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Abstract: The hypothesis of this study was one of existence of spatially organized links between
the time series of river runoff and climate variability indices, describing the oscillations in the
atmosphere–ocean system: ENSO (El Niño–Southern Oscillation), PDO (Pacific Decadal Oscillation),
AMO (Atlantic Multidecadal Oscillation), and NAO (North Atlantic Oscillation). The global river flow
reconstructions (ERA-20-CM-R) for 18 study areas on six continents and climate variability indices for
the period 1901–2010 were used. The split-sample approach was applied, with the period 1901–2000
used for training and 2001–2010 used for testing. The quality measures used in this paper were mean
absolute error, dynamic time warping, and top extreme events error. We demonstrated that a machine
learning approach (convolution neural network, CNN) trained on climate variability indices can
model the river runoff better than the long-term monthly mean baseline, both in univariate (per-cell)
and multivariate (multi-cell, regionalized) settings. We compared the models to the baseline in the
form of heatmaps and presented results of ablation experiments (test time ablation, i.e., jackknifing,
and training time ablation), which suggested that ENSO is the primary determinant among the
considered indices.

Keywords: river runoff; climate variability; machine learning

1. Introduction

Destructive floods kill, on average, thousands of people worldwide per year, and
cause material loss of the order of tens of billions to hundreds of billions of USD [1]. There
have been many reports on dramatic deluges, particularly in less developed countries.
Very high flood risk, in terms of both percentage of national population and national GDP
affected, has been found to exist in Southeast Asia (Vietnam, Cambodia, Bangladesh) [2].
However, large floods have been also reported in recent years in large countries of Asia—
China, India, and Pakistan, as well as in Africa, the Americas, and Australia. Moreover, in
Europe, many destructive floods have been recorded in recent decades, with the costliest
one, in August 2002, affecting Germany, Austria, and the Czech Republic in particular.
Despite all the progress made in monitoring, forecasting, and safeguarding, there is no
place on earth where this challenge has been definitely solved [3].

It is well known that flood risk has been increasing with time in virtually all spatial
scales [1,2], mainly due to increasing exposure and vulnerability of people and property.
However, there are huge gaps in understanding of changes in flood hazard and flood
risk. Increase of frequency and amplitude of intense precipitation is expected in warmer
climates. However, no general, ubiquitous, and statistically significant trend in the observed
maximum river flows has been found yet, and model-based projections of changes in flood
hazard are highly uncertain [4]. Clearly, there are several non-climatic factors influencing
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flood risk of terrestrial/hydrological, as well as social/economic nature, e.g., changes in
catchments and rivers as well as changes in flood damage potential [5].

In this study, we considered climate variability as one of the prime drivers inducing
high river discharges. Freshwater transport in the drainage basins shows pronounced
inter-annual and multi-decadal oscillations and trends. Perhaps part of this variability is
random or chaotic, but there are serious hints that climate variability can play an important
role. In the “Interpretation of Change in Flood-related Indices based on Climate Variability”
(FloVar) project, we examined the variability related to high river runoff and floods and
sought relationships between it and the indices of climate variability. The present study
was focused on the climate variability track that is likely to play a dominant role in the
interpretation of the variability of river runoff globally. The research hypothesis was one of
existence of such spatially organized links between recorded time series of river runoff and
climate variability indices. In this study, we considered the following indices of climate
variability describing the oscillations in the atmosphere–ocean system: three indices of
ENSO (El Niño–Southern Oscillation), and one each of PDO (Pacific Decadal Oscillation),
AMO (Atlantic Multidecadal Oscillation), and NAO (North Atlantic Oscillation).

Emerton et al. [6] demonstrated that ENSO climate variability influences river flow
and flooding at the global scale. Examining the ERA-20CM-R river flow reconstruction
for the 20th century, they showed that the likelihood of increased or decreased flood
hazard differs for El Niño and La Niña events. In this study, we extended the use of the
ERA-20CM-R dataset for multiple indices of ocean–atmosphere oscillation.

The aim of the present study was to analyze the linkages between selected climatic
indices and river runoff by means of machine learning models. Six climate variability
indices were assumed to be independent variables, while the deviations from the monthly
averages of the river runoff values arranged in a spatio-temporal grid were treated as
dependent variables. While it is possible to train a model with only a single time series for
a specific output cell (univariate setting), we focused on models that handle multiple cells
in a region simultaneously (multivariate, regionalized setting). The working hypothesis
was that grid cells in close proximity may share regional characteristics, and thus models
that collect data from regions (groups of neighboring cells) rather than single cells may
model runoff more accurately. The empirical analysis summarized in Sections 3 and 4
confirmed this hypothesis, showing that the multivariate approach offered better accuracy
of models and improved significantly upon the baseline.

2. Related Work

There have been many studies on the link between climate variability and river flow
(often with special emphasis on high flows and floods), at a range of scales, also global
and multi-continental [7–11]. A plethora of publications have been devoted to particular
continents, in their entirety, or to specific regions. There have been numerous source
items referring to Asia [12–22], North America [23–43], and Europe [44–51]. References on
Australia [52–56], South America [57–60], and Africa [61–64] are also abundant. In [65],
a more general inventory and meta-analysis of literature on climate variability indices
vs. intense precipitation and floods on the global scale is provided, while [66] contains
a literature review on linking climate variability drivers (in particular ENSO and PDO
oscillations) to water abundance in China. This source also provided new insights into
interpretation of large flood events in that area in terms of climate variability.

A number of studies engaged machine learning (ML) in water sciences, thus com-
plementing numerous other works that provide more analytic and often more domain-
and knowledge-driven perspectives (in contrast to the predominantly data-driven stance
adopted in the mainstream ML). This applies in particular to neural networks (NN), which
have been covered in dedicated books (e.g., [67]) already 20 years ago. In [68], it was noted
that viewing forced climate patterns through an AI lens demonstrates the potential power
of ML. This approach augurs well for studying climate and water interfaces. However,
to our knowledge, there have been relatively few attempts that use ML for determina-



Water 2021, 13, 1177 3 of 29

tion of a link between climate variability and river runoff. In one of the relevant studies
of that type [69], a recurrent NN (hardly used in ML nowadays) was trained to model
low-frequency climatic variability and regional annual runoff in Quebec and Labrador.
The authors attempted to link the runoff to selected climatic indices (ENSO, NAO, Pacific–
North American (PNA), Baffin Island–West Atlantic (BWA), and sea-level pressure (SLP)
at Iceland), and concluded that using BWA, PNA, and ENSO improved the quality of
forecasts more than SLP or NAO.

