in Figure 4. It can
be clearly observed that the elements O, Al and Mn were the main constituent elements of
MnOOH-supported AA, consistent with the results of EDS. In addition, the XPS peak-fitting
analysis for the Mn2p peak of MnOOH-supported AA is shown in Figure 5. Apparently,
the Mn2p band in the MnOOH-supported AA was mainly composed of two pinnacles: the
MnOOH peak at 641.5 eV and the MnO peak at 653.4 eV, accounting for 59.2% and 40.7%
respectively. These results revealed that the surface of AA was successfully loaded with
MnOOH.
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3.1.3. FTIR

The typical FTIR spectra of AA and MnOOH-supported AA are shown in Figure 6.
The -OH stretching vibration at 3455.84 cm−1, H2O bending vibration at 1617 cm−1, and
CO3

2− symmetric stretching vibration at 1384.44 cm−1 are clearly observed. The reasonable
explanation for this phenomenon was that AA with a large surface area and hydrophilicity
inevitably absorbed H2O and CO2 in the air. Note that the low peak values corresponding
to H2O and CO2 vibration were observed, implying low contents of H2O and CO2 in
the adsorbent. The typical peak at 605.64 cm−1 was attributed to Al-O bond vibration in
unmodified AA, while a higher peak at 586.84 cm−1 was noticed in MnOOH-supported
AA due to the combination of Al-O and Mo-O bonds. The above results revealed that there
was little variation in the functional groups of MnOOH-supported AA as compared with
the control; however, an increased -OH stretching vibration peak was obtained. Hence, the
content of -OH was enhanced, which provided more adsorption sites for defluoridation.
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sorption reactions [26], hence increasing the reduction efficiency of fluoride. On the other 
hand, when MnOOH-supported AA was dispersed in the solution, the ions located on the 
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3.2. Analysis of Influential Factors and Regeneration Effects
3.2.1. Effect of MnOOH-Supported AA on Fluoride Removal

Figure 7 depicts the effects of AA before and after modification on fluoride removal.
For both MnOOH-supported AA and the original AA, the performance of defluoridation
was improved with an increase in dosages. Specifically, with 1 g/L of the adsorbent
treatment, the removal rates of AA and MnOOH-supported AA were 8.41% and 15.4%,
respectively. When 15 g/L of AA and MnOOH-supported AA was added, respectively, the
reduction rates were 31.75% and 73.33%. As compared with AA, it appeared that MnOOH-
supported AA displayed superior fluoride removal performance, with the defluoridation
rate doubled.
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On the one hand, an irregular and convex spiny structure was seen on the surface
of MnOOH-supported AA particles. The special structure provided more active sites for
adsorption reactions [26], hence increasing the reduction efficiency of fluoride. On the other
hand, when MnOOH-supported AA was dispersed in the solution, the ions located on the
adsorbent surface were stressed unevenly due to the internal and surface forces of the par-
ticles, causing ions to have interface energy [27]. To reduce the interface energy, MnOOH-
supported AA underwent surface hydroxylation by absorbing water molecules [19] and
MnOOH reverted to Mn(OH)2. Simultaneously, the surface of MnOOH-supported AA
was covered by a certain amount of hydroxide radicals [28], thereby increasing the active
sites for removing fluoride [29]. Since OH− and F− with a similar hydrate ionic radius
can occur ionic coordination reaction in an acidic solution, fluoride was removed through
the exchange of hydroxyl groups on the adsorbent surface [30]. The chemical reaction
equations are shown as follows:

(Al2O3)n ·MnOOH + H2O→ (Al2O3)n ·Mn(OH)2 + OH− (10)

R− (Al2O3)n ·Mn(OH)2 + 2F− → R− (Al2O3)n ·MnF2 + 2OH− (11)

In addition, an underground hot spring water in Liaoning Province was used to
investigate the fluoride removal performance. As can be seen in Table S1, under the
condition of 5.6 mg/L of F− concentration and 7 g/L of the adsorbent, the removal rates of
AA and MnOOH-supported AA were 37.72% and 67.75%, respectively. It was concluded
that MnOOH-supported AA had a better fluoride removal effect than AA, and the fluoride
removal rate was increased by more than 70%.

