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Abstract: Machine learning algorithm, as an important method for numerical modeling, has been
widely used for chlorophyll-a concentration inversion modeling. In this work, a variety of models
were built by applying five kinds of datasets and adopting back propagation neural network (BPNN),
extreme learning machine (ELM), support vector machine (SVM). The results revealed that modeling
with multi-factor datasets has the possibility to improve the accuracy of inversion model, and seven
band combinations are better than seven single bands when modeling, Besides, SVM is more suitable
than BPNN and ELM for chlorophyll-a concentration inversion modeling of Donghu Lake. The
SVM model based on seven three-band combination dataset (SVM3) is the best inversion one among
all multi-factor models that the mean relative error (MRE), mean absolute error (MAE), root mean
square error (RMSE) of the SVM model based on single-factor dataset (SF-SVM) are 30.82%, 9.44 µg/L
and 12.66 µg/L, respectively. SF-SVM performs best in single-factor models, MRE, MAE, RMSE of
SF-SVM are 28.63%, 13.69 µg/L and 16.49 µg/L, respectively. In addition, the simulation effect of
SVM3 is better than that of SF-SVM. On the whole, an effective model for retrieving chlorophyll-a
concentration has been built based on machine learning algorithm, and our work provides a reliable
basis and promotion for exploring accurate and applicable chlorophyll-a inversion model.

Keywords: chlorophyll-a; inversion; machine learning algorithm; Donghu Lake

1. Introduction

Lake eutrophication has become a global common environmental problem [1], which
exacerbates the deterioration of the global water environment and the shortage of water
resource [2,3]. Chlorophyll-a concentration is an index for estimating primary productivity
and biomass in lake ecosystem [4,5], and it is an important indicator of lake eutrophica-
tion [6,7]. Therefore, it is of great signification to monitor the concentration of chlorophyll-a
in lake water.

The traditional method of monitoring chlorophyll-a concentration is based on a suite of
laboratory and situ measures [8], which is time-consuming, costly and regional limited [9].
With the mature development of remote sensing technology and deepening research on
spectral characteristics of water quality parameters, remote sensing inversion has become
an economical and effective method for real-time and continuous monitoring of chlorophyll-
a concentration in lakes [10–12]. Research shows that Chlorophyll-a mainly absorbs red
light and blue violet light, the maximum absorption wavelength ranges from 420 nm
to 663 nm, and it has a strong reflection of green light [13,14]. Because chlorophyll-a
possesses this unique optical property, the inversion model can be built by analysing the
statistical relationship between the concentration of chlorophyll-a and the characteristic
bands of remote sensing, and then the chlorophyll-a concentration of the whole water body
is calculated [15].
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When choosing the independent variable to build a chlorophyll-a inversion model,
the multi-band combination most relative with chlorophyll-a is more popularly [16–18].
However, this operation for modeling does not use the remaining bands, and their influence
on chlorophyll-a concentration is ignored. At the same time, the combined effect of
multiple factors has not been studied. Therefore, in order to improve the accuracy of
inversion, it is necessary to consider all the bands related to chlorophyll-a and study
multiple factors modeling.

Machine learning algorithm, as a new method for modeling, does not rely on the fixed
model framework, it can constantly learn the feedback error in the process of model correc-
tion and improve the complex relationship between independent variables and dependent
variables [19]. It is an effective method to solve the nonlinear regression problem, and
provides a new method for remote sensing inversion of chlorophyll-a concentration [20,21].
The chlorophyll-a inversion based on machine learning algorithm can be divided into two
process: learning the relationship between in situ concentration of chlorophyll-a and band
value, then using the functional relationship to calculate chlorophyll-a concentration [22].
This method has the advantage of solving high-dimensional and nonlinear problems [23],
as a result, machine learning algorithm model usually shows good inversion effect of
chlorophyll-a concentration [24]. For example, artificial neural network, which is used as a
common method for lake chlorophyll-a inversion, has been proved to be useful [25–27].
The extreme gradient boosting tree (BST), which is employed to develop an algorithm for
chlorophyll-a estimation from operational land imager (OLI) in turbid lakes, has also been
proved to perform well on a subset of data [28]. A simplified SVM model optimized by
genetic algorithm (GA-SVM) was developed for the prediction of monthly concentration of
chlorophyll-a in the Miyun Reservoir, and the result showed the model was suitable for
the simulation and prediction of chlorophyll-a with better performance in accuracy and
efficiency [29]. Therefore, machine learning algorithm can be used as an effective method
for chlorophyll-a monitoring [30], and it has been applied to the study of the eutrophication
of Donghu Lake. Although many researches have been conducted on remote sensing
monitoring of chlorophyll-a concentration in Donghu Lake by using machine learning
algorithm [31–33], a universal and effective method has not been proposed to realize the
long-term monitoring of the chlorophyll-a concentration. The research shows that inversion
model has poor universality and is only applicable to a specific area [34,35]. Therefore, it is
particularly important to comprehensively compare and fundamentally analyse the impact
of various factors on the chlorophyll-a inversion modeling process, and select the best
factor to build an effective model for the chlorophyll-a concentration inversion of Donghu
Lake.

The main objective in this study is to analyse the impacts of various factors on the
process of inversion modeling and build an effective model based on machine learning
algorithm for chlorophyll-a concentration inversion of Donghu Lake. The contributions
of this work are presented as follows: (a) compare the impacts of single-factor and multi-
factor, single-band and multi-band combinations, different machine learning algorithms
on model accuracy, respectively; (b) build an effective inversion model for chlorophyll-a
concentration in Donghu Lake. Furthermore, our work provided a reliable basis to optimize
modeling influence factors based on machine learning algorithm and improve the accuracy
of chlorophyll-a concentration inversion model.

