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Abstract: Machine Learning (ML) is an increasingly accessible discipline in computer science that
develops dynamic algorithms capable of data-driven decisions and whose use in ecology is growing.
Fuzzy sets are suitable descriptors of ecological communities as compared to other standard algo-
rithms and allow the description of decisions that include elements of uncertainty and vagueness.
However, fuzzy sets are scarcely applied in ecology. In this work, an unsupervised machine learning
algorithm, fuzzy c-means and association rules mining were applied to assess the factors influencing
the assemblage composition and distribution patterns of 12 zooplankton taxa in 24 shallow ponds in
northern Italy. The fuzzy c-means algorithm was implemented to classify the ponds in terms of taxa
they support, and to identify the influence of chemical and physical environmental features on the
assemblage patterns. Data retrieved during 2014 and 2015 were compared, taking into account that
2014 late spring and summer air temperatures were much lower than historical records, whereas
2015 mean monthly air temperatures were much warmer than historical averages. In both years,
fuzzy c-means show a strong clustering of ponds in two groups, contrasting sites characterized by
different physico-chemical and biological features. Climatic anomalies, affecting the temperature
regime, together with the main water supply to shallow ponds (e.g., surface runoff vs. groundwater)
represent disturbance factors producing large interannual differences in the chemistry, biology and
short-term dynamic of small aquatic ecosystems. Unsupervised machine learning algorithms and
fuzzy sets may help in catching such apparently erratic differences.

Keywords: fuzzy clustering; nutrients; chlorophyll; association rules

1. Introduction

Data in ecology often present high stochasticity, correlated features and a large number
of predictors compared to the sample size of the dataset. In community analysis, useful
techniques to explore environmental and biological datasets include multivariate analyses
and classical clustering algorithms. The rise of machine learning algorithms in ecology
in recent decades has become accessible thanks to the advance in computation power,
large amounts of data and software availability [1]. These algorithms are well suited to
deal with complex and large ecological datasets and with nonlinearity [2]. Some machine
learning algorithms are useful with datasets composed by a higher number of features
as compared to the number of observations [3]. Generally, machine learning algorithms
are divided into two groups: supervised and unsupervised [4-7]. In supervised learning,
the algorithms learn from labelled data during a training phase and extract features to
solve classification [8-10] or regression problems [11] when many classes or a response
variable are involved in model prediction. In unsupervised learning, the algorithms identify
patterns in data without considering target variables to identify clusters and structures.
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Unsupervised algorithms were used to reveal temporal variations in communities [12], to
classify ecological associations in marine ecological communities [13] and to identify cryptic
spawning sites for a fish species in combination with supervised learning [3]. In the study
of microbial communities, Sperlea et al. [14] used a machine learning-based framework for
the quantification of the covariation between microbiomes and 27 environmental variables
of lake ecosystems. Suppa et al. [15] applied Random Forest models to identify correlations
between transcriptome and microbiome changes in Daphnia magna.

The fuzzy c-means is a standard method of unsupervised learning. The fuzzy-set
theory provides a mathematical approach that is able to cope with imprecision. The fuzzy
classification is a set of rules that allows one to cluster a set of objects without defining
discrete boundaries between clusters. The classical clustering procedure does not take into
account the incompleteness of information and the randomness of ecological data [16,17].
Equihua [18] provided a demonstration that fuzzy sets are a suitable description of ecologi-
cal communities as compared to other standard algorithms, but the former were scarcely
applied in ecology. The main advantage of the fuzzy approach over hierarchical and parti-
tioning clustering techniques is the ability to produce a graded membership of data [19].
The fuzzy set theory has achieved good results in unsupervised classification; it was used
in the identification of fuzzy soil classes [20] and to classify existing chemicals according to
their ecotoxicological properties [21]. An approach of pattern extraction from data, widely
used in market basket analysis [22] but not applied in ecology, is association rules mining.
The discovery of association rule is a fundamental procedure in data mining in which many
algorithms are suited to identify interesting relationships among features in a dataset [23]
and correlations among them [24]. Association rules might be used to explore patterns
and taxa co-occurrence in community ecology in order to disentangle and highlight which
drivers acted in shaping the community structure. Several algorithms are proposed such
as Apriori, Frequent Pattern Growth (FP-growth), Rapid Association Rule Mining (RARM)
and equivalence class clustering along with bottom-up lattice traversal (ECLAT) [25]. These
algorithms show different levels of efficiency during the operation of data mining.

Small permanent or temporary water bodies generally host large biodiversity, play
a major role in biogeochemical processing and global cycles and represent model sites
for studies in ecology and conservation biology [26—29]. Ponds contribute a great deal to
biodiversity at a regional level as networks of habitat patches that also act as ‘stepping
stones’ to facilitate the movement of species through the landscape [30]. These ecosystems
are widely distributed in agricultural areas and are generally considered marginal due to
their isolation, unpredictable duration and natural or anthropic disturbance with greater
biotic and environmental temporal amplitudes than rivers and lakes [31,32]. The factors
affecting crustacean zooplankton community structure and the comparison between dif-
ferent water bodies have been described and their effect may be blurred by historic or
geographic reasons [33-38]. Among others, climate change, land use, irrigation strategies
and contamination by heavy metals and pesticides may cause different adverse effects on
species diversity. Sensitive species may be eliminated or replaced, food-web or predator—
prey interactions may be altered, and species or strains may acclimate or be selected by
stress [39-47]. Factors acting upon species diversity in shallow ponds may produce local
effects, contrasting among ponds located in the same geographical area. Water supply, for
example, may be different among ponds, either from groundwater or from surface runoff
and precipitation, producing quite different temperatures and hydrochemical regimes, in
turn affecting primary and secondary production. Climatic anomalies and the increasing
use of water for irrigation purposes, both from surface and from the aquifer, add com-
plexity to this topic and can produce diverging paths of shallow ponds. Irrigation and
climate change are demonstrated to produce large inter-annual and intra-annual vertical
migrations of the aquifer, which are expected to produce large differences in the chemistry
and biology of small-volume water bodies [48].