3.2.2. Effect of pH on Fluoride Adsorption

The effect of pH on fluoride removal was investigated, and the results are shown in
Figure 8. Obviously, the fluoride removal effect decreased with the increase in pH values.
Specifically, with the F− concentration increasing from 2 to 5 mg/L, the F− adsorption
capacity increased from 0.16 to 0.41 mg/g, and the removal rate was promoted from
77.09~80.3% to 80.85~83.27%. Based on these results, a pH of 4 was determined for the
thermodynamic and kinetic studies.
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Meanwhile, the fluoride removal effects of MnOOH-supported AA with a particle
size of 0.5–1.5 mm under different pH conditions were compared and analyzed. As shown
in Figure S2, the fluoride removal rate and adsorption amount of the adsorbent gradually
decreased with the increase in pH. Under acidic pH conditions, the fluoride removal effect
of the system was better. It can also be seen in these results that the fluoride removal effect
of small particles was significantly better than that of large particles.
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3.2.3. Effect of Coexisting Anions on Fluoride Adsorption

Figure 9 describes the effects of coexisting anions on the fluoride adsorption of MnOOH-
supported AA and AA. As shown in Figure 9a, there were various effects of coexisting
anions on F− removal by MnOOH-supported AA. The F− removal performance was greatly
affected by carbonate, while a slight impact was produced by chloride and nitrate. Specifically,
the removal rates were reduced from 22.89% to 0.5% due to carbonate, and bicarbonate
resulted in a decrease in the removal rate from 24.88% to 18.41%. This was mainly owing
to the competitive adsorption between interfering anions and F−, leading to a reduction in
the adsorption effect. It can be seen from Figure 9b that the removal rate decreased with
an increasing concentration of interfering anions. The effect of bicarbonate and sulfate on
fluoride removal decreased from 16.92% to 1% and 29.35% to 15.42%, respectively.
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3.2.4. Regeneration of MnOOH-Supported AA

The MnOOH-supported AA was regenerated using the acid-base regeneration process,
and the results are shown in Tables 5 and 6. Here, 2.5% Na2CO3 was selected as the
regenerating agent to obtain the greatest effect. Firstly, a certain amount of MnOOH-
supported AA was regenerated, followed by 0.2 mol/L H2SO4 pickling for 0.5 h; finally, it
was dried after washing with distilled water for 0.5 h. It was concluded that the effluent
mass concentration of F− of MnOOH-supported AA was 0.96 mg/L after regeneration
for 2 h and the removal rate reached 80.8%. Compared with the first removal effects, the
removal rate of fluoride ions decreased by 0.2%.

Table 5. Influence of regenerant concentration on regeneration effects (Na2CO3).

Regenerant Concentration
(mg/L)

F− Concentration
(mg/L)

Removal Rate
(%)

1 2.48 50.40
2 1.32 73.60

2.5 1 80.16
5 0.98 80.56

7.5 0.97 80.75
10 0.96 80.95

Table 6. Influence of regenerant time on regeneration effects (Na2CO3).

Regenerant Time
(h)

F− Concentration
(mg/L)

Removal Rate
(%)

1 1.17 76.79
1.5 1.13 77.58
2 0.96 80.8

2.5 1.17 76.79
3 1.45 71.23
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3.3. Kinetic Study of Fluoride Adsorption
3.3.1. Quasi-First-Order Model and Quasi-Second-Order Model