Among numerous types of NNs used in water science, the convolution neural net-
works (CNN) architectures have become increasingly popular in recent years, perhaps
due to their impressive record of achievements in image analysis, then corroborated for
various types of time series (e.g., speech recognition and synthesis), and due to the quickly
growing repertoire of extensions (e.g., batch normalization, dropout, modern self-tuning
training algorithms) and software libraries that made them effective at larger scales (more
complex, deeper models, and efficient learning from large data volumes) and deployable
on highly efficient hardware architectures (GPUs and dedicated platforms). Only within
the last two years have CNNs been used for estimation of discharge for an ungauged
watershed [70]; for estimation of pollutant loads (biochemical oxygen demand and total
phosphorus) in ungauged watersheds [71]; for statistical downscaling of precipitation from
multi-model ensembles [72]; and, in combination with the popular variant of recurrent NN,
long short-term memory (LSTM), to simulate water quality (including total nitrogen, total
phosphorus, and total organic carbon) in Korea [73]. This list is by no means exhaustive. It
merely serves as a small set of examples.

Given the overwhelming capability of NNs to model complex dependencies (and
their theoretically shown capability of universal approximation), they are nowadays the
primary tool of choice in water sciences. One should, however, not neglect many valuable
contributions that have examined other ML techniques, which can be consider more
appropriate in certain contexts by being, e.g., easier to interpret or less time-consuming to
train or query. One of them, still in extensive use nowadays, are support vector machines
(SVMs), which map the learning task to a high-dimensional space and approach it as an
optimization problem. A review of many such contributions in hydrology, published in
2014 [74], shows the breadth of research efforts conducted for just one type of ML model.

While this and many other studies engage ML to analyze and model the hydrological
phenomena at the global scale, many contributions focus on specific regions and/or smaller
time scale where more detailed and multi-aspect data can be available. For instance, an
analysis for a small watershed in British Columbia, comparing Bayesian NN, support
vector regression (a variant of SVMs capable of handling regression tasks), and Gaussian
processes was provided in [75]. All these methods outperformed the baseline in terms
of accuracy of models, while the NN slightly outperformed the other methods. Their
analysis took into account the Pacific–North American teleconnection (PNA), the Arctic
Oscillation (AO), and the North Atlantic Oscillation (NAO), and were able to show that
their combination with local observations worked best for longer lead times.

The class of NN models used in this study are widely considered as non-interpretable
for humans, or at least not easily interpretable given the number of model parameters.
Many research projects have aimed to address this limitation and understand the pros and
cons of various types of ML models. In [76], there was a focus on the tension between
the interpretable and non-interpretable ML models by examining the predictive capabili-
ties of three models of the former type (linear regression, random forest (RF; ensembles
of decision trees), and extreme gradient boosting) and three models of the latter type
(SVM and two NN architectures: a LSTM and a dense, fully-connected neural network,
also known as perceptron). The hydro-climatological problem they tackled concerned
modeling of crop evapotranspiration. The conducted empirical evaluation indicated that
the interpretable models (RFs in particular) do not yield significantly to more complex,
hard-to-interpret models.
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Last but not least, there was a large number of studies that, rather than proposing
overarching models that link conceptually distant concepts, investigate specific focused
aspects of water-related phenomena and attempt to link them to the large-scale circulation
of water using, among others, ML techniques. For instance, SVMs were used [77] to
model the crop coefficient evapotranspiration in sub-tropical environment. Interestingly,
the authors found the SVM to be superior in this particular setting to artificial neural
networks. In a more recent study [78], the authors coupled a base flow separation method
to three machine learning models and showed that separating streamflow into base flow
and surface flow improves the quality of forecasts for a range of ML models (SVR, NN,
and RF) for four rivers in the United States. This last study is an interesting example how
combining the domain knowledge (on flow separation in this case) with contemporary,
domain-agnostic ML models can prove beneficial for the quality of modeling.

Studies on applications of ML in water science should be seen as a part of the research
agenda of using ML in climate sciences in general. This includes, among others, works
on earth system models on various time scales. As an example of those efforts, a range of
state-of-the-art NNs was applied [79] to model the dynamics of the non-seasonal changes
in the data collected in the Community Earth System Model (CESM2) that covers records
on monthly air temperature evolution in the 1200 years of the pre-industrial era. The
authors compared a range of multi-layer perceptrons and instances of LSTMs combined
with principal component analysis and convolutions. Of the compared models, the one
combining LSTM with convolutions fared the best in terms of the prediction error for a
broad range of prediction lead times. In terms of spatial distribution of errors, that model
offered best predictive capability at low latitudes and over oceans.

In summary, the related works clearly suggest the usefulness of ML for modeling of
phenomena studied in water science, and in particular the usefulness of NNs as a “model
substrate”, the importance of global climatic indices for the modeling, and the capability of
modeling of river runoff. In this context, our submission remains original, among others,
by involving an NN-based multivariate, regionalized approach.

3. Data and Methods
3.1. Data

The data used in this study embrace a long time series of climate variability indices
and globally gridded river runoff records, with a monthly resolution.

The sources of climate variability indices used in this study are listed in Table 1.
Three indices in the top rows of Table 1, i.e., Nino 3.4, EMI Modoki, and SOI, belong to
the group of ENSO (El Niño–Southern Oscillation) indices. Nino 3.4 is defined as sea
surface temperature (SST) anomaly averaged over the area extending from 5◦ S to 5◦ N
and from 170◦ W to 120◦ W. This is indeed a primary index used for analysis of El Niño
phenomena. The ENSO Modoki Index (EMI), also called EMI Modoki, is a more complex
index defined as a combination of sea surface temperature anomalies from 3 different
regions: Region1 extending from 165◦ E to 140◦ W and from 10◦ S to 10◦ N, Region2 from
110◦ W to 70◦ W and from 15◦ S to 5◦ N, and Region3 from 125◦ E to 145◦ E and from 10◦ S
to 20◦ N. The value of the index is a combination of temperature anomalies (TA) as follows:
TA_Index = TA(Region1) − 0:5 × TA(Region2) − 0:5 × TA(Region3). The notion of SOI
(Southern Oscillation Index) used in this study is a standardized difference of mean sea
level pressure (SLP) anomalies between 2 stations: Tahiti and Darwin. The PDO (Pacific
Decadal Oscillation) is defined as a first principal component of the North Pacific SST
anomaly field (from 20◦ N to 70◦ N), with subtracted global mean. The AMO (Atlantic
Multi-decadal Oscillation) is a 10-year running mean of mean de-trended SST anomalies
in the Atlantic region (from the equator to 70◦ N). The version of NAO (North Atlantic
Oscillation) used in this study is the first principal component of the mean SLP anomalies
in the area from 20◦ N to 70◦ N and from 90◦ W to 40◦ E. More extensive discussion of
various climate variability indices (including those used in the present study and listed in
Table 1) can be found in [80].
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Table 1. Sources of climate variability indices (all entries accessed on 22 April 2021).