Fuzzy c-means and association rules mining were applied to assess the factors in-
fluencing pond assemblage composition and biodiversity. The distribution patterns of
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zooplankton taxa in 24 ponds located in an agricultural landscape in the core of Po river
Basin (Northern Italy) were studied in relation to various habitats and environmental
variables. Data recorded in 2014 and in 2015 were compared as, in the study area, mean
temperatures in this 2-year period were very different. In 2014, the winter was much
warmer while late spring and summer were much colder than the average recorded in the
past and in 2015 [49]. In most of 2015, mean monthly temperatures were much warmer
than the average recorded during the past. It was hypothesized that in small and shallow
aquatic ecosystems, water temperature, chemistry and the build-up of short-living bio-
logical communities (e.g., planktonic organisms) follow completely different trajectories
depending on climatic anomalies affecting the amount and source of the water supply.
Shallow ponds are weakly buffered against perturbations due to their small water volume
and limited thermal and dilution capacity. Colder temperatures, associated with ground-
water inputs, may delay algal blooms. Stagnation may produce anoxia and accumulation
of solutes from sediments whereas diffuse inputs from their watersheds, especially in agri-
cultural areas, may increase nutrient concentrations favoring algal growth. Overall, these
sometimes contrasting effects prevent a clear understanding of shallow pond diversity
and functioning (e.g., the two-way interactions between physico-chemical features and
biological communities) [31].

Fuzzy c-means algorithms were applied as an analytical tool to classify the 24 farm
ponds in terms of the 12 zooplankton taxa they supported, and to specify the influence of
environmental variables related to land-use and to pond characteristics on the assemblage
patterns. Data recorded in 2014 and 2015 were compared taking into account that interan-
nual temperature variations might explain apparently erratic community-wide responses.
Besides this main objective, the present work represents a methodological contribution to
environmental sciences research, and in particular an application of machine learning in a
case study that is generally analyzed by multivariate statistical analysis.

2. Materials and Methods
2.1. Data Collection

In this study we focused on the occurrence of the main zooplankton taxa in 24 pools
and ponds that were randomly selected in a 200 km? area located in the Cremona province
(central part of northern Italy) [50] (Figure 1).

Analyzed temporary pools and ponds, locally named bodri, have originated by flood-
ing events of the Po River: erosive processes dug cone-shaped holes with depths up to
6-10 m and size varying between 1529 and 7070 m?. Bodri generally display pronounced
water level fluctuations, regulated by the Po river hydrometric level, precipitations, runoff,
vertical migration of the aquifer, also due to irrigation, and summer evaporation. They rep-
resent spots of naturality within heavily exploited agricultural contexts and are vulnerable
to diffuse pollution due to their small size. Many of the studied water bodies originated
before 1723 [51] (for details see Table S1). At present, most bodri are eutrophic, undergo
rapid infilling and display pronounced seasonal and daily variation of physico-chemical
features. During surveys, they were characterised by the dominant form of primary pro-
ducers (i.e., phytoplankton, submersed, floating leaves or emerged plants), for the level of
saturation of dissolved gas of biological interest (i.e., O, CO,, Ny and CHy), for dissolved
nutrients (the inorganic forms of N, P and Si) and for sedimentary features (i.e., organic
matter content).
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Figure 1. The map reports the position of the 24 ponds (Table S1), located along the left hydrographyc bank of the Po River,

in the Cremona province (North Italy).

Each pond was sampled twice: the first time between May and June 2014 and the
second time between June and July 2015. Qualitative zooplankton samples were collected
by 105 um-mesh size plankton nets. Two to sixteen litres of water were filtered for each
sample according to the estimated water volume and depth. All samples were preserved
in 95% ethanol. All organisms present in the sample were sorted under a stereomicroscope
and cladocerans were identified to genus level whereas copepods were distinguished in
Calanoida and Cyclopoida. For each pond, 2 litres of water were sampled with a PE bottle.
Nine chemical and three physical environmental descriptors were determined for each
pond (Tables S2 and S3). Water temperature (wT), dissolved oxygen concentration, pH
and electrical conductivity (EC) were measured in situ with a multiparameter probe (YSI
model 566 MPS). In the laboratory, the water collected was filtered with Whatman GF/F
filters (0.45 um) and stored in glass vials (Labco Exetainer®, Lampeter, Wales, UK) for the
determination of dissolved inorganic carbon (DIC) [52] and soluble reactive phosphorus
(SRP) [53], and in PE vials for the determination of dissolved reactive silica (5i0,) [54],
ammonium (NH4") [54] and nitrate (NO3~) [55] (Tables S2 and S3). Chlorophyll-a (Chla)
concentration was determined spectrophotometrically after filtration of 100-500 mL of
water (0.45 um Whatman GF/F filters) and extraction of pigments with 90% acetone [54].
Besides physico-chemical and biological parameters, the ponds perimeter and main depth
were also considered in the study as proxies of size [56] (Tables S2 and S3).

2.2. Environmental Features Selection

To avoid multicollinearity and to reduce redundant information from the set of en-
vironmental features, a score called variance inflation factor (VIF) was computed [57,58].
For a given predictor (p), the variance inflation factor measures how much the variance
of a regression coefficient is inflated due to multicollinearity in the model. The smallest
possible value of VIF is one (absence of multicollinearity). A VIF value that exceeds 5 or
10 indicates a problematic amount of collinearity [58]. In this work, as a conservative rule
of thumb, a threshold equal to 4 was set. VIF was computed for all the environmental
features with a stepwise procedure. The environmental features with VIF values > 4 were
then excluded and the procedure was repeated until no environmental features with VIF
greater than threshold remained.
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2.3. Fuzzy Clustering

Fuzzy clustering aims at defining a membership value of an object that can be split
between different clusters. The most common clustering method, the fuzzy c-means [59],
bases the clustering procedure on the minimization of an objective function as reported in
Equation (1):

J(c) = ZPZ <Haj )mdij2 o)