2. Materials and Methods
2.1. Study Area

Donghu Lake (30◦22′–30◦40′ N, 114◦09′–114◦39′ E) is located in central Wuhan, Hubei
Province. It is one of the largest urban lake in China [36], and it is a shallow lake with 32 km2

in area, and 2.16 m in average depth and 4.66 m in maximum depth [37]. Donghu Lake is
mainly composed of Guozheng Lake, Tangling Lake, Houhu Lake, Tuanhu Lake, Miaohu
Lake, Lingjiao Lake, Shuiguo Lake, Yujia Lake and other sub lakes. Donghu Lake provides
water for residents, industry and land irrigation, at the same time, it receives all kinds of



Water 2021, 13, 1179 3 of 24

sewage and waste water discharged from the city [38]. In addition, it has an extensive
surface area, a slow water flow and a long water exchange period, and these characteristics
make it easy to be polluted by domestic sewage and industrial waste water from the
surrounding residents and enterprises. The monitoring data shows that the overall water
quality of Donghu Lake has reached the standard of class III, but the water quality category
of some sub lakes was at class IV or class V in 2019 (http://www.whdonghu.gov.cn
(accessed date on 21 February 2020)). Therefore, the eutrophication of the Donghu Lake is
serious. The water environment condition of the Donghu Lake is related to the sustainable
development of the city, so it is necessary to monitor the eutrophication of the East Lake
comprehensively and systematically. In this study, we try to retrieve the chlorophyll-a
concentration of the Donghu Lake from the chlorophyll-a measured data combined with
Landsat 8 satellite images based on optimized machine learning inversion model.

To obtain water samples, 45 sampling points were sited with a handheld global
positioning system locator recording positions on 17 December 2017 when it was sunny.
The sampling points were presented in Figure 1, and the water samples were taken from
0.5 m underwater at every sampling point.

Figure 1. The map of China (a), the map of Hubei Province (b) and the sampling points distribution in Donghu Lake (c).

2.2. Material

The water samples were taken back to the laboratory to detect the concentration of
chlorophyll-a by Spectrophotometry in HJ 897-2017. Meanwhile, the Lansat8 satellite
images on 20 December 2017 were acquired on the website (https://earthexplorer.usgs.
gov/ (accessed date on 30 December 2017)), because that day were the closest day with the
sampling time which has available images. As we know, the operational land imager (OLI)
of Landsat8 consists of nine bands with a spatial resolution of 30 m and a revisit period
of 16 days [39]. The image was processed with ENVI5.3 to obtain the spectral reflectance
of each sampling point by radiometric calibration, atmospheric correction, image fusion,
water extraction, and water colour spectrum extraction. And the database of sampling
points location coordinates, band values and chlorophyll-a concentration were established.
The band values consisted of Band1 (B1), Band2 (B2), Band3 (B3), Band4 (B4), Band5 (B5),
Band6 (B6) and Band7 (B7).

http://www.whdonghu.gov.cn
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Due to the large differences in the local water quality of Donghu Lake, the chlorophyll-
a concentration measured at each sampling point differs greatly, and the chlorophyll-a
concentration is between 5.25 µg/L and 157.24 µg/L (in Table 1). From the measured
value of chlorophyll-a, there is a big difference among the water quality of the whole
Donghu Lake, and some local water has been in a state of eutrophication, and even
severe eutrophication.

Table 1. The measured value of chlorophyll-a concentration.

Minimum (µg/L) Maximum (µg/L) Average (µg/L) Standard Deviation(µg/L)

5.25 157.24 46.35 49.02

2.3. Method

In this study, a series of models are built by combining multiple datasets and BPNN,
ELM, SVM. The impact of various factors on model accuracy is analysed to study the best
condition for modeling. In addition, the model with best simulation effect is used for
the inversion of chlorophyll-a concentration in Donghu Lake. The research flow chart of
machine learning algorithm modeling and chlorophyll-a concentration inversion is shown
in Figure 2.

Figure 2. The research flow chart of machine learning algorithm modeling and chlorophyll-a concen-
tration inversion.

2.3.1. Band Selection and Correlation Analysis

There are seven single-band and fifteen kinds of band combinations shown in Table 2.
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Pearson correlation coefficient (PCCs) is used as evaluation index to analyse the
correlation between chlorophyll-a concentration and single-band or band combination.
The equations of PCCs is defined as

PCCs =
∑N

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(1)

where, X is chlorophyll-a concentration, X is the average of chlorophyll-a concentration,
Y is the value of band or band combination, Y is the average of value of band or band
combination, M is the length of the data series.

Table 2. The single-band and the multi-band combinations.