Climate Variability Index Source

Nino 3.4 https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data
EMI Modoki http://www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt

SOI https://crudata.uea.ac.uk/cru/data/soi/soi.dat
PDO http://research.jisao.washington.edu/pdo/PDO.latest
AMO https://www.esrl.noaa.gov/psd/data/correlation//amon.us.long.data
NAO https://climatedataguide.ucar.edu/sites/default/files/nao_pc_monthly.txt

Global runoff data used in this project (ERA-20CM-R) forms a grid of variables
representing the estimated runoff, covering the period 1901–2010, with daily temporal
resolution and spatial resolution of 0.5◦ × 0.5◦. The data were made available to scientists
collaborating in this study by Dr Rebecca Emerton and co-workers who prepared this
dataset [6]. The data were produced by the Global Flood Awareness System (GloFAS).
Each estimated daily river runoff in a cell is originally represented by 10 values that
reconstruct the past river runoff, each produced by 1 model of 10-member ensemble. While
Emerton et al. [6] used these data to assess the variance for each cell in order to estimate the
uncertainty, in the present study, we aggregated them with arithmetic mean into a single
time series per grid cell. While we acknowledge the fact that the global river runoff data
used in this paper are model results themselves, we still claim that this is probably the
best global-scale runoff data collection available for the scientific community at the time
of writing.

To sum up, while our time series of indices of climate variability formed one-dimensional
time-ordered sequences, river runoff records formed a 3D array, with the first 2 dimensions
indexed by longitude and latitude of grid cells, and the third dimension indexed by time.

In order to match the monthly time resolution of climate indices, we integrated the
daily runoff data values into monthly buckets for each cell independently.

3.2. Modelling

Our ultimate goal was to model the impact of global climate variability indices (6 in-
dependent input variables) on river runoff for each grid cell of selected areas. The target
value is the deviation from the monthly mean of river runoff, where the latter is calculated
by averaging values of river flow by time for each month separately. Therefore, we trained
the model to learn to calculate an adjustment for an expected value for a particular month.

In the basic variant, we designed univariate models that directly matched this problem
statement, i.e., a dedicated local model was trained for each grid cell. Concerning time
alignment, a model has access to independent variables in a time horizon [t − k + 1, t],
where t is the “current” time period (month) and k represents the length of the accessible
time window. On the basis of the 6 input variables observed in this window, we would
expect a model to produce the hindcast of river runoff in time period t + 1 for a given cell.
Therefore, our univariate models have the mathematical signature R6×k → R.

As signaled in the Introduction, we hypothesized that taking into account the spatial
nature of the runoff data may bring us some benefits. Runoff in neighboring cells may
share some similarities, reacting to similar fluctuations in the climate system, and may be
thus affected in a similar way. This observation justifies our striving to propose a family
of multivariate models, which could be employed to learn simultaneously from multiple
cells in a selected region. For a region comprising n grid cells, this translates into building
multivariate models of the mathematical form R6×k → Rn. In other words, the target
value is a vector of the deviation from monthly means for each cell in a region. It is worth
mentioning here that multivariate models do not perceive those cells as a sequence, but
they treat them as a collection, without concern for the spatial neighboring relationship.

Our expectation is that multivariate models will tend to learn/form internal repre-
sentations (features) that may capture regional patterns of dependency and thus facilitate
more accurate modeling. A multivariate model, by observing all n variables in the training
process, will also obtain more statistical evidence for estimation of its parameters, and

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data
http://www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt
https://crudata.uea.ac.uk/cru/data/soi/soi.dat
http://research.jisao.washington.edu/pdo/PDO.latest
https://www.esrl.noaa.gov/psd/data/correlation//amon.us.long.data
https://climatedataguide.ucar.edu/sites/default/files/nao_pc_monthly.txt
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should in principle be less likely to overfit to the training data. It is important to emphasize
that a multivariate model is here far more than a mere collection of univariate models—all
models considered here are implemented as neural networks, and thus parts of a multi-
variate model are explicitly shared between the predicted variables (corresponding here
to cells).

Another advantage of multivariate models is that training n univariate models can be
computationally costly, especially for large n. We show in the following sections that our
multivariate models are only slightly more complex than univariate ones, and therefore
training a multivariate model for an n-cell region is approximately n times less costly in
terms of computational overhead. Similarly, querying such a model produces hindcasts for
all cells in a region, thus bringing similar computational savings.

As signaled earlier, we implement our models as deep neural networks. This choice is
motivated by the recent deluge of successful applications of neural models in a broad range
of areas involving time series processing, including speech synthesis; natural language pro-
cessing; interpretation of video sequences; and, last but not least, meteorology, climatology,
and hydrology. In preliminary experiments, we considered 2 major deep-learning neural
network architectures, namely, recurrent neural networks (RNNs) and convolution neural
networks (CNNs). As CNNs turned out to provide better accuracy of models, and are
also conceptually simpler, we decided to limit the following presentation to this category
of models.

Convolution Neural Networks (CNNs)

Convolution neural network (CNN) is a class of artificial neural networks that use the
concept of convolution as its foundation. The essence of processing is convolving the input
data with a suite of kernel functions and repeating this process at multiple levels of temporal
resolution, with the levels separated with nonlinear processing (activation functions).