C
i=1j=1
where d;; is the distance between the ith observation and jth centroid, p is the number of
observations, c is the number of clusters (2 < ¢ < n), 1 is the membership degree of the
ith observation to the jth cluster and satisfying the following conditions:

wj €[01]for1<i<p,1<j<c
Tyy=1lfor1<i<p
Zuij>0for1§j§c

The exponent fuzzifier m defines the degree of fuzziness of the partition, when m
approximates the value of 1, it operates as the k-means algorithm. Meanwhile, when m
increases in value, the degree of fuzziness increases, and the fuzzy c-means leads to a
solution where the memberships of each observation approximate 1/c [59]. The evaluation
of the quality of the cluster procedure is made with a particular function that will be
maximized or minimized according to the number of clusters c [60]. These procedures allow
one to know how well the algorithm fitted the data structure (cluster validity problem).
The most common measures for this task are the partition coefficient (PC) and the partition
entropy (PE). In this study, the fuzzy c-means on the environmental dataset was used. The
environmental features were standardized and a search grid procedure was used: the fuzzy
c-means was run multiple times. For each run, a combination of the parameter ¢ (number
of cluster) and the fuzzifier exponent m, were set. The best partition was selected according
to the maximum value of PC, or, in alternative, to the minimum value of PE. To improve
the clustering procedure for each run, the algorithm was randomly initialized 50 times. The
Principal Component Analysis (PCA) was performed as an operation of dimensionality
reduction, in order to improve the visualization of the ponds with the membership values
estimated from fuzzy c-means. The prototypes or the centroids of the estimated clusters,
that are the values of the environmental features that characterized each cluster, were
compared and the Trophic State Index (TSI) based on the values of prototype of the Chla
was computed according to Carlson [61] using the Equation (2):

2.04 — 0.68In Chla

TSI =1 —
S 0(6 n2

) @

To quantify the habitat heterogeneity of the environmental features, the Euclidean
distances matrix between each observation (pond) and the median of each cluster were
standardized and computed. Habitat heterogeneity was estimated by the average distance
from the clusters’ medians [62]. The Permutational analysis of multivariate dispersions
(PERMDISP) test for the analysis of multivariate homogeneity of groups was used [63].
PERMDISP compares within-group variance among clusters using the mean distance from
individual observations to their cluster median. Bosco Bodini pond was excluded as it
was dry in 2015 whereas two chemical parameters (NH4* and DIC) were excluded due
to multicollinearity in 2014. Square root corrections were applied for groups of unequal
size [64] and to test differences in habitat heterogeneity among clusters, a permutation
procedure n = 999) was used. Average Euclidean distances from clusters’ medians were
visualized in a reduced space with Principal Coordinate Analysis (PCoA). The analysis
was carried out with the R package vegan [65].
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2.4. Richness and Beta Diversity

For each year and for each cluster the taxa richness and the community structure were
computed. The richness of the number of taxa observed was compared between clusters
of the same year and by the Mann-Whitney U Test. Differences in Richness were tested
also between years with the Wilcoxon Signed-Rank Test for paired samples. The alpha
diversity () or the mean number of taxa were computed between years. The Sorensen
index (BSOR) for presence/absence data was used as a measure of beta diversity for
multiple sites [66]. The beta diversity was partitioned into two components: nestedness
(BSNE) and turnover (SIM). The overall beta diversity (3SOR) and its components were
computed considering different years and different clusters within years. In order to
compare 3SOR between and within years, a resampling procedure was applied. An equal
number of sites sampled (n = 5) and a total number of samples (n = 500) were set. This
procedure allowed us to estimate the distributions of SOR and the relative components,
nestedness and turnover, for multiple sites with an equal number of ponds. The estimated
distributions were compared with the Kolgomorov—Smirnov test. In order to highlight
differences in zooplankton community diversity across time, pairwise measures of 3SOR of
each pond in two different years (2014 and 2015) were compared [67]. The BSOR analysis
was carried out with the R package betapart [68].

2.5. Community Structure and Association Rules

Community structure was described by characteristic taxa and association rules mined
from frequent pattern tree growth (FP-growth) and visualized by the frequent pattern tree
(FP-tree). For each cluster, the characteristics of taxa were computed using the indices of
presence (Pi) [13,69]. For each taxa, Pi was expressed as Pi = Pic/Nstc, where Pic is the i
taxon belonging to a particular cluster, and Nstc is the number of ponds in a particular
cluster. A taxon was identified as characteristic if its indices of presence were higher than
the threshold Pi, set at 0.6 [13,69].

Considering the whole dataset of presence/absence data, association rules were
extracted using frequent pattern growth algorithm (FP-growth), in order to highlight and
evaluate correlations among co-occurrences of different taxa. An association rule is an
implication X—Y that describes the existence of a relationship between X and Y species
or group of species [22,70]. FP-growth is based on a divide-and-conquer approach, the
algorithm identifies small patterns by decomposing the mining problem into a set of smaller
ones represented by conditional databases, extracted on a compressed data representation,
the FP-tree. This approach reduces the search space and the computational effort [23].

To select an association rule from the set of all possible rules, constraints of various
quantitative measures of interestingness and significance were applied, using objective
measures [71,72]. Interestingness measures the strength of the relationship between X and
Y. As the first step of association rule mining, the threshold values of a support—confidence
framework were used [73]. Support measures the probability of observing a particular
group of species X in the dataset, while the confidence is the conditional probability of
observing the species Y given the presence of the species X. A threshold value of minimum
support equal to 0.1 and minimum confidence equal to 0.80 were set. The second step
relied on an interestingness measure called lift. Lift quantifies the statistical dependence of
two or more taxa in a particular rule; it is a positive real number, with a value equal to 1
under statistical independence [24]. Association rules were sorted in descending order of
lift and association rules with lift value lower or equal to 1 were not considered [74]. The
zooplankton community structure of each cluster was visualized in a compact way using
the frequent pattern tree (FP-tree) [23,25]. Association rules were mined by Weka software
version 3.8.4 [75] and visualized with the R packages Arules and ArulesViz [76,77].
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3. Results
3.1. Environmental Features Selection