The adsorption dynamic curves under different initial mass concentrations of fluoride
are displayed in Figure 10. It is worth noting that a similar variation tendency of the
adsorption rate curve was observed while treating different raw water. The adsorbed
amount rapidly increased in 600 min of adsorption time, irrespective of the dosage. This
could be ascribed to the fact that MnOOH-supported AA possessed rich active sites,
leading to a rapid transformation of F− from the solution to the surface. It was clear that
the adsorption of fluoride was mainly external diffusion in the initial adsorption process.
Subsequently, the adsorption sites were gradually covered by fluoride with an increase
in adsorption time, and the solvent diffusion rate slowed down accordingly. After that,
the defluoridation primarily occurred in the internal pores of particles. F− diffused from
the outer surface of particles to the inner surface of micropore when the adsorption time
increased from 600 min to 1500 min. With the extension of adsorption time, the adsorbed
amount slowly increased until it tended to be stable. In an adsorption time of over 1500 min,
the adsorption sites in the surface and inner pores were all occupied. At this moment, the
adsorption of fluoride on MnOOH-supported AA came to an equilibrium state.
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Figure 10. Adsorption dynamic curve of fluoride on MnOOH-supported AA. 

Figure 11 presents the kinetic curves of fluoride with initial concentrations of 2, 5 and 
10 mg/L for adsorption on MnOOH-supported AA. The correlation coefficients (R2) were 
0.8060, 0.9764 and 0.9632 as evaluated by the quasi-first-order model (Figure 11a). Accord-
ing to the quasi-second-order model, the R2 values were 0.9862, 0.9978 and 0.9956, respec-
tively (Figure 11b). It could be discovered that the experimental data perfectly fitted with 
the quasi-second-order equation. The results demonstrated that the quasi-second-order 
model could describe the entire defluoridation process, which was in accordance with 
previous studies [20,27,31]. During the adsorption process, some fluoride passed through 
the orifice and diffused into the pores of MnOOH-supported AA, which was described as 
physical adsorption. Some other fluoride was adsorbed owing to the fluoride–hydroxyl 
exchange reaction, which was chemical adsorption. Therefore, the adsorption process of 
fluoride was composed of physical adsorption and chemical adsorption, and chemical ad-
sorption played the dominant role. In general, the entire defluoridation kinetics of 
MnOOH-supported AA were better fitted by the quasi-second-order model [32,33], in-
cluding external diffusion, inner diffusion, and surface adsorption, etc. [34]. 

Figure 10. Adsorption dynamic curve of fluoride on MnOOH-supported AA.

Figure 11 presents the kinetic curves of fluoride with initial concentrations of 2, 5
and 10 mg/L for adsorption on MnOOH-supported AA. The correlation coefficients (R2)
were 0.8060, 0.9764 and 0.9632 as evaluated by the quasi-first-order model (Figure 11a).
According to the quasi-second-order model, the R2 values were 0.9862, 0.9978 and 0.9956,
respectively (Figure 11b). It could be discovered that the experimental data perfectly fitted
with the quasi-second-order equation. The results demonstrated that the quasi-second-
order model could describe the entire defluoridation process, which was in accordance
with previous studies [20,27,31]. During the adsorption process, some fluoride passed
through the orifice and diffused into the pores of MnOOH-supported AA, which was
described as physical adsorption. Some other fluoride was adsorbed owing to the fluoride–
hydroxyl exchange reaction, which was chemical adsorption. Therefore, the adsorption
process of fluoride was composed of physical adsorption and chemical adsorption, and
chemical adsorption played the dominant role. In general, the entire defluoridation kinetics
of MnOOH-supported AA were better fitted by the quasi-second-order model [32,33],
including external diffusion, inner diffusion, and surface adsorption, etc. [34].
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3.3.2. Weber and Morris Model