The technical implementation of convolution in CNNs is by necessity discrete (due
to discrete time) and controlled by a number of hyperparameters: receptive field size (the
width of the kernel on the time axis), depth (the number of kernels applied in parallel
to the same input data), stride (the ratio at which the kernel samples the input signal),
and padding (the way one deals with the border cases when the kernel extends beyond
the available data). For more details on these aspects, see, e.g., [81]. Crucial, however, is
the fact that kernels are trainable (in contrast to classical signal processing, where they are
typically assumed to be given, e.g., derived from first principles). In a discrete realization,
a kernel is simply a vector of m real numbers, where m is kernel width. These parameters
are initialized at random, and then optimized with a variant of stochastic gradient descent
(SGD) to minimize a task-specific loss function that expresses the discrepancy between the
actual output of the model and the target values.

Convolutions prove universally useful in various domains because they can model
local patterns and interdependencies. While traversing through the input signal, a kernel
is interacting with a small number of elements that form a neighborhood, which for the
models considered here is a time window of predefined length.

The number of concrete neural architectures that can be composed from convolutional
building blocks is combinatorially vast, and the rich literature on this topic has been
sampling this design space intensely in the past decade. The CNN architecture we propose
is inspired by the work by Van den Oord et al. [82], where it proved very effective for
speech synthesis. The main idea was to use many one-dimensional convolutional layers
with the receptive field’s size of 2, stacked on top each other, and the stride parameter (shift
in the axis of the kernel’s movement) set to 2 (see Figure 1). As a result, each convolutional
layer doubles the effective receptive field (window) compared to the previous layer, i.e.,
the temporal extent of observed input data it depends on, and thus that one element
is visited only once in a single convolution (but is actually visited by each filter). As
each kernel has the size of 2, the first element of this kernel always perceives the former
observation, while the second one sees the later one. This allows this architecture to access
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a long range of input data (exponentially long in the function of the number of layers)
while maintaining a low total number of parameters. This latter aspect is particularly
important, as overparameterized models are in general more likely to overfit and thus fail
to generalize well.

Importantly, the successive convolutional layers feature an increasing number of
kernels, each of them giving rise to a separate channel. Complexity of the model (number
of filters) grows linearly on each layer. Therefore, for the model trained on the records for
8 months (as can be seen in Figure 1), with the complexity hyperparameter set as 30, the
first layer (the closest to raw features) will perform the convolution with 10 filters, next
layer on 20, and the last one will make use of 30 filters. This allows the model to form a rich
repertoire of diversified features, which in turn facilitate making more accurate hindcasts.
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convolutions over time window of length k. The convolutions allow also for a crosstalk between indices. Depending on the
variant of the model, hindcasts are made either for each cell in a region individually (univariate regression) or for all cells in
the region (multivariate regression).

The stack of convolution is followed by a fully connected layer (also known as the
dense layer). Contrary to the convolution, it considers signals as a set, disregarding their
relative positions. The responsibility of the dense layer is to weigh those values making a
mixture of signals, which will result in the final value returned by the model.
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All neural models are trained to minimize the loss measured as the mean absolute
error (MAE) with respect to the target value. We used the RMSProp variant of SGD,
which improves SGD algorithm with the mechanism of the guided gradient. During
the consecutive training steps, the gradient is not immediately applied for the model
improvement (setting new weights) but is added to accumulator values, which act as an
exponentially weighted moving average over the past gradients. This accumulator is used
to set a new direction for the gradients considering the previous training steps.

3.3. Training and Testing Regime

The goal of a good machine learning solution is to fit unseen data. A trained model
has to perform well on both data available in the training stage and data available in the
future. These future data have to be simulated in some way. A usual practice is to follow a
split-sample approach, where a larger subset of the existing records is used for learning
and a smaller subset for testing (in the hindcast mode). These are usually called training
and test sets, respectively.

In this project, 2 ways of dividing data into training and testing sets were used. In
order to find good hyperparameters for the model, we tested different values in the process
of cross-validation. This technique was used to assess performance of the model on the
whole dataset. As the first step, data were divided into small subsets. Next, in the iterative
process, each subset was used as a test set, while all other subsets were used to train the
model. This approach was used for the analysis of the models. By performing analysis on
the whole dataset, we gained a better approximation of the relations present in the data
compared to analysis performed on a smaller period. The other way of dividing is simply
to decide which period is interesting in the research and using data from this period as a
test set. In our case, it was the last decade of the available data, i.e., the years 2000–2010.
Both mentioned techniques were burdened with the additional constraint—the climate
data used in the training set could not be used in the test set, as this could be seen as a data
leak. For this reason, there was always some data that were not used in the process.

3.4. Evaluation and Metrics

We assess the quality of models with 3 measures used for this task. Those are as
follows: mean absolute error (MAE), dynamic time warping (DTW), and top extreme
events error (TEEE).

Mean absolute error (MAE) is measured in the same way as the loss function used to
train the models. This measure has the advantage of better interpretability, compared to,
among others, mean square error.

Dynamic time warping (DTW) is a technique for finding the best alignment between
elements of the 2 time series. In contrast to classical measures that compare only the
observations from the same time period, DTW is able to match points in sequences that
reside at different positions. Because of this, DTW is more capable of detecting similarities
between time series with some shift in their pattern, compared to methods that accumulate
errors element-wise (e.g., MAE). A more detailed description can be found in [83]. In this
project, we used a tool developed by Gorgino [84].

The last measure, top extreme events error (TEEE) indicates the fraction of erroneously
located top values in a series. It was developed in order to measure how bad a model is in
predicting extreme/high runoff events. The TEEEn(x1, x2) is defined as follows: first, the
set S1 of locations of top n extreme values in x1 is calculated, and analogously S2 for x2.
Then, the accordance of these sets is calculated as the size of the intersection of S1 and S2,
divided by n. Finally, TEEE is defined as 1 minus accordance. In this study, we used n = 20,
and thus TEEE considers roughly 17% of 120 months that form the training set (2001–2010)
as extreme events.

To sum up, MAE is a commonly used metric for measuring model performance in
regression tasks. The DTW indicates how much of the target signal characteristic is present
in the predicted sequence, even if patterns are shifted or stretched in time. The TEEE has a
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complementary characteristic as it penalizes predicting extreme values at wrong locations
in time while not caring at all about the actual magnitude of values. As an illustration, a
model that makes perfect hindcasts but lags them by only 1 time step will obtain DTW
of 1 and TEEE of 0 (the last assuming that all values in actual and predicted sequence are
unique, and therefore there are no ties when determining the n most extreme events).