Band or Combination Combination Forms

Single-band Bi, i = 1,2, . . . ,7
Dual-Band Combination Bi + Bj, Bi − Bj, Bi × Bj, Bi/Bj, i = 1,2, . . . ,7, j = 1,2, . . . ,7, i 6= j

Three-Band combination Bi × (Bj + Bk), Bi × (Bj − Bk), Bi/(Bj + Bk), Bi/(Bj − Bk), i = 1,2,
. . . ,7, j = 1,2, . . . ,7, k = 1,2, . . . ,7, i 6= j 6= k

Four-Band combination

(Bi + Bj) × (Bk + Bl), (Bi + Bj) × (Bk − Bl), (Bi − Bj) × (Bk − Bl),
(Bi + Bj)/(Bk + Bl), (Bi + Bj)/(Bk − Bl), (Bi − Bj)/(Bk+Bl),

(Bi − Bj)/(Bk − Bl), i = 1,2, . . . ,7, j = 1,2, . . . ,7, k = 1,2, . . . ,7,
l = 1,2, . . . ,7, i 6= j 6= k 6= l

In this paper, we firstly find out the seven combinations with the highest correlation
with chlorophyll-a in the dual-band combination according to the correlation analysis, and
then construct a dataset based on the seven combinations and the measured data of the
chlorophyll-a concentration, which is called the dual-band combination dataset. At the
same time, the same method is used to construct a three-band combination dataset and
a four-band combination dataset. In addition, seven single bands and measured values
of chlorophyll-a concentration are used to establish a control group dataset. In this way,
the control group dataset contains all seven bands, and the three multi-band combination
datasets all contain seven combination forms, they can sufficiently represent the band
related to the chlorophyll-a, and it is convenient for the comparison and analysis with
the control dataset. Meanwhile, we find out the band combination which has the best
correlation with chlorophyll-a concentration and the single-factor dataset is constructed
based on the band combination and the measured data of the chlorophyll-a concentration.

2.3.2. Back Propagation Neural Network

Back propagation neural network (BPNN) was proposed by Rumelhart and McClel-
land in 1986 [40]. BPNN can learn and store a large number of input-output pattern
mapping relationships without revealing the mathematical equations describing the map-
ping relations in advance [41].It is a multilayer feedforward network trained by the error
back propagation algorithm and has become one of the most widely used artificial neural
network models [42,43], which can be used for the simulation of complex nonlinear prob-
lems, and it is more suitable for inland lakes with complex optical properties compared
with the traditional linear regression model [44–46]. BPNN is widely used to retrieve
chlorophyll a, colored dissolved organic matter (CDOM), suspended matter and water
color matter in lakes and oceans [47,48]. The principle of BPNN can be briefly introduced
as below:

Suppose there are n nodes in the input layer, l nodes in the hidden layer, and m nodes
in the output layer. The input layer to hidden layer weight isωij, the hidden layer to output
layer weight is vij, the input layer to hidden layer bias is aj, the hidden layer to output layer
bias is bk. The learning rate is η and the excitation function is g(x).
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At the first stage, the signal is forward propagation. The input dataset is X = [x1, x2, . . . , xn]
T,

the output value of hidden layer is Y = [y1, y2, . . . , yl]
T.

yj = g(
n

∑
i=1

(
ωijxi + aj

)
) (2)

The output value of output layer is Z = [z1, z2, . . . , zm]T.

zk =
m

∑
j=1

(yjvjk + bk) (3)

At the second stage, the error is back propagation. The purpose of error back-
propagation is to minimize the error function by adjusting the weight and the bias. The
expected output dataset is T = [t1, t2, . . . , tm]T. The error function is

E =
1
2

m

∑
k=1

(tk − zk)
2 (4)

If define ek = tk − zk, Equation (4) can be simplified to

E =
1
2

m

∑
k=1

ek
2 (5)

Using gradient descent method to minimize the error function, the updating formula
of weight can be obtained as ωij = ωij + ηyj

(
1− yj

)
xi

m
∑

k=1
ωjkek

ωjk = ωjk + ηyjek

(6)

The updating formula of weight can be obtained as aj = aj + ηyj

(
1− yj

)
xi

m
∑

k=1
ωjkek

bk = bk + ηek

(7)

2.3.3. Extreme Learning Machine

Extreme learning machine (ELM) was proposed on the basis of the single-hidden-layer
feedforward neural network (SLFN) by Huang et al. in 2004 [49]. Compared with BPNN
and SVM, ELM has several salient advantages: easier to use, faster learning speed, stronger
generalization ability, the least human intervention [50,51]. ELM has the properties of
simple parameter selection, not easy to fall into local optimal value, short training time,
good generalization ability, and it can be effectively applied to the prediction of chlorophyll-
a concentration in inland water [52–54].

The principle of ELM is discussed below:
Suppose there are N arbitrary datasets (Xi, ti), where i∈{1,2, . . . ,N}, Xi = [xi1, xi2, . . . , xin]

T

∈ Rn, ti = [ti1, ti2, . . . , tim]T∈Rm. The number of hidden layer nodes L ≤ N, the output
value of SLFN with L hidden layer nodes can be expressed as

Yj =
L

∑
i=1
βig
(
Wi·Xj + bi

)
, j = 1, . . . , N (8)
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where, βi is the output weight, g(x) is the activation function, Wi is the input weight, bi is
the biases of hidden layer node. The learning goal of SLFM is to minimize the output error,
and there are Wi, βi and bi that can fulfil

L

∑
i=1
βig
(
Wi·Xj + bi

)
= tj, j = 1, . . . , N (9)

Equation can be simplified to
Hβ = T (10)

where, H is the output of hidden layer node, β is the output weight, T is the expected output.

H =

 g(W1·X1 + b1) · · · g(WL·X1 + bL)
... · · ·

...
g(W1·XN + b1) · · · g(WL·XN + bL)


N×L

(11)

β =

 βT
1
...
βT

L


L×m

(12)

T =

 TT
1
...