The analyzed shallow ponds exhibited pronounced variations of physico-chemical
and biological parameters, reflecting different, site-specific equilibria between assimilative
(e.g., oxygen-producing algal blooms, controlling nutrients) and dissimilative processes
(e.g., heterotrophic microbial oxygen consumption recycling nutrients). During 2014 and
2015, most environmental features such as water temperature (wT), pH, conductivity (EC),
soluble reactive phosphorus (SRP), nitrate (NO3™), chlorophyll-a (Chla), dissolved reactive
silica (5i0y), depth and perimeter showed values of VIF < 4 (Table 1). The selected variables
were 9 in 2014 and 11 in 2015 according to VIF value > 4. Dissolved inorganic carbon (DIC)
and ammonium (NHy*) showed multicollinearity in 2014, whereas dissolved oxygen (O)
showed multicollinearity in both years, and was removed from further analyses. Dissolved
inorganic carbon (DIC) was positively correlated with conductivity (EC), ammonia (NH4"),
soluble active phosphorus (SRP) and reactive silica (5i0;). Ammonium (NH4") was
positively correlated with soluble reactive phosphorus (SRP) and negatively correlated
with chlorophyll-a (Chla), pH and oxygen (O;). In 2014, dissolved oxygen (O;) was
positively correlated with water temperature (wT), pH, chlorophyll-a (Chla), and negatively
correlated with dissolved inorganic carbon (DIC), soluble reactive phosphorus (SRP) and
ammonium (NHy*) (Figure S1). In 2015, oxygen (O,) was positively correlated with pH
and nitrate (NO3~), whereas ammonium (NH4") and dissolved inorganic carbon (DIC)
showed values of VIF < 4.

Table 1. VIF values for each chemical and physical environmental feature in 2014 and 2015.

Enviromental Features VIF (2014) VIF (2015)
Water temperature (wT) 1.40 1.69
pH 3.90 2.15
Oxygen (O,) >4 >4
Conductivity (EC) 1.96 2.78
Ammonia (NH4") >4 3.88
Dissolved inorganic carbon (DIC) >4 1.81
Soluble reactive phosphorus (SRP) 1.99 1.90
Nitrate (NO3 ™) 1.22 2.25
Chlorophyll-a (Chla) 2.38 1.29
Silica (510;) 2.06 2.60
Depth 1.33 1.97
Perimeter 1.32 1.74

3.2. Fuzzy c-Means

In both years, the number of clusters was ¢ = 2, corresponding to a value of the
fuzzifier m = 1.5 (Figure S2). The evaluation of the quality of the clustering was made
considering the best partition of the maximum value of partition coefficient (PC) and the
minimum value of partition entropy (PE). In 2014 and 2015, the maximum value of PC,
0.68 and 0.63, respectively, and the minimum value of PE, 0.49 and 0.56, respectively, were
obtained for ¢ = 2. In 2014, the highest membership associated with Cluster 1 was observed
for Pavarini, Pescaroli West and Santa Maria Maddalena, and with Cluster 2 for Bosco
Piazza, San Giorgio and Cascina Tavernelle (Table 2). In 2015, the highest memberships
associated to Cluster 1 and 2 were observed for Motta, Bicocca and Pastore 1, and for
Pastore 4, Bosco Braca and Pescaroli West, respectively. In 2014, the prototypes showed that
ponds in Cluster 1 were characterized by higher values of wT, pH, Chla, SiO,, depth and
perimeter and lower values of EC, SRP andNOs5~ than ponds in Cluster 2 (Figures 2 and 3).
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In 2015, the ponds grouped in Cluster 1 were characterized by lower values of pH, Chla
and higher values of EC, NH4*, DIC, SRP, NOj~, reactive silica (SiO,), depth and perimeter
than ponds in Cluster 2. The wT of Cluster 1 was similar to that of Cluster 2 (Table 3). In
2015, both clusters estimated by fuzzy c-means showed higher values of the prototypes
relative to wT, Chla and SiO,, compared to the prototypes of clusters estimated in 2014. In
2014, the difference of trophic status between clusters was higher than in 2015. In 2014, the
TSI was 40.30 for Cluster 1 and 29.56 for Cluster 2, while in 2015, it was 42.70 for Cluster 1
and 45.23 for Cluster 2. Ponds that, in both years, remained grouped in the same cluster
were Pastore 3, Vecchio, Bazzi and Motta, grouped in Cluster 1, and Temporanea, Bosco
Valloni, San Giorgio, Forche, Martignana, Bosco Piazza and Cascina Tavernelle, grouped in
Cluster 2. Habitat heterogeneity, estimated by the average distance from clusters’ median,
was 2.10 (Cluster 1) and 2.30 (Cluster 2) in 2014, while it raised to 3.10 (Cluster 1) and 2.54
(Cluster 2) in 2015 (Figure S3). The permutation test showed that habitat heterogeneity was
not significantly different among clusters (F3 = 1.3103, p-value = 0.273).

Table 2. Freshwater pond’s membership for each cluster in the year 2014 and 2015.

2014 2015
Ponds
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Pastore 3 0.72 0.28 0.63 0.37
Pastore 1 0.14 0.86 0.77 0.23
Pastore 4 0.56 0.432 0.11 0.89
Temporanea 0.30 0.70 0.41 0.59
Bosco Braca 0.88 0.12 0.13 0.87
Pavarini 0.93 0.07 0.26 0.74
Bosco Valloni 041 0.59 0.31 0.69
San Giorgio 0.08 0.92 0.33 0.67
Forche 0.39 0.61 0.10 0.90
Martignana 0.29 0.71 0.29 0.71
?\j‘[’;ffdz/{:gj 0.88 0.12 0.34 0.66

Bosco Bodini 0.65 0.35 - -
Cacina Mortara 0.18 0.82 0.72 0.28
Bosco Piazza 0.03 0.97 0.30 0.70
ngj:f;ﬁe 0.09 0.91 0.25 0.75
Vecchio 0.63 0.37 0.79 0.21
Bazzi 0.72 0.28 0.57 0.43
Motta 0.75 0.25 0.81 0.19
Ronchetto 091 0.09 0.22 0.77
Rita 0.54 0.46 0.42 0.58
Bicocca 0.26 0.74 0.77 0.23
Pescaroli West 0.93 0.072 0.12 0.88
Pescaroli East 0.17 0.83 0.70 0.30