The above measures are absolute, and their values can be biased by the actual difficulty
of the modeling task, which may significantly vary depending on the geographical region,
time period, and other characteristics. In order to assess how much a model is able to
learn about the characteristic of the observed phenomenon, in the following, we focus on
reporting relative improvements on those metrics compared to a baseline. We express this
using percentage error reduction defined as

PER(M) = 100 × (Mbaseline −Mmodel)/Mbaseline

where M is one of the absolute measures (MAE, DTW, TEEE), Mbaseline is the cumulative
error of the baseline model with respect to true values, and Mmodel is the cumulative error
of a model with respect to true values. Both Mbaseline and Mmodel are measured with M.
Error accumulation consists of summing the error over the selected part of available data,
e.g., across time period or space (e.g., a region). It is worth noting that PER(M) can be
negative, indicating that the model fares worse than the baseline.

3.5. Baseline Models

Our baseline-naïve model is a strictly periodic, stationary model with no trend. For
each of 12 months, the respective mean value is calculated from the training set. When
asked for a prediction for a given month, the model returns the respective mean value,
disregarding any other features. The predictions of this model are thus identical for all
years (for a given training period). Notice that this is the only model considered in this
study that uses the historical values of river runoff to determine the value of the dependent
variable—all remaining methods use the climate indices only.

3.6. Software

The software framework for this study was implemented in Python with the help
of general-purpose libraries (NumPy, Pandas, Scikit-learn, Matplotlib), a popular deep
learning framework TensorFlow, and domain-specific tools: Ncview (a NetCDF file visual-
izer) and GeoPandas (a map visualization library). While TensorFlow makes it possible
to delegate computation to GPUs, this option was not exploited in this study due to the
nature of the used computer infrastructure.

The river flow information, as used by Dr Rebecca Emerton [6], was received from the
European Centre for Medium-Range Weather Forecasts (ECMWF). It came in the NetCDF
format (Network Common Data Form), which is a part of a broad framework of software
libraries and machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data.

In order to provide our models with access to river flow data, we developed an
independent software layer. This involved solving several technical challenges, part of
them stemming from the sheer volume of data, which was too large to fit to the RAM (raw
data have the size of roughly 416 GB).

4. Results
4.1. Comparison to the Baseline

We compared the performance of two deep-learning models across 18 different regions,
as shown in Figure 2. The four leftmost columns of Table 2 present the ranges of latitude and
longitude and the number of valid cells for each studied region, where a cell is considered
valid if data are available for it. The regions were defined so as to provide a representative
sample of various climatic environments and locations on the planet, scattered on six
continents: Europe, Asia, North America, South America, Africa, and Australia.
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Table 2. Specification of 18 study areas: location, number of available cells, and values of 3 considered quality metrics.
The numbers represent per-region averages (averages over all cells in a region) averaged over 5 models obtained in
5 independent runs of a given configuration. Standard deviations calculated over runs.

Multivariate Univariate

ID Lat. Long. # of Alid
Cells PER(MAE) PER(DTW) PER(TEEE) PER(MAE) PER(DTW) PER(TEEE)

1 30◦ N–36◦ N 86.5◦ W–79◦ W 140 20.37 ± 1.24 14.28 ± 0.67 31.08 ± 1.36 18.28 ± 0.10 12.19 ± 0.13 27.65 ± 0.22
2 17◦ N–25.5◦ N 85.5◦ W–73.5◦ W 49 3.36 ± 0.21 3.62 ± 0.16 1.54 ± 0.33 2.23 ± 0.30 3.05 ± 0.28 4.80 ± 0.51
3 13.5◦ S–4.5◦ S 80.5◦ W–71.5◦ W 233 −0.02 ± 1.24 −2.63 ± 1.15 4.36 ± 0.89 0.06 ± 0.16 −2.47 ± 0.19 3.41 ± 0.16
4 37◦ N–44◦ N 10◦ W–0.5◦ E 235 3.39 ± 0.32 1.94 ± 0.29 2.66 ± 1.72 2.45 ± 0.12 1.52 ± 0.02 4.26 ± 0.57
5 50◦ N–63◦ N 1◦ E–12.5◦ E 287 1.67 ± 0.74 0.95 ± 0.52 – 3.30 ± 0.06 2.13 ± 0.05 –
6 48.5◦ N–55◦ N 5.5◦ E–16.5◦ E 237 4.8 ± 0.43 2.72 ± 0.35 4.63 ± 0.76 6.83 ± 0.05 4.01 ± 0.05 6.15 ± 0.55
7 42◦ N–47.5◦ N 11.5◦ E–19.5◦ E 118 0.85 ± 0.48 0.97 ± 0.26 0.8 ± 0.58 0.56 ± 0.08 1.07 ± 0.24 0.85 ± 0.23
8 48◦ N–56◦ N 13.5◦ E–24.5◦ E 290 7.14 ± 0.94 5.09 ± 0.56 7.17 ± 1.05 9.08 ± 0.09 6.45 ± 0.04 10.84 ± 0.33
9 42◦ N–49◦ N 20◦ E–31.5◦ E 256 3.04 ± 0.57 1.98 ± 0.38 6.05 ± 0.89 2.52 ± 0.08 1.53 ± 0.17 7.20 ± 0.77
10 27.5◦ S–35◦ S 17.5◦ E–32◦ E 313 5.75 ± 0.27 2.71 ± 0.19 3.28 ± 0.4 5.54 ± 0.12 2.66 ± 0.11 2.29 ± 0.34
11 9◦ N–20◦ N 96◦ E–104.5◦ E 224 −1.3 ± 0.26 −0.73 ± 0.14 −0.21 ± 0.31 −2.62 ± 0.17 −2.34 ± 0.10 −0.88 ± 0.44
12 3◦ S–7◦ N 95.5◦ E–103.5◦ E 187 11.06 ± 0.73 5.58 ± 0.37 10.58 ± 1.31 11.30 ± 0.08 5.54 ± 0.15 9.92 ± 0.56
13 8◦ N–18.5◦ N 101◦ E–111.5◦ E 237 0.96 ± 0.38 0.86 ± 0.2 3.57 ± 0.63 −1.41 ± 0.13 −1.38 ± 0.06 2.57 ± 0.51
14 19◦ N–26◦ N 109.5◦ E–116.5◦ E 108 2.84 ± 0.85 0.61 ± 0.6 −0.78 ± 0.48 0.92 ± 0.08 −0.88 ± 0.12 −1.16 ± 0.69
15 5◦ S–13.5◦ N 114.5◦ E–128◦ E 273 21.27 ± 0.32 20.89 ± 0.19 17.03 ± 0.49 19.30 ± 0.12 19.68 ± 0.16 14.83 ± 0.61
16 29◦ N–41◦ N 123.5◦ E–144.5◦ E 241 −0.15 ± 0.46 0.71 ± 0.34 1.58 ± 1.48 −1.17 ± 0.08 0.55 ± 0.05 0.68 ± 0.43
17 10.5◦ S–15.5◦ S 128.5◦ E–136.5◦ E 94 8.76 ± 0.81 4.29 ± 0.82 12.3 ± 1.25 5.92 ± 0.21 2.70 ± 0.26 9.00 ± 0.60
18 21◦ S–30.5◦ S 145.5◦ E–154.5◦ E 263 9.18 ± 1.41 11.55 ± 2.11 9.62 ± 3.85 8.46 ± 0.14 11.71 ± 0.20 10.01 ± 0.19