TT
N


N×m

(13)

Ŵi, β̂i and b̂i are gained as the target parameters of SLFM so that

‖H
(

Ŵi, b̂i

)
β̂i − Ti‖ = min

W,b,β
‖H(Wi, bi)βi − Ti‖ (14)

where, i∈{1, 2, . . . , L}, H(W, b) is hidden layer output matrix, the Equation (14) is equiva-
lent to minimizing the cost function

E =
N

∑
j=1

(
N

∑
j=1
βig
(
Wi·Xj + bi

)
− tj

)2

(15)

The output matrix of hidden layer H is uniquely determined when the input weight
Ŵ and the biases of hidden layer node b̂ are determined by gradient descent algorithm in
ELM. Then, the output weight β̂ can be determined

β̂ = H+T (16)

where, H+ is the Moore-Penrose generalized inverse of the matrix H.

2.3.4. Support Vector Machine

Support vector machine (SVM) was proposed by Cortes and Vapnik in 1995 [55]. It
can be used for classification [56,57] as well as regression [58]. It has an advantages in
establishing small sample, nonlinear and high dimensional model, and it can be extended
to other machine learning problems such as function fitting [59]. SVM is a machine learning
method based on statistical learning theory, which can obtain good statistical rules under
the condition of small sample and nonlinear as it improves the generalization ability of
learning machine by seeking the least structural risk, and it has a good effect for retrieval
of chlorophyll-a con-centration in lakes lacking of measured data [60,61].

The principle of SVM is discussed as follows:
Suppose there is a training sample D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the regres-

sion model f(x) = ωTx + b can meet the condition that the maximum deviation between
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f(x) and y is below ε for any x. Where,ω and b are the model parameters to be determined,
ε is the tolerable deviation. Then, the optimization target of SVM can be formalized as

min
ω, b

1
2
‖ω‖2 + C

m

∑
i=1

lε(f(xi), yi) (17)

where, 1
2‖ω‖ refers to the measurement of function flatness, C is the regularization constant,

lε is ε-insensitive loss function, and lε can be expessed as

lε(z) =
{

0, if |z| ≤ ε
|z| − ε, otherwise

(18)

By introducing the relaxation variable and lagrange multiplier, at the same time,
satisfying the KKT condition, the regression model of SVM can be obtained as

f(x) =
m

∑
i=1

(âi − ai)κ
(

xi
Tx
)
+ b (19)

where, ai is lagrange multiplier, κ
(
xi

Tx
)
= Φ(xi)

TΦ(xi), is the kernel function. Sample that
can meet the formula âi − ai = 0 is the support vector of SVM.

2.3.5. Modeling and Simulation

Three machine learning algorithms (BPNN, SVM, ELM) are applied to modeling
and simulation of chlorophyll-a concentration inversion of Donghu Lake. The data of
30 sampling points is used to build models, and the data of the remaining 15 points is used
to evaluate the inversion accuracy of the models. The input layer of the models is band or
multi-band combination, the output layer is chlorophyll-a concentration.

The dataset used for modeling can be divided into single-factor dataset and multi-
factor dataset. Multi-factor dataset includes single-band dataset and three kinds of band
combination dataset. According to the different dataset and algorithm, fifteen models can
be built, as shown in Table 3. Machine learning algorithm modeling includes two processes,
training and testing. The data for training of each model is from the same sampling point,
and the measured values of chlorophyll-a concentration at the same location are used to
test the models.

Table 3. Inversion models composed of different datasets and algorithms.

Dataset Type Band or Combination BPNN ELM SVM

Multi-factor

seven single band BPNN1 ELM1 SVM1
seven dual-band combination BPNN2 ELM2 SVM2
seven three-band combination BPNN3 ELM3 SVM3
seven four-band combination BPNN4 ELM4 SVM4

Single-factor one band combination SF-BPNN SF-ELM SF-SVM

To build BPNN models, the input layer node number is set to 7, the hidden layer node
number is set to 8, the output layer node number is set to 1, Tansig is selected as the hidden
layer transfer function, Purelin is selected as the output layer transfer function, Trainlm
is selected as the network training function, the maximum training times is set to 1000,
the training accuracy is set to 0.001, and the learning rate is set to 0.01. The mapminmax
function is used to normalize the training data and inverse normalize the prediction data,
so as to eliminate the difference of the order of magnitude of each dimension data and
avoid affecting the network performance. When building ELM model, the sigmoid function
is selected as the activation function, all parameters are determined automatically after
training and testing. When building SVM model, RBF is selected as the kernel function,
and the penalty coefficient (C) and kernel parameter (gamma) can be obtained from model
training process. The C and gamma of SVM1 are set to 147.03 and 0.3299, the C and gamma
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of SVM2 are set to 256.00 and 0.1088, the C and gamma of SVM3 are set to 147.03 and
0.1895, the C and gamma of SVM4 are set to 84.45 and 0.1895, the C and gamma of SF-SVM
are set to 48.50 and 1.000.

Relative error (RE), mean relative error (MRE), mean absolute error (MAE) and root
mean square error (RMSE) are chosen as evaluation criteria to assess the modeling effect.
The determination coefficient of the regression between the training result and the corre-
sponding measured value (R1), the determination coefficient of the regression between the
testing result and the corresponding measured value (R2) are used for the comparison of
each model in the two processes. The equations of the four criteria are defined as

RE =
yp − yo

yo
(20)

MRE =
1
M

M

∑
i=1

yp − yo

yo
(21)

MAE =
1
M

M

∑
i=1

∣∣yp − yo
∣∣ (22)

RMSE =

√√√√ 1
M

M

∑
i=1

(
yp − yo

)2 (23)

where, yp is the prediction values, yo is the observed values, and M is the length of the
data series.