Though the quasi-second-order model could describe the entire adsorption process well,
the intra-particle diffusion was not well assessed. Thus, the Weber and Morris model was
used to further analyze the inner diffusion effect [22]. Figure 12 exhibits the plots of qt versus
t for initial concentrations of 2, 5 and 10 mg/L. Saini et al. [35] reported that the main rate-
limiting reaction was intra-particle diffusion when the curve of qt versus t1/2 went through
the origin and presented favorable linear relationships. In Figure 12, irrespective of the initial
concentration, the fit lines are straight and distinct inflection points appear at 23 min1/2. What
is noteworthy is that all fit lines never pass through the origin. The results revealed that
the adsorption rate was controlled not only by intra-particle diffusion but also by external
diffusion. Specifically, the first (0~23 min1/2) and the second (23~67 min1/2) adsorption
processes were assigned to external diffusion and intra-particle diffusion, respectively. the
parameters of the Weber and Morris equation are listed in Table 7. As seen, the linear
correlation of MnOOH-supported AA on fluoride was relatively preferable in the entire
first adsorption process (0~23 min1/2). This could imply that the reaction was mainly
controlled by external diffusion. For the second adsorption process (23~67 min1/2), qt and
t1/2 also showed a relatively good linear relationship, though R2 was lower than that of
the first adsorption process. It can be concluded from the C and k values that diffusion in
this stage was chiefly dependent on the internal diffusion rate. The above results indicated
that defluoridation using MnOOH-supported AA was the common result of external and
intra-particle diffusion.

Table 7. Parameters of the Weber and Morris model.

C0

(mg/L)
0~23 min1/2 23~67 min1/2

R2 k C R2 k C

2 0.9112 0.0212 −0.0494 0.8294 0.0067 0.2738
5 0.9789 0.0347 −0.0524 0.9658 0.0097 0.5357

10 0.9494 0.0318 −0.0548 0.9648 0.0116 0.5372
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3.4. Kinetic Study of Fluoride Adsorption
3.4.1. Adsorption Isotherms

In Figure 13, the variation trend of three is was basically the same in 25 ◦C, 35 ◦C
and 45 ◦C. Significantly, the equilibrium adsorption capacity gradually increased with
an increased initial concentration. Although the slope of curve was reduced, the unit
adsorption capacity of MnOOH-supported AA improved constantly. This was mainly
attributed to the fact that when the initial concentration of fluoride was relatively high, the
solution concentration gradient increased on the inside and outside of particles. This was
propitious to accelerate the diffusion rate and enlarge the equilibrium adsorption amount
of fluoride [22].
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Figure 13. Adsorption isotherm curve of fluoride on MnOOH-supported AA.

To get insight into the adsorption thermodynamic characteristics of MnOOH-supported
AA, the Langmuir adsorption isotherm was used to analyze the defluorination properties;
the results are shown in Figure 14. The related parameters of the Langmuir model and
the Freundlich model at different temperatures are seen in Table 8. It may be thought
that the adsorption process of MnOOH-supported AA on fluoride was well explained
using both the Langmuir and Freundlich isotherms. However, fluoride adsorption was
more suitable for the Freundlich model, with R2 values of 0.9614, 0.9383 and 0.9852 at
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25 ◦C, 35 ◦C and 45 ◦C, respectively. In Table 8, the constant 1/n of the Freundlich
equation is 0.5631, 0.6243 and 0.6241, which illustrated that adsorption was conducted
easily in all cases. In addition, the KF values increased with an increase in adsorption
temperature, suggesting that high temperatures contributed to the adsorption of fluoride
on MnOOH-supported AA. The KL values were all positive under different temperatures,
which accelerated the adsorption reaction. It was also observed that the KL values were
enlarged when temperature increased, suggesting a chemical adsorption mechanism for
the reaction system. Overall, the Freundlich isotherm was applicable to the adsorption
data of all temperatures.
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Table 8. Parameters of the adsorption isotherm models.