Sabbie 0.61 0.39 0.28 0.72




Water 2021, 13,1217 9o0f21

(@ 154 2014 sio,
Sabbie o
EC
0.5 Motta Bicocea )
= W = 7 Chla
® S‘"f"—‘»"“ S Bazzi g covaloni Pastorel Martignana 8 ﬂ” SRP
£ et ”Z’ Pavarini g ;
~ 0.0 Ronch ored PescaroliEast Cascinahlortara o WT
o~
Cluster §  |PescamiWest Vecohony, . BoscoPiazza CaschaTavemele \
BoscoBodini SanGiorgio Depth
;| Pastore4
2 -0.5 Temporanea %9 . _
Rt Perimeter| NO;
T T T T T
Membership 75 4 2 0 2 4
. 08 05 00 05 1.0 PC1
PC1(28 %)
0.7
b) " g
®) 101 2015 " Chla | pepth
. N 8 | Ll
Ronchetto 0 |
0.5 Pescaroli West o \
09 BoscgValon Wartignana  /* pastore1 & DIC
= Forche Sabbie = ——Pavarii " Bazzi A o i NH,*
= 00 Pastore4 CascinaTavernelle  Pastore3 Mota  Pescarol East 8 ?
o Boscobraca BoscoPiazza -
£ SanGior o | Sio,
= horgo CascinaMortara i pH SRP |
1
05 SantaMariaMaddalena  RRa i
Temporanea Vedchd - : f =
a1 NO; Perimeter
10 T T T T
05 0.0 05 10 2 0 2 ‘
PC1 (27 %)

PC1

Figure 2. Principal component analysis (PCA) for the 2014 (a) and 2015 data (b). In 2014, nine environmental features
were considered, and the first two principal components explained 45% of the variance. In 2015, 11 environmental features
were considered and the first two principal components explained 44% of the variance. Each pond was represented by a
bubble with size proportional to the membership value of the pond to a cluster. In both years, the fuzzy c-means algorithm
identified two clusters: Cluster 1 (dark grey) and Cluster 2 (light grey). On the right side, the loadings of each variable were
reported. The arrow lengths provided the degree of correlation among each original variable and the principal components.
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Figure 3. The panel (a) reports the violin plot of Cluster 1 (dark grey) and Cluster 2 (light grey) taxa richness relative to the
years 2014-2015. The panel (b) reports the violin plot of taxa richness in the pooled clusters in 2014 (dark grey) and in 2015

(light grey).
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Table 3. Cluster’s prototypes of each environmental feature in the 2014 and 2015.
Prototypes 2014 Prototypes 2015
Enviromental Features
Cluster 1 Cluster 2 Cluster 1 Cluster 2
Water temperature (wT) 20.29 17.69 23.49 23.92
pH 8.00 7.63 7.67 7.71
Conductivity (EC) 542.18 673.30 584.32 364.03
Ammonia (NH") - - 3.58 2.35
Dissolved inorganic
carbon (DIC) ) ) 065 0.24
Soluble reactive
phosphorus (SRP) 0.058 0.18 0.098 0.044
Nitrate (NO37) 0.11 0.17 0.17 0.15
Chlorophyll-a (Chla) 2.70 0.90 3.44 4.46
Silica (SiO,) 2.44 2.24 14.30 7.47
Depth 4.28 4.18 450 4.02
Perimeter 209.08 205.97 221.58 204.73

3.3. Richness and Beta Diversity

In 2014, the taxa richness was significantly lower in Cluster 1 than in Cluster 2
(W = 35.5 and p-value = 0.036), whereas in 2015 there was no significant difference between
clusters (W = 69 and p-value = 0.5651) (Figure 3). Richness was higher in 2014 than in
2015 (V = 152.5, p-value = 0.02) (Figure 3), with values of alpha diversity (x) equal to
3.61 in 2014 and to 2.56 in 2015. The distributions of beta diversity index (3SOR) and the
relative components nestedness (3SNE) and turnover (3SIM), estimated by resampling,
were statistically different considering clusters and years (Table S4 and Figure 4). In 2014,
the overall beta diversity (3SOR) and the turnover (3SIM) were higher than in 2015, but
the nestedness (3SNE) was lower in 2014 than in 2015 (Table 4 and Figure 4).

Table 4. Beta diversity and the relative components nestedness (3SNE) and turnover (3SIM), computed for different cluster
and year; « was the p-value of the results obtained with the Kolmogorov—-Smirnov test after the permutation procedure.

Beta 2014 2015 Overall Overall o
Diversity  Cluster1  Cluster 2 o Cluster1  Cluster 2 o 2014 2015

BSOR 0.85 0.76 <0.0001 0.71 0.84 <0.0001 0.89 0.87 <0.0001

BSNE 0.07 0.14 <0.0001 0.19 0.15 <0.0001 0.07 0.12 <0.0001

BSIM 0.78 0.61 <0.0001 0.52 0.69 <0.0001 0.82 0.75 <0.0001

In 2014, beta diversity (3SOR) and turnover (3SIM) were higher in Cluster 1 than in
Cluster 2, but nestedness (3SNE) was lower in Cluster 1 than in Cluster 2. In 2015, beta di-
versity (3SOR) and turnover (3SIM) were higher in Cluster 2 than in Cluster 1, but the nest-
edness (BSNE) component was higher in Cluster 1 than in Cluster 2 (Table 4 and Figure 4).
The pairwise comparison of beta diversity (3SOR) between ponds in different years was the
maximum (3SOR = 1) for Vecchio, Santa Maria Maddalena, Rita, Pescaroli East, Pavarini,
Motta, Martignana and Bosco Braca, while the minimum value was recorded for Bosco
Valloni (BSOR = 0.33) (Figure 4).
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Figure 4. The panels (a,b) report the distributions of the beta diversity index (3SOR, continuous line), beta nestedness
(BSNE, coarse dashed line) and beta turnover (BSIM, tiny dashed line) for the two clusters and for the two years of study.
The distributions were estimated with a boostrapping procedure (n = 500). The panel (c) reports the overall distribution of
beta diversity and the relative component, nestedness and turnover in 2014-2015. The panel (d) reports the histograms of
the pairwise beta diversity (3SOR) between the same pond in two different years.