At last, the model with the best accuracy is selected for chlorophyll-a concentration
inversion in the whole Donghu Lake.

3. Results
3.1. Correlation Analysis Result

Pearson correlation coefficients between seven single-bands and chlorophyll-a con-
centration in Figure 3 show that there is a negative correlation between chlorophyll-a
concentration and single-band value. In addition, five of the seven single-bands exist
strong correlation (0.6 < |PCCs| < 0.8 0.6 < |PCCs| < 0.8) with chlorophyll-a concen-
tration, and the band with largest correlation is B3 (PCCs = −0.7957 PCCs = −0.7957).
The other two bands are B6 (PCCs = −0.4007) and B7 (PCCs = −0.3319 PCCs = −0.3319)
which have a weak correlation with chlorophyll-a concentration. However, the lowest abso-
lute value of correlation is greater than 0.3, which indicates that chlorophyll-a concentration
has a certain correlation with the whole seven single bands.

According to the result of Pearson correlation coefficients between multi-band com-
binations and chlorophyll-a concentration shown in Table 4, the absolute value of PCCs
corresponding to the selected multi-band combinations are all larger than 0.75, which
shows that they all have a strong correlation with chlorophyll-a concentration. Among the
band combinations which are retained, B2/B1 has the largest correlation with chlorophyll-a
concentration, and its PCCs is −0.7952.
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Table 4. The multi-band combinations and pearson correlation coefficients.

Dual-Band PCCs Three-Band PCCs Four-Band PCCs

B2/B1 −0.7952 B2/(B7 + B1) −0.7703 (B7 − B2)/(B5 − B1) −0.7632
B7 + B3 −0.7951 B4*(B5 − B3) −0.7694 (B7 + B2)/(B6 + B1) −0.7630
B6 + B3 −0.7909 B2/(B6 + B1) −0.7677 (B7 − B2)/(B6 − B1) −0.7628
B4 + B3 −0.7869 B4*(B6 − B3) −0.7673 (B6 + B2)/(B7 + B1) −0.7603
B7 − B3 −0.7798 B4*(B7 − B3) −0.7657 (B6 + B4)*(B5 − B3) −0.7578
B3 + B2 −0.7787 B2*(B5 − B3) −0.7605 (B7 + B4)*(B5 − B3) −0.7545
B6 − B3 −0.7721 B3*(B7 − B4) −0.7567 (B4 + B2)*(B5 − B3) −0.7525

Note: PCCs is pearson correlation coefficients. When PCCs > 0, the two variables are positively correlated,
otherwise they are negatively correlated. And, the larger the absolute value of PCCs, the stronger the correlation
between the two variables.

Bl 82 8 84 8 

B�nd 

86 87 

Figure 3. The single bands and pearson correlation coefficients.

3.2. Multi-Factor Modeling Result

In order to explore a method to accurately reflect the eutrophication status of Donghu
Lake, exploratory experiment is carried out to build inversion model by using multiple
factors. Twelve machine learning algorithm models for retrieving chlorophyll-a concentra-
tion are constructed by combining the three machine learning algorithms and four kinds of
multi-factor dataset, respectively.

3.2.1. BPNN Modeling Training and Simulation Result

The simulation results of four BPNN models and the measured values of chlorophyll-
a concentration are shown in Figure 4a. Compared with other three BPNN models, the
simulation results and the measured values of BPNN2 have better fitting effect.

Figure 4b shows the relative error between the simulation results and the measured
values, which can be used to compare the effects of these four models. Models in some
sample points do not show a good effect, and some simulation results exceed the acceptable
range (the relative error is larger than 100%). Among the four BPNN models, the simulation
results relative error of single-band model (BPNN1) fluctuate wildly, and the model effect of
BPNN1 is not good. There are four sample points where the relative error of the four-band
model (BPNN4) are larger than 100%, the model does not perform well. In addition, the
simulation results of the other two multi-band models are relatively good. MRE of the
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four BPNN models can reach 60.51%, −17.97%, −18.08% and 40.26%, respectively. The
model of BPNN2 shows the best inversion results, but the error of other model is too large,
which shows that the inversion results of multi-factor models built by BPNN can be only
for reference.

The same conclusion can be obtained from the determination coefficient of BPNN
models in Table 5. It shows that R1 and R2 of single-band model (BPNN1) is both smaller
than these of multi-band model, and R1 and R2 of BPNN4 is the smallest among the three
multi-band models, it demonstrates that BPNN1 and BPNN4 are not effective models for
chlorophyll-a inversion.

Figure 4. Modeling simulation results (a) and relative error (b) of BPNN models.



Water 2021, 13, 1179 12 of 24

Table 5. The determination coefficient of BPNN models.

BPNN Model R1 R2

BPNN1 0.73 0.67
BPNN2 0.82 0.83
BPNN3 0.86 0.83
BPNN4 0.80 0.79

Note: R1 is the determination coefficient of the regression between the training result and the corresponding mea-
sured value. R2 is the determination coefficient of the regression between the testing result and the corresponding
measured value.

3.2.2. ELM Modeling Training and Simulation Result

The simulation results of four ELM models and the measured values of chlorophyll-a
concentration are shown in Figure 5a. The simulation results of the four ELM models vary
with the measured values, and the simulation results of the ELM2 match better with the
measured values than other three ELM models.