Temperature
◦C

Langmuir Model Freundlich Model

KL qe (mg/g) R2 KF 1/n R2

25 0.216 1.450 0.8968 0.274 0.5631 0.9614
35 0.188 1.676 0.8908 0.272 0.6243 0.9383
45 0.208 1.957 0.9522 0.335 0.6241 0.9852

3.4.2. Isosteric Enthalpies for Adsorption

As different atoms and molecules were deposited on the surface, the surface energy of
MnOOH-supported AA was unbalanced, thus generating Gibbs free energy. The deflu-
oridation process was that MnOOH-supported AA absorbed several fluorides from the
solution to balance its surface free energy. Along with the adsorption reaction, the Gibbs
free energy slowly decreased and the surface energy came to a steady state [16,36]. As
is well known, the adsorption free energy is the embodiment of the driving force. It can
be seen from Table 9 that ∆G was less than zero at 25 ◦C, 35 ◦C and 45 ◦C, revealing that
the adsorption reaction was spontaneous [37,38]. Meanwhile, ∆G gradually reduced with
increasing temperature, which meant that the higher temperature was conducive to the
progress of the adsorption reaction.

Through the analysis of adsorption isotherms, it was observed that improving the
temperature was beneficial to the adsorption of fluoride on MnOOH-supported AA. The
∆H was greater than zero, which showed that the whole adsorption process was an en-
dothermic reaction. The variation of ∆H during the adsorption process principally resulted
from chemical reactions. The chemical reaction of fluoride on an adsorbent surface was
mainly a displacement reaction with the activated hydroxyl group formed by the hydration
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reaction. Generally, the increased temperature was not propitious to physisorption. This
suggested that a chemisorption mechanism accorded with the defluoridation process onto
MnOOH-supported AA.

Table 9. Thermodynamic parameters.

C0
(mg/L)

∆H
(J/mol)

∆G (J/mol) ∆S (J/(mol·K))

298 308 318 298 308 318

2 11,131.61 −11,973.36 −12,375.15 −12,776.94 77.53 41.54 43.30
5 3004.26 −1408.50 −1455.76 −1503.03 14.81 4.89 5.05

10 11,370.23 −7110.14 −7348.73 −7587.33 62.01 24.67 25.52
15 8057.76 −2433.97 −2515.64 −2597.32 35.21 8.45 8.72

In addition, a positive ∆S higher than zero at three temperatures revealed an entropy
production process for fluoride adsorption. During the adsorption process, the randomness
of fluoride decreased and the confusion degree of the solid–liquid interface increased. This
phenomenon could be explained by the fact that the exchange reaction between fluoride
and water molecules on the adsorbent surface took place, leading to an improvement in
the total ∆S in the entire system. We concluded that there was a preferable affinity between
fluoride and MnOOH-supported AA. In the initial stage of the reaction, a great deal of heat
was expended owing to the chemical reaction between fluoride and MnOOH-supported
AA. As the coverage rate increased, active sites with high energy were gradually occupied
and the amount of chemical reaction taking place was small. The fluoride adsorbed later
was attached to the adsorption sites with low energy, causing less heat production.

4. Conclusions

(1) The surface of MnOOH-supported AA became rougher, exhibiting more adsorption
sites and preferable porosity to enhance adsorption ability. The results obtained from XPS
showed that the Mn2p peak of MnOOH-supported AA was composed of MnOOH at
641.5 eV and MnO at 653.4 eV, accounting for 59.2% and 40.7%, respectively, illustrating
the ordinary AA was successfully loaded with MnOOH.

(2) The defluoridation kinetics of MnOOH-supported AA fitted well with the quasi-
second-order model, with R2 values of 0.9862, 0.9978 and 0.9956 in this present study.
The adsorption process consisted of external diffusion, internal diffusion and chemical
adsorption, among which, chemical adsorption was the primary adsorption mechanism.
Additionally, the adsorption rate was governed by external diffusion and inter-particle
diffusion conjointly, and the Weber and Morris diffusion was the main reason.

(3) The adsorption of fluoride onto MnOOH-supported AA was better fitted by the
Freundlich isotherm, showing chemical adsorption processes. The results showed that
both higher and lower temperature were favorable to improving the adsorption effects.
During the entire defluoridation process, it was observed that ∆S and ∆H were all positive
and ∆G was negative, illustrating a spontaneous and an endothermic diffusion adsorption
mechanism.
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