3.4. Community Structure and Association Rules

In 2014, the characteristic taxa were Calanoida (Pi = 0.69) for Cluster 1 and Simochep-
halus (0.72), Calanoida (0.72), Pleuroxus (0.64), and Cyclopoida (0.63) for Cluster 2. In 2015,
the characteristic taxa of both clusters were represented by Calanoida (Cluster 1 = 0.87 and
Cluster 2 = 0.73) and Daphnia (Cluster 1 = 0.62 and Cluster 2 = 0.63) (Figure 5). Consid-
ering the whole dataset, nine association rules were found (Figure 6 and Table S5). One
association rule showed higher values of lift (3.92) and indicated the co-occurrence of
Calanoida, Cyclopoida and Pleuroxus with Simocephalus. This association was found in
ponds of Cluster 2 in 2014. Three association rules with lift values equal to 1.52 indicated the
co-occurrence of Daphnia, Simocephalus, Chydorus and Pleuroxus with Calanoida (Table S5).
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Figure 5. The barplot was relative to the years 2014, each value of the taxa presence (Pi) was relative
to a particular cluster, reported in different colors (dark grey for Cluster 1 and light grey for Cluster
2). The lines and points showed the values of taxa presence (Pi) for the year 2015, where each cluster
was reported with different shape of points and line types (circle with continuous line for Cluster 1
and triangle with dotted line for Cluster 2).
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Figure 6. The panel (a) shows the scatterplot of the interestingness measure support and lift for each association rule after
the pruning procedure. The gray scale color is proportional to the confidence value of each rule. The labels’ number refers
to the descending order by lift. The panel (b) reports the taxa co-occurrence as network structure. Each taxon is related to
the others by the association rule estimated with FP-growth algorithm. The labels’ number of each rule is related to the
descending order by lift.

These associations were found in Cluster 2 of both years 2014 and 2015 and in
Cluster 1 of 2015. The association rule with the lowest lift value (lift = 1.26) indicated
the co-occurrence of Chydorus and Cyclopoida with Calanoida and was found in both
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(a)

Clusters 1 and 2, in 2014. The f requent pattern tree (FPt) revealed different patterns in the
community structure between clusters and years. In 2014, most of the ponds of Cluster 1
were characterized by the presence of Calanoida and Cyclopoida, whereas the community
structure of Cluster 2 was characterized by the co-occurrence of Simocephalus, Calanoida,
Pleuroxus and Cyclopoida (Figure 7 and Figure 54) as expressed by the first association rule
with the highest value of lift. In 2015, the community structure of Cluster 1 was character-
ized by the presence of Calanoida, Daphnia and Chydorus while Cluster 2 was characterized
by the presence of Calanoida, Daphnia and Scapholeberis (Figure 7 and Figure S4).

(b)

@

Cyclopoida: 9

Simocephalus: 8

Pleuroxus: 1

Moina: 1 Daphnia: 1

(d) Roat

Daphnia: 1

Scapholeberis: 1
Scapholeberis: 3

Scapholeberis: 1

Figure 7. Frequent pattern trees (FPt) for the community structure in Cluster 1 (a) and 2 (b) in 2014 and in Cluster 1 (c)
and 2 (d) in 2015. Each node represents a specific taxon and its absolute frequency (number of ponds where the taxon was
found). The branches join the co-occurrence of taxa. Only the taxa with frequency > 20% were reported (see also Figure S4).

4. Discussion

Results from this study suggest that shallow ponds may undergo completely different
trajectories in the same geographical area and may display pronounced differences in terms
of their water’s physico-chemical and biological parameters. This is not surprising due to
their overall small size and to the small ratio between their water volume and sediment
surface. The small water volume has limited buffer capacity against climatic anomalies,
water ingression from the aquifer or from the watershed, resulting in local, sharp changes
of physico-chemical parameters and, as a consequence, of biological communities [78-80].

Phytoplankton communities have, in turn, the potential to control inorganic nutrients
and regulate dissolved oxygen, inorganic carbon concentrations and water pH. Assimila-
tive processes are contrasted by nutrient regeneration from sediments that, together with
the low ratio between water volume and sediment surface, amplify the effects produced by
microbial dissimulative pathways (e.g., oxygen shortage) [79]. However, the most interest-
ing result of this study does not deal with different solutes or chlorophyll concentrations in
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the analyzed shallow water ecosystems. Ponds are intrinsically heterogeneous, they can be
net autotrophic or net heterotrophic and these extremes correlate with high chlorophyll,
oxygen and low nutrient concentrations or the opposite, respectively [78]. What is novel
here is that the functioning of ponds, exemplified by snapshots showing phytoplankton,
nutrient concentrations and zooplankton community composition, may diverge from year
to year due to some sort of continuous disturbance or to the absence of a stable steady state.
Such instability is favored by the vulnerability of ponds to a large set of pressures and may
contribute to the paradox of their diversity, which is a central topic in recent freshwater
research and has important implications for ecosystem restoration, in particular in heavily
impacted agricultural areas [78,79].

The main findings of this study were extracted from the dataset via the application
of an unsupervised machine learning and data mining algorithm, fuzzy c-means and
frequent pattern growth. Such an approach allowed us to assess the factors that influenced
assemblage composition and the apparently erratic distribution patterns of zooplankton
taxa in 24 ponds and in two consecutive years. Data in ecology are characterized by
high uncertainty, bias and a hierarchical level of complexity. Machine learning tools were
used according to the level of complexity of ecological systems in order to understand
environmental and biological dynamics [81], shift in species assemblages along time [12]
and to plan conservation actions for ecological communities threatened by anthropic
pressure and climate change [82]. Classical clustering methods generally define sharp
boundaries between groups and each object belongs only to a particular cluster. These
classical procedures do not consider the continuous realm of ecological features. The
assumptions based on Boolean rules might lead to misclassifications and might fail to detect
outliers. A set of ecological objects, in our case the freshwater ponds, can be partitioned
using fuzzy logic, where a probabilistic approach helps to capture the continuous nature of
ecological data.