Mean 210.3 5.72 4.18 6.78 5.09 3.76 2.06

For each region independently, we first ran a series of preliminary fivefold cross-
validation experiments to tune the number of convolutional filters used by the neural
models (this hyperparameter was found to have the strongest impact on the accuracy
of models). The obtained numbers of filters were subsequently used in the experiments
that follow. All models took as input the six climate indices presented in Section 3.1,
observing them in an 8-month period (window size k = 8, cf. Section 3.2) preceding the
predicted/modeled time moment (month).

Training of a neural network starts with random initialization of its parameters. To
accommodate this stochastic element, the main experiment consisted in repeating the
training process five times. In what follows, we report the averages of the metrics achieved
by those models in a hindcasting regime when trained on the first 100 years of data (1901–
2000) and evaluated on the last decade of the studied data (2001–2010). Therefore, the
prevailing part of the original data was used to fit the model, and the last decade served
exclusively its scoring, and therefore the metrics reported in the following reflect the
generalization capability of models, not the goodness of fit.
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The six rightmost columns of Table 2 present the quality of models assessed using the
three relative metrics defined in Section 3.4, i.e., PER (MAE), PER (DTW), and PER (TEEE),
averaged over each region. Recall that, for the multivariate models, the averages report the
quality of five independent training and testing rounds mentioned earlier (cf. Section 3.2).
However, for the univariate models, the averages are taken over those five rounds and
over the models trained for individual (valid) cells; for instance, 5 × 140 = 700 models for
region #1.

For multivariate models, there are three regions (#1 in North America, and #12 as well
as #15 in Asia) with PER (MAE) exceeding 10 percent points. For three regions (#1 in North
America, #15 in Asia, and #18 in Australia), PER (DTW) exceeded 10 pp, and four regions
(#1 in North America, #12 and #15 in Asia, as well as #17 in Australia) had PER (TEEE)
exceeding 10 pp. There were two regions (#1 in North America and # 15 in Asia) for which
all three metrics exceeded this threshold.

For univariate models, the 10 pp mark was achieved in #1, #12, and #15 for PER
(MAE); in #1, #15, and #18 for PER (DTW); and in #1, #8, #15, and #18 for PER (TEEE).
There were two regions (#1 and # 15) for which all three metrics exceeded this threshold.
Interpretation of PER (TEEE) requires special care, as it is a discrete metric based on only n
top (extreme) events in a time series. Here, we used n = 20, and therefore roughly 17% of
120 test-set months (2001–2010) were treated as extreme events. As argued in Section 3.4,
TEEE can achieve the exact value of zero when all of the n most extreme hindcasts of the
model coincide in time with the actual extreme events. This causes division by zero in
the PER(M) formula, which we prevented by adding an epsilon value to the denominator.
Nevertheless, the result of division can still be very high. This happened for region #5, and
hence we replaced the largely meaningless overflow value obtained there with a dash.

As the metrics reported in Table 2 are averages over five randomly initialized models,
we may thus confidently claim that the majority of models managed to outperform the
baseline on a regular basis.

The pattern of scores over regions was clearly very similar for multivariate and uni-
variate models; indeed, the Pearson correlations between the observed values were 0.975,
0.982, and 0.971 for MAE, DTW, and TEEE, respectively. Nevertheless, the multivariate
models were systematically better, as evidenced by the averages in the last row of the
table. Out of 18 regions, the univariate approach was better only in 5, 6, and 8 of them, for
MAE, DTW, and TEEE, respectively. According to the conservative Wilcoxon signed-rank
test, the differences were significant at 0.1 level for MAE and DTW (p-values of 0.064
and 0.09, respectively). This corroborates our rationale expressed in Section 3.2, i.e., that
multivariate neural models can capture the inter-cell patterns and thus offer better quality
of hindcasting. Therefore, in the following, we focus exclusively on multivariate models.

In some regions, some metrics dropped below zero, which indicated a failure—the
learning process could not model the dependency better than the baseline model. In
other words, taking the long-term mean as the runoff value in the next month was more
advantageous at such locations than hindcasts of the machine learning model. One possible
interpretation is that there are regions where the influence of selected six climate variability
indices was very weak or virtually non-existent. However, such cases were relatively rare
in the multivariate variant: three regions for PER (MAE), two for PER (DTW), and two for
PER (TEEE). Only one region (#11) experienced all three metrics as negative.

Figure 3 illustrates the time series dynamics for the cell in region #15 (Celebes Sea) that
scored high on all three metrics. Three time series were plotted: the actual, true value; the
baseline (monthly mean of long-term record); and the hindcast of the multivariate model.
It can be observed that model’s hindcasts closely matched the true values and reflected
quite accurately the quasi-periodic characteristic of the phenomenon. The alignment of
predicted local extremes with their actual counterparts was also quite good, in contrast to
the baseline. We found this closeness remarkable, given that the model had no access to the
historic values of the river runoff—all variability it produced was based solely on the six
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input variables (climate variability indices) observed in the 8-month long period, directly
preceding the hindcast time period.
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Figure 3. Comparison of the baseline (monthly mean from long-term record) and multivariate model’s hindcasting for a
selected grid cell in the Celebes Sea region (#15).