Although the trend between the simulation results of ELM model and the measured
values is relatively consistent, the relative error is quite different, as shown in Figure 5b. The
relative error absolute value of the four models is mostly less than 100%, but the relative
error at some sampling points exceeds the acceptable range in these four ELM models.
These sampling points have the same characteristic that the measured value of chlorophyll-
a concentration is small, and small measured values always lead to a phenomenon that
the relative error is large although the error is small. MRE of the four ELM models can
reach 36.47%, 19.64%, −20.06%, −21.83%, respectively. And, ELM2 is better than other
three multi-factor models based on ELM.

The determination coefficient of ELM models is shown in Table 6. It can be found that
R1 and R2 of the four ELM models are between 0.80 and 0.86, which indicates that the four
models are all useful.

Table 6. The determination coefficient of ELM models.

ELM Model R1 R2

ELM1 0.83 0.80
ELM2 0.88 0.84
ELM3 0.85 0.86
ELM4 0.84 0.84

Note: R1 is the determination coefficient of the regression between the training result and the corresponding mea-
sured value. R2 is the determination coefficient of the regression between the testing result and the corresponding
measured value.
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Figure 5. Cont.

Figure 5. Modeling simulation results (a) and relative error (b) of ELM models.

3.2.3. SVM Modeling Training and Simulation Result

As we can see in Figure 6a, most of the model simulation results of SVM models
are in good agreement with the measured values, even though some points with larger
measured values.
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At the same time, the relative error of the SVM model in Figure 6b is not large in
general. Only the relative errors of one point of SVM1 and four points of SVM4 are beyond
the acceptable range, but they are all less than 1.5. Furthermore, both SVM2 and SVM3
show good simulation result. MRE of the four SVM models can reach 10.78%, −9.89%,
−4.25% and 29.52%, respectively, which achieves a good effect. Compared with other three
SVM models, SVM3 work better.

From the Table 7, R1 and R2 of four SVM models are all at a high level. The results
show that SVM is an effective algorithm to build chlorophyll-a inversion model, and
accurate simulation results can be obtained whether using single-band or multi-band
combination as influence factors.

Table 7. The determination coefficient of SVM models.

SVM Model R1 R2

SVM1 0.84 0.87
SVM2 0.89 0.93
SVM3 0.87 0.93
SVM4 0.85 0.93

Note: R1 is the determination coefficient of the regression between the training result and the corresponding mea-
sured value. R2 is the determination coefficient of the regression between the testing result and the corresponding
measured value.
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Figure 6. Modeling simulation results (a) and relative error (b) of SVM models.

3.3. Single-Factor Modeling Result

Single-factor modeling is a commonly used modeling method. In this paper, we use
single-factor dataset and three machine learning algorithms to build inversion models,
and compare the effects of the three models. Through correlation analysis, B2/B1 is the
band combination which has the strongest correlation with chlorophyll-a concentration,
PCCS = −0.7952.

Figure 7a shows the simulation results of three different machine learning algorithm
models by using single-factor dataset. The band range of relative error of the three single-
factor models between the simulation results and the measured values is relatively large,
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especially the absolute value of the relative error of the sampling point with larger measured
value of chlorophyll-a concentration in Figure 7b. The relative error of SF-SVM is the
smallest among the three models, MRE of SF-BPNN, SF-ELM and SF-SVM reached 26.60%,
23.19% and 21.45%, respectively.

Figure 7. Modeling simulation results (a) and relative error (b) of Single-factor models.

Regression analysis was performed on the simulation result and the measured struc-
ture in the modeling process of the three single-factor models. The result of R1 and R2
are shown in Table 8. It can be seen that R1 and R2 of SF-SVM model are higher than
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other single-factor models, which are 0.90 and 0.91 respectively, and it reflects the SF-SVM
simulation result fit well with the measured values.

Table 8. The determination coefficient of Single-factor models.

Single-Factor Model R1 R2

SF-BPNN 0.85 0.87
SF-ELM 0.91 0.85
SF-SVM 0.90 0.91

Note: R1 is the determination coefficient of the regression between the training result and the corresponding mea-
sured value. R2 is the determination coefficient of the regression between the testing result and the corresponding
measured value.

4. Discussion

In this study, a variety of chlorophyll-a concentration inversion models were built
by combining five kinds of dataset (a single-factor dataset and four kinds of multi-factor
dataset) with three machine learning algorithms (BPNN, ELM, SVM). The coefficient of
determination, RE, MRE, MAE, RMSE of the training process and test process result in the
modeling were used as the evaluation criteria of model accuracy. On this basis, the impacts
of single-factor and multi-factor, single-band and multi-band, and three machine learning
algorithms on model accuracy were compared and analysed. The Figure 8 uses MAE and
RMSE to compare the simulation accuracy of single-factor models and multi-factor models.

Figure 8. Simulation accuracy evaluation comparison of each model.

4.1. Impacts of Single-Factor and Multi-Factor on Model Accuracy

There are twelve multi-factor models and three single-factor models. Affected by
using different algorithms and different band combinations, simulation results of the multi-
factor models vary greatly. Because the single-factor models use sample dataset, so they are
relatively easy to be built, and the effect of those models is mainly affected by the algorithm.
The simulation result show that when the same machine learning algorithm is used, the
absolute value of the MRE of the single-factor model is smaller than that of the single-band
model, but is not smaller than that of all multi-band models. As we can see, the model
simulation results show that BPNN2, ELM2, and SVM3 have the smallest absolute value
of MRE among the multi-factor models built by the three algorithms. However, the MRE
of SF-BPNN is 26.60%, the RE of BPNN2 is −17.97%. And, the MRE of SF-ELM is 23.19%,
the RE of ELM2 is 19.64%. Besides, the MRE of SF-SVM is 21.45%, and the RE of SVM3
is −4.25%.