Brownscombe et al. [3] applied supervised machine learning techniques combined
with unsupervised fuzzy c-means to a wide range of informational sources in order to
identify potential spawning aggregation sites for a marine fish species. The flexibility and
the probabilistic output of the fuzzy logic, with respect to the classical partition procedure
based on crispy clustering, was used to describe species association in marine ecosystems
that consist of communities or cohesive units of not-random taxa groups and assemblages
of taxa that are randomly associated [13]. Fuzzy clustering algorithms were used also
for the identification and partition of similar regions and hydrologically homogeneous
watersheds [83].

In this study, for both years, the fuzzy c-means algorithm allowed us to identify two
different clusters. In 2014, ponds in Cluster 1 were characterized by high concentrations of
chlorophyll-a, high pH and water temperature while ponds in Cluster 2 were characterized
by high concentrations of chemical species, with silica as the only exception. Cluster 1
was more autotrophic and showed a higher TSI than Cluster 2. In 2015, temperature was
comparable between clusters and the situation of 2014 was reversed, with Cluster 1 more
heterotrophic and characterized by a higher concentration of chemical species (SRP, DIC,
NH,4*, NO3; ™), higher conductivity, depth and perimeter and lower values of pH than
Cluster 2. In different years, the chemistry of water changed in many ponds, and large dif-
ferences were recorded in Pastore 3, Vecchio, Bazzi and Motta, where the concentrations of
all chemical parameters increased and a reduction of pH was recorded. In contrast, Tempo-
ranea, Bosco Valloni, San Giorgio, Forche, Martignana, Bosco Piazza and Cascina Tavernelle
showed a reduction in the concentration of nutrients and of electrical conductivity. In 2015,
all ponds showed higher concentrations of chlorophyll-a than in 2014, confirmed by the
increase of the trophic state index. This result was probably due to the effect of higher tem-
peratures in 2015 than in 2014. Differences between cluster communities might be related
to different factors, among which the amount and the quality of water inputs from runoff,
from the aquifer or the thermal regime in winter and late spring. A general increase in the
concentration of reactive silica was observed in 2015 as compared to 2014, likely due to
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regeneration from sediments uncoupled to uptake. Fuzzy c- means identified a pond (Rita)
with the lowest value of cluster membership in both years and the highest value of nitrate,
likely due to diffuse inputs. The zooplankton community structure (species richness and
species composition) is potentially affected by both water chemistry and site morphology,
and by anthropogenic pressures in lakes and watersheds [33,84,85]. At the geographical
level, the species pool is driven by dispersal constraint, whereas the habitat species pool is
due to environmental constrains [86]. The high taxonomic diversity in zooplankton com-
munities is only partially expressed in individual freshwater habitats and the differences
in zooplankton community structures among systems is largely associated with specific
environmental conditions [87-89]. Abiotic factors (e.g., pH, temperature, light intensity)
can also influence the zooplankton community structure of fishless aquatic habitats directly
by sorting species based on differential physiological tolerances, or indirectly by interacting
with biotic conditions such as primary production and invertebrate predation [90-92]. The
observed taxa are also determined by internal dynamics due to biotic factors, such as
predation, intraspecific and interspecific competition. A particular pattern of taxa was the
result of internal and external process that defined the community structure.

In this work, a data mining algorithm was used to evaluate the co-occurrence of taxa
on presence—absence data in a system of freshwater ponds. This method allowed us to
quantify possible correlations among taxa in frequent patterns extracted from data and to
highlight differences in the community structure between consecutive years. In 2014, the
taxa richness was higher in Cluster 2 than in Cluster 1 and the community structure was
different. Cluster 2 was dominated by the presence of Simocephalus in many ponds, while
in Cluster 1 the taxa with a higher presence were Cyclopoida and Calanoida. Furthermore,
Simocephalus was not present in ponds characterized by higher pH in both years. In 2014,
Pastore 4 showed the lowest value of membership for Cluster 1: all environmental features
were similar to prototypes of Cluster 1 except for chloropyll-a and reactive silica, that were
more similar to Cluster 2. However, the community structure in Pastore 4 was composed
of Cyclopoida, Calanoida and Daphnia, which was the most frequent pattern in Cluster 1.
In 2014, the community structure was characterized by not-common taxa association
composed by Pleuroxus, Alona, Moina and Macrothrix, while, in 2015, the presence of these
taxa was not recorded. The smallest membership associated to a particular cluster was
found for ponds belonging to the group with the lowest nutrient concentrations. In both
years, a low beta diversity was observed for clusters with higher concentrations of chemical
species, high conductivity and pH.

In general, nestedness of species assemblages occurs when the biota of sites with
smaller numbers of species are subsets of the biota at richer sites [93,94], reflecting a
non-random process of species loss as a consequence of any factor that promotes the
orderly disaggregation of assemblages [95]. Turnover implies the replacement of some
species by others, as a consequence of environmental sorting or spatial and historical
constraints [96]. The environmental features working as a driver at the local scale might
have shaped the community assemblage, decreasing the species replacement between
the ponds as shown by a lower turnover. As reported in Gianuca et al. [97] a higher
heterogeneity usually produces turnover patterns but, in our study, from PERMDISP
analysis, a difference in heterogeneity among clusters was not recorded. In this work,
the ponds characterized by lower nutrient concentrations showed higher turnover. In
clusters with a higher value of trophic status, the component of nestedness increased,
that is poorest ponds in taxa richness were subsets of the richest ponds. A nestedness
pattern may highlight an internal cluster gradient of environmental features that might
drive the community assemblage. Margalef [98] gave rise to the widespread concept that
the lower the level of lake eutrophication, the more complex the structure of aquatic animal
communities. A general reduction in taxa richness was observed in 2015 compared to 2014,
suggesting a tendency to a higher trophic status of both clusters. The higher temperatures
of the water in 2015 may have favored the increase of phytoplankton production. In 2015,
a general reduction in the complexity of the community structure was observed compared