Figure 4 presents the heatmaps that visualize the spatial, per-cell distribution of
PER (MAE). We focused on MAE because of its good interpretability, and for brevity
present a representative sample of eight regions, in North America (Figure 4a; region #1,
including Georgia, USA); Europe (Figure 4b–d; region #6, including Germany; #7, including
Croatia; and #8 including Poland), Asia (Figure 4e,f; region #12, including Singapore, and
#15, around the Celebes Sea), and Australia (Figure 4g,h; region #17, including Darwin,
Northern Territory, and #18, including Brisbane, Queensland). The shades of red represent
the degree of improvement of the neural model with respect to the baseline, and the shades
of blue indicate the signal deterioration. The heatmaps suggest that, at least for some
regions, there seems to be a meaningful link between independent variables and the river
runoff. A particularly strong signal model was synthesized for region #15 (Figure 4f),
where the average value of PER (MAE) was 22.5, the largest among the considered regions
(Table 2). We hypothesized that this may have stemmed from this region being located in
the zone of potential strong influence of ENSO.

4.2. Ablation Experiments

With the proposed models surpassing the baseline by substantial margins in most
cases, it becomes interesting to ask about the underlying causes of this capability. Artificial
neural networks are notorious for inherent inability to explain their hindcasts. Nevertheless,
in the usage scenario we adhered to in this study, some degree of insight can be still achieved
by ablation experiments, i.e., studying reduced data sources and/or models and comparing
them to the original models that have full access to available data. We considered two
types of such approaches here. In both of them, the starting point was the original model
M, which had been fit to the training data on all available input variables. We performed
this analysis for multivariate models only, for the reasons outlined in Section 4.1.

In the test time ablation (a.k.a. jackknifing), we kept the original model M and replaced
the value of a chosen input variable (a climate index) with a fixed estimate; here, that
estimate was the variable’s average over the entire training set. We then queried M on the
test data using that average and the true values of all remaining variables, and then assessed
its performance. Apart from being computationally cheap, this technique has the advantage
of using the same model M in the reduced setting, which warrants direct comparison. On
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the other hand, however, replacing a variable with its expected value tends to seriously
disrupt the distribution of data observed at the test time (compared to the distribution
observed at training/fitting time), and may thus impact the hindcast substantially.

In the training time ablation, we also hid one of the input variables, but did that
already at the time of training/fitting. Thus, both training and testing were conducted on
the reduced dataset. The advantage of this technique is that the absence of the concealed
variable is known to the model already at the stage of training, and therefore it attempts
to produce accurate hindcasts using the remaining variables, trying to maximize the
“information yield” that can be extracted from them. The downside of this approach (apart
from being computationally more expensive than jackknifing) is that it is hard to juxtapose
the reduced model M’ with the original M. This is particularly true for neural models, in
which each change of the input (here, reduction of the number of input variables) requires
architectural changes to the model (technically reducing the number of input units). As
M and M’ vary in architecture and start their learning with a different, random set of
parameters (weights), their final forms cannot be directly juxtaposed, other than by simply
comparing their hindcasts.
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Figure 4. Heat maps of PER (MAE) for selected 8 regions obtained using the multivariate models. (a) Region #1 North
America; (b) Region #6 Europe; (c) Region #7 Europe; (d) Region #8 Europe; (e) Region #12 Asia; (f) Region #15 Asia;
(g) Region #17 Australia; (h) Region #18 Australia.

Given the mutually complementary advantages of these ablation techniques, we
conducted both of them. In Figure 5a,b, we present the results for the eight selected regions
of interest for test time and training time ablations, respectively. Both figures present the
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PER (MAE) metric for the original, non-ablated model M in the leftmost column (All), and
for the ablated configurations in the successful columns (All–NAO, All–PDO, etc.). Each
cell in these heatmaps summarizes the test-set PER (MAE) of 11 models in an 11-fold cross
validation experiment conducted on 110 years of available data partitioned into 11 decades,
as described in Section 3.3.

For most input variables, their removal has s limited effect for the accuracy of the mod-
els, i.e., the values remain roughly consistent across rows. Nevertheless, most ablations are
detrimental. For the test time ablation (Figure 5a), out of the 48 considered configurations
(6 variables × 8 regions), we observed deterioration in 31 cases (65%) and improvements
in 17 cases (35%), the latter specifically for NAO: in five out of eight regions, PDO: four,
AMO: three, EMI: two, SOI: three, and Nino: zero. For training time ablations (Figure 5b),
the analogous figures were NAO: six, PDO: six, AMO: three, EMI: four, SOI: two, and Nino:
zero, which totalled to 21 improvements (44%) and 27 deteriorations (56%). The negative
effect of variable hiding in the training time scenario was thus smaller, which was expected;
the absence of the ablated variable was in part compensated in training by eliciting useful
information (e.g., partial correlates) from the remaining variables.

The Nino index clearly stood out in this analysis: its absence never improved PER
(MAE), and the incurred loss in comparison to all-variables scenario (All) was typically
substantial. This suggests that Nino was an essential determinant for prediction of river
runoff for all eight regions of interest spread across the globe.
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obtained with a model trained for a given region (row) using all input variables (All, the leftmost columns) and without
access to one of the variables (the remaining columns).

The above observations should be taken with a grain of salt, as the averages in
Figure 5a,b were estimated from an 11-fold cross validation experiment, and were thus
burdened by substantial variance. To address this aspect, we proceed now with a more
in-depth analysis for individual regions. For brevity of presentation, however, we focused
on two regions, Celebes Sea Region (#15) and Georgia (#8), and show the detailed results
for them in Figures 6–9. The analogous plots for the remaining regions can be found in the
Appendix A, Figures A1–A12.

In Figures 6 and 7, we present the results of this process for the Celebes Sea Region
(region #15), for test time and training time ablations, respectively. In analogy to Figure 5a,b,
both figures had the same form and presented the PER (MAE) metric for the original, non-
ablated model M on the entire region as the leftmost box-and-whisker plot (All), and for
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the ablated configurations in the successful plots (All–NAO, All–PDO, etc.). We kept the
same ordering of variables as in Figure 5 to ease comparison.

Expectedly, the models performed best on average when given access to the full set of
variables—the expected improvement of MAE compared to the baseline was just short of
20% for this region. Under test time ablations (Figure 6), the jackknifed configurations fared
worse, but the effect size varied substantially by the removed variable. For NAO, PDO,
AMO, and EMI Modoki, the effect was negligible. Only removal of SOI and Nino 3.4 had
strong observable impact. In particular, removal of Nino 3.4 reduced PER (MAE) by over
8 percentage points, which suggests a very strong dependency of models on this indicator.