The same phenomenon happens when the simulation accuracy of the same algorithm
model is compared. The MAE and RMSE of SF-BPNN, SF-ELM, SF-SVM are 18.84 µg/L
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and 27.16 µg/L, 13.81 µg/L and 21.55 µg/L, 11.52 µg/L and 15.90 µg/L, respectively. As
the result display the MAE and RMSE of the single-factor model are at the middle level in
those models used the same algorithm, in other words, the test result error of the single-
factor models is acceptable, but also can be improved. All in all, although single-factor
modeling is effective, multi-factor dataset for modeling has the possibility to improve the
accuracy of the model, and the multi-factor inversion model is worth exploring and using.

4.2. Impacts of Single-Band and Multi-Band Combinations on Model Accuracy

From the appearance of BPNN1, ELM1 and SVM1, we can find that although there
is a certain correlation between chlorophyll-a concentration and seven single bands, the
effect is not good when they are used to establish a simple machine learning algorithm
inversion model. The simulation result of three single-band models are poorly fitted to
the sequence of measured values, and the relative error is also larger than other models
as shown. Therefore, in order to improve the inversion accuracy, the band combination
is usually used as the influence factor to build the chlorophyll-a concentration inversion
model. At the same time, an interesting phenomenon has been discovered that, although
the machine learning model constructed by multi-band combinations can improve the
simulation effect, it does not mean that the more bands involved in the model construction,
the better the model will be. For example, the effect of the models constructed with four-
bands is generally worse than that of two-bands models and three-bands models, which
is manifested as that four-bands models usually have the characteristics of large relative
error and instability. This phenomenon occurs because B6 (PCCs = −0.4007) and B7
(PCCs = −0.3319) have a weak correlation with the concentration of chlorophyll-a, but the
combination of bands used for modeling has a strong correlation with the concentration of
chlorophyll-a. The multi-band models use band combination as input, which avoids the
low correlation between input layer data and chlorophyll-a concentration, so the accuracy
of the multi-band is higher than that of the single-band models. However, when multi-band
combinations are adopted, more errors will be introduced into the model at the same time.
If too many bands are involved in modeling, the superposition of errors will exceed the
promotion effect of multi-band, which reduces the accuracy of the model. Therefore, it is
necessary to optimize the number of bands used for band combination through multiple
training and testing when modeling.

4.3. Impacts of Machine Learning Algorithms on Model Accuracy

The simulation result of multi-band BPNN models show that the BPNN models
are available in simulating the area with low chlorophyll-a concentration, but do not
perform well at the high concentration area. Therefore, the chlorophyll-a concentration
inversion models established by BPNN only have a certain reference value for the inversion
of chlorophyll-a concentration in Donghu Lake. The simulation results error of multi-
band ELM models is relatively acceptable, and the results are valid for simulating the
chlorophyll-a concentration, so ELM can be used as an alternative algorithm for modeling
of chlorophyll-a inversion. By compared with the models based on BPNN and ELM, the
RE of SVM models are generally smaller, which shows that SVM has an advantage over
BPNN and ELM in chlorophyll-a concentration inversion modeling. When MAE and
RMSE are analysed to evaluate the accuracy of the model, the similar conclusion can be
obtained. When modeling with the same dataset, the MAE and RMSE of the inversion
model constructed by SVM are the smallest among the three models using different machine
learning algorithms. From the comprehensive performance of each evaluation index,
BPNN2 (MRE = −17.97%, R1 = 0.82, R2 = 0.83, MAE = 13.10 µg/L, RMSE = 18.11 µg/L),
ELM2 (MRE = 19.64%, R1 = 0.88, R2 = 0.84, MAE = 11.96 µg/L, RMSE = 15.73 µg/L)
are the best in BPNN models and ELM models, respectively. However, compared with
other models, the evaluation criteria indicate that SVM3 works better (MRE = −4.25%,
R1 = 0.87, R2 = 0.93, MAE = 9.44 µg/L, RMSE = 12.66 µg/L). Generally, the model built
by SVM with seven three-band combinations as input layer showed the better inversion
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effect on chlorophyll-a concentration than other multi-factor models. When comparing
the chlorophyll-a concentration inversion effect of the three single-factor models, SF-SVM
performs the best effects that the MRE, MAE, RMSE of SF-SVM are 26.60%, 18.84 µg/L
and 27.16 µg/L, respectively. Therefore, conclusion can be made that the performance of
SVM model is better than that of BPNN and ELM model, which is the same as the results
of multi-factor models. Combined with the results of multi-factor model and single-factor
model, it demonstrates that SVM is more suitable than BPNN and ELM for chlorophyll-a
concentration inversion modeling of Donghu Lake.

In this study, the inversion effect of some models are not good, which does not reflect
the advantages of the three machine learning algorithms in solving the high-dimensional
nonlinear problem of chlorophyll-a concentration remote sensing retrieval simulation. A
large part of the reason is that these algorithms are simply used in modeling without any
optimization. Therefore, in order to increase the accuracy of machine algorithm retrieval
model, methods of optimizing and improving simple machine algorithm modeling deserve
to be further explored.