Water 2021, 13, 1217

16 of 21

to 2014. This condition was highlighted by the FP-tree. In 2015, the community structure
was characterized by Calanoida and Daphnia. Calanoid copepods generally appear to
be best adapted to oligotrophic conditions, whilst cyclopoid copepods and cladocerans
are relatively more abundant in eutrophic waters [99,100]. In our study, the presence of
Cladocera decreased between years, but Cyclopoida disappeared with the highest trophic
status observed in 2015. Variation in community structure alters ecosystem functioning
and biodiversity metrics can indicate how communities influence ecosystems [101-104].
Seasonal and interannual increases in Daphnia abundance have been associated with P
limitation due to higher requirements in Daphnia than in other taxa [105]. Moreover,
filtrator Daphnia species fed on the smallest food particles with a low selectivity, while
many species of cyclopoids show a raptorial feeding type and high selectivity preferences
of much larger food items [106]. Chydorids are more successful in very productive habitats,
feeding by scraping algal particles from periphyton. On the contrary, Bosmina shows the
lowest clearance rate, declines with increasing food concentrations and does not co-occur
with Daphnia [106]. However, information about food quality and quantity as well as
adaptive life history strategy needs to understand the mechanistic role of association rules
in ecosystem functioning. In perspective, information on taxa’s functional traits might be
included in analysis by unsupervised machine learning.

Results from physico-chemical and biological (e.g., chlorophyll-a and zooplankton
communities) analysis of shallow ponds reveals large variability of all single (e.g., nitrate,
pH) and aggregated (e.g., trophic status, biodiversity indexes) parameters over short
temporal scales. Under such conditions, traditional statistical approaches may fail to extract
significant patterns or aggregations, and consider them as erratic. Fuzzy logic allowed
us to group ponds in clusters that differed in two consecutive years, likely due to small
differences in external stressors, affecting the unstable equilibrium between autotrophic
and heterotrophic processes and their dominance. The latter, in turn, affect nutrient
concentrations and the intensity of algal blooms, producing cascading consequences on
zooplankton diversity and community composition. Year-to-year slight variations in
water temperatures, different timing, absence of diffuse nutrient input via runoff and
variable interactions with the aquifer may drive timing of blooms but also the intensity of
heterotrophic microbial activities in sediments of shallow ponds. Such variations result
in dynamic rearrangement of ponds in clusters, and might end up in excess nutrients
sustaining algal growth or in nutrient limitation, stimulating zooplankton richness.

5. Conclusions

This study represents an example of a promising application of machine learning
techniques applied to a heterogeneous dataset. The fuzzy-set theory provided a mathe-
matical approach that was able to cope with imprecision and allowed us to cluster ponds
without defining discrete boundaries. Such an approach allowed us to assess the factors
that influenced assemblage composition and the apparently erratic distribution patterns of
zooplankton taxa. In our case, the freshwater ponds were partitioned with a probabilistic
approach that allowed us to capture the continuous nature of ecological data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13091217/s1. Table S1. Reported the latitude and longitude in WGS84 coordinate reference
system of the 24 ponds under study, the number of years since origin, Table S2: Showed the physical
and chemical environmental features measured for each pond, the unity of measure, the symbols
adopted in the study and the laboratory assay or the method of estimation, Table S3. Showed the
descriptive statically parameters Range, Mean, Median and Standard deviation (SD) of the nine
chemical and the three physical environmental features, in 2014 and 2015. Water temperature (wT)
was expressed in Celsius (°C); Oxygen (O,), ammonia (NH4*), soluble active phosphorus (SRP),
nitrate (NO3~) and soluble reactive silica (SiO;) were expressed in mg-L_1 ; dissolved inorganic
carbon (DIC) was expressed in mM and chlorophyll-a (Chla) in ug-L_l. Depth and perimeter were
expressed in meters (m). Figure S1. The panels showed the correlation matrix of the environmental
features for the years 2014 and 2015. The diagonal showed the labels of the eleven environmental
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features: water temperature (WT), pH, Oxygen (O;), conductivity (EC), dissolved inorganic carbon
(DIC), ammonia (NH4"), soluble reactive phosphorus (SRP), nitrate (NO3~), chlorophyll-a (Chla),
silica (Si0;y), depth and perimeter. In the upper diagonal part was present the Pearson correlation
coefficient between pairs of variables proportional in size to the magnitude of the value, the stars
showed the significance level of the correlation test (* p < 0.05, ** p < 0.001, *** p < 0.0001). The
lower diagonal part showed the scatterplot between pairs of variables. The red line reported the
lowess smoother. Figure S2. Values of partition coefficient (PC) and partition entropy (PC) for
the years 2014 (left panel) and 2015 (right panel). For each plot, the grey scale colors, the point’s
shape and the geometry of the lines were relative to the different number of clusters (c) in the
range 2—-6. Figure S3. Showed the ordination plot of the average Euclidean distance of the scaled
environmental features of the water chemistry, from the median of each cluster found by fuzzy
c-means. Each ponds were reported on the first two principal coordinate axis and the symbols were
relative to the ponds of Cluster 1 (O) and Cluster 2 (A) in 2014, Cluster 1 (+) and Cluster 2 (x) in
2015. The ellipses represent 1 standard deviation of the Euclidean distances from the median of
the clusters. The PERMIDISP analysis after permutation test, revealed not significant difference
between groups in habitat heterogeneity. Table S4. Showed the results of Kolgomorov-Smirnov test
between distributions of beta diversity indices after the resampling procedure. The stars represents
the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001). Table S5. Showed the association
rules from presence/absence data mined with frequent pattern growth algorithm, in 2014 and 2015.
The association rules highlight the frequency and the correlations between taxa co-occurrences. For
each rule were reported the quantitative measures of interestingness: support, confidence and lift.
Figure S4. Frequent pattern trees (FPt) for the community structure in Cluster 1 (a) and 2 (b) in 2014
and in Cluster 1 (c) and 2 (d) in 2015. Each node represents a specific taxon and its absolute frequency
(number of ponds where the taxon was found). The branches join the co-occurrence of taxa.
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