In training time ablations (Figure 7), the effect size was lower overall and did not
exceed 4 pp on median. The reason was that models can compensate for the missing
variable by learning as much as possible from the other variables. Interestingly, the ability
of compensation does not correlate in general with the impact of a variable in jackknifing.
The most striking example was SOI: while its absence affected the jackknifed models by
almost 2 percentage points (Figure 5), it turned out to be less essential here. This suggests
that the lack of information provided by SOI could be almost entirely compensated by the
other variables. Note, however, that this does not necessarily mean that SOI depends on
the remaining variables in any simple way (i.e., via high linear correlation/dependency),
as neural networks are capable of modeling and exploiting complex, nonlinear, and noisy
relationships between variables, even if they hold only in parts of their domains.
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Figure 7. Training time ablation for the Celebes Sea region (#15). Each box plot presents the median and the first and third 
quartiles. Explanations: see Figure 5. 
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models trained on the complete set of features (All) was lower than for the Celebes Sea—
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The overall wider variance of PER (MAE) for training time ablations (Figure 6 vs.
Figure 5) may reflect the fact that reducing the dimensionality of data (from six to five input
variables) imposes fewer constraints on the fitting process and enlarges the space of models
that can be fit to them (in training time ablations, we applied only minimal modifications
to the architecture of neural networks, i.e., removed only the corresponding input units so
that the overall number of parameters of the model remained largely unchanged). This
may lead to overfitting (and consequently lower PER (MAE) in comparison to the All
scenario), but occasionally translates into improvements—which seemed to be the case for
the All-SOI.

Figures 7 and 8 present the analogous results for region #8 (Georgia, USA) for jackknif-
ing and training time ablations, respectively. In this region, the gain elaborated by models
trained on the complete set of features (All) was lower than for the Celebes Sea—≈14 pp on
average. Except for Nino 3.4, the impact of jackknifing (Figure 7) seemed less prominent (cf.
Figure 5). For training time ablations (Figure 8), the differences were more prominent, and
the causes may have been analogous to those discussed above for Figure 6. Interestingly,
however, we may observe a similar pattern in both figures, with the models fitted to the
All-PDO and All-SOI datasets faring comparably well to the rest, often better than the
base models (All). This may suggest that PDO and SOI may be in a sense detrimental for
modeling of river runoff in this region, i.e., they may carry certain spurious patterns that
deceive the fitting process and cause it to underperform at test time.

Importantly, all results presented in Figure 5a,b, Figures 6–9 indicate the critical impact
of Nino 3.4 on the quality of modeling. The effect size on median when concealing this
variable varied from 3.5 pp (Figure 7) to ≈11 pp (Figure 8). In summary, Nino 3.4 is thus
clearly the strongest determinant of the quality of models considered here. On the other
hand, the impact of removal of the remaining indices was moderate and did not exceed
2 pp (SOI in the jackknifing experiment, Figure 6). This suggests that, except for Nino 3.4,
all subsets of indices considered in this experiment carried en gross a similar amount of
information useful for the modeling of river runoff.
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Results of ablation experiments for the remaining six study areas represented in
Figure 4 are provided in the Appendix A. Figures A1–A6 illustrate study areas in Europe.
Figures A1 and A2 illustrate results of test time ablation (jackknifing) and training time ab-
lation, respectively, for the study area, including Germany (region #6). Figures A3 and A4
refer to the area including Croatia (region #7), while Figures A5 and A6 refer to the area
including Poland (region #8). Figures A7 and A8 refer to the area including Singapore (Asia,
region #12). Figures A9–A12 illustrate study areas in Australia. Figures A9 and A10 refer
to the area including Darwin, Northern Territory (region #17), while Figures A11 and A12
refer to the area including Brisbane, Queensland (region #18).

5. Discussion and Conclusions

The work conducted within the “Interpretation of Change in Flood-related Indices
based on Climate Variability” (FloVar) project demonstrated that the natural climate vari-
ability (i.e., oscillations in the ocean–atmosphere system) alone carries important and useful
information relevant to the spatio-temporal field of river runoff, being of considerable and
broad relevance.

We demonstrated that machine learning (ML) lends itself well to model the links
between climate variability indices and the process of river runoff. In most of the 18 studied
regions scattered over six continents, the hindcast based on the values of six climate
variability indices alone, observed in the preceding 8-month time window, outperformed
the baseline, i.e., the naїve hindcast resulting from the long-term mean for a particular
month. The superiority of multivariate models (Section 4.1) signals that the CNNs used
here can effectively capture complex patterns of events and dynamics co-occurring in
multiple cells in a region.

Even if NNs are notorious for inherent inability to explain their predictions, we
attempted to provide some interpretations by conducting ablation experiments. Our
ablation experiments (Section 4.2) suggest the critical impact of the El Niño phenomenon
as captured by the Nino 3.4 index on the modelling performance, while the impact of
removal of the remaining five indices was found to be moderate. This points to significant
degree of redundancy among these five indices. The sample of heatmaps bode well as to
the possibility of more extended hindcasting, which would use not only the past climate
variability indices but also the past values of river runoff in every grid cell of concern.
However, this was beyond the object of the project.

Direct comparison of our results of ablation experiments with the existing scientific
literature focused on the application of teleconnection indices to the study of regional
climatic conditions does not seem possible for at least three reasons:

(i). Our study areas (“rectangular” sets of cells) did not really map regions analyzed in
the literature.

(ii). The existing references do not broadly agree on the links between indices of ocean–
atmosphere oscillations and runoff fields, as demonstrated in [65,66].

(iii). No reference known to the authors includes all six climate variability indices consid-
ered in our paper.

Our results demonstrate that indeed climate variability indices, representing the stage
of the ocean–atmosphere oscillation, carry relevant information that can be associated with
the river runoff process in many, but not all, studied areas on six continents. This is quite
understandable. There is no question that tele-connections may express relations between
variables over a very large distance, but a particular climate variability index is likely to
have a specific, spatially organized zone of influence. Beyond this zone, the links between
a specific climate variability index and the river runoff process are likely to be weak, very
weak, or non-existent. A difficult challenge for the future would be to reliably determine
the zones influence of specific climate variability indices.
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