4.4. Analysis of Simulation Result of Chlorophyll-a Concentration

The comparison results show that SVM3 is the most effective multi-factor model for the
chlorophyll-a inversion, and the SF-SVM model is the best one among the three single-factor
models. In order to obtain the chlorophyll-a concentration distribution status of Donghu
Lake, the two models are used to simulate the chlorophyll-a concentration distribution
of the whole Donghu Lake on 17 December 2017. Figure 9a–c are the measured value of
chlorophyll-a concentration distribution map, the SVM3 simulation value distribution map,
the SF-SVM simulation value distribution map.

Figure 9. Cont.
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Figure 9. Comparison of the observed value (a), the SVM3 simulation value (b) and the SF-SVM
simulation value (c) of chlorophyll-a concentration distribution map.

From the three maps, the simulation value of chlorophyll-a concentration distribution
maps is similar with the measured value on the whole. On 17 December 2017, the areas
with high chlorophyll-a concentration distributed in Miaohu Lake, Houhu Lake, Yujia Lake
and Lingjiao Lake, and some of areas were seriously eutrophicated. Guozheng Lake and
Tangling Lake have the largest water area in all the sub lakes of Donghu Lake, and they
have better water quality and chlorophyll-a concentration is relatively low. It shows that
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the simulation results are generally consistent with the actual situation of Donghu Lake.
However, there are some difference in local areas between the three maps. In general, SVM3
simulation value of chlorophyll-a concentration distribution map (in Figure 9b) are more
similar with measured value of chlorophyll-a concentration distribution map (in Figure 9a).
On the one hand, the range of SVM3 simulation value of chlorophyll-a concentration
distribution is closer to measured value of chlorophyll-a concentration distribution, and
the SVM3 simulation value have a smaller deviation from measured value compared to
the SVM3 simulation value. On the other hand, the concentration of chlorophyll-a in the
northeast corner of the Yujia Lake is very high, both the Figure 9a,b have showed this
phenomenon, it indicates that SVM3 model can better show the distribution of chlorophyll-
a in detail. In summary, the simulation effect of SVM3 is better than that of SF-SVM.

Both the three maps reflect that the concentration of chlorophyll-a in Miaohu Lake,
Houhu Lake, Yujia Lake and Lingjiao Lake is very high. The three lakes have the same
geographical location characteristic that they are all located near densely populated areas,
such as schools, residential areas and scenic spots, and they all have a small area, a long
coastline, sluggish flow. They receive a large amount of domestic sewage containing
nitrogen and phosphorus from the surrounding sewage outlets, however, the pollutants
are not easy to diffuse and transfer, which leads to serious local eutrophication. The
Houhu Lake is relatively large, but the lake has shallow water level, many bays, long
shorelines, and dense surrounding residents. In addition, a large amount of domestic
sewage and farmland irrigation wastewater are discharged into the lake, which leads to
non-point source pollution and a heavy eutrophication load. Therefore, the concentration
of chlorophyll-a in these lakes is relatively high. However, the chlorophyll-a concentration
distribution map also has some parts that are not completely consistent with the actual
situation of Donghu Lake. For example, the water quality of Shuiguo Lake and the
southwest coast of Guozheng Lake have been eutrophic affected by the surrounding
environment, and it has not been reflected in the distribution maps. This is mainly due to
our insufficient number of sampling points, and most of the sampling points are set in the
area with good water quality where are far from the shore.

5. Conclusions

In this study, fifteen kinds of chlorophyll-a concentration inversion models were
constructed by three different machine learning algorithms (BPNN, ELM and SVM) and
five kinds of dataset. RE, MRE, R, MAE, RMSE were adopted to compare and analyse
inversion model accuracy. The conclusions can be drawn as follows:

(1) Although the single-factor modeling is effective, some multi-factor models work better
than single-factor models, so multi-factor dataset for modeling has the possibility to
improve the accuracy of the model, and the multi-factor inversion model is worth
exploring and using.

(2) As the influence factors, seven band combinations are better than seven single bands
when modeling. It is not that the more bands involved for modeling, the better the
accuracy of the model. Therefore, the number of bands should be optimized to build
band combination.

(3) SVM is more suitable than BPNN and ELM for chlorophyll-a concentration inversion
modeling of Donghu Lake. SVM3 (the model built by SVM with seven three-band
combinations and chlorophyll-a concentration as dataset) showed the best inversion
effect on chlorophyll-a concentration among all multi-factor models that the MRE,
MAE, RMSE of SF-SVM are 30.82%, 9.44 µg/L and 12.66 µg/L, respectively. SF-
SVM performs a better effect on the inversion of chlorophyll-a concentration than
SF-BPNN and SF-ELM, the MRE, MAE, RMSE of SF-SVM are 28.63%, 13.69 µg/L and
16.49 µg/L, respectively.

(4) The simulation result are generally consistent with the actual situation of Donghu
Lake, and different in some local areas with the measured distribution from the
three maps. And, the simulation effect of SVM3 is better than that of SF-SVM. The
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chlorophyll-a concentration in some sub lakes of Donghu Lake is very high, which
is related to their geographical location characteristic and influenced by the human
activity around them. Besides, the chlorophyll-a concentration distribution map also
has some parts that are not completely consistent with the actual situation of Donghu
Lake, and this is mainly due to the insufficient number of sampling points.

Furthermore, on the basis of the current research, we try to optimize and improve
the machine learning algorithm, deeply analyze the spatiotemporal heterogeneity of
chlorophyll-a concentration remote sensing inversion, and build a portable and universal
inversion model for continuous and prolonged monitoring of chlorophyll-a.
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