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Abstract: In the Venice Lagoon some of the highest tides in the Mediterranean occur, which have
influenced the evolution of the city of Venice and the surrounding lagoon for centuries. The forecast of
“high waters” in the lagoon has always been a matter of considerable practical interest. In this study,
tide prediction models were developed for the entire lagoon based on Nonlinear Autoregressive
Exogenous (NARX) neural networks. The NARX-based model development was performed in two
different stages. The first stage was the training and testing of the NARX network, performed on
data collected in a given time interval at the tide gauge of Punta della Salute, at the end of Canal
Grande. The second stage consisted of a comprehensive validation of the model in the entire Venice
Lagoon, with a detailed analysis of data from three measuring stations located in points of the
lagoon with different characteristics. Good predictions were achieved regardless of whether the
meteorological parameters were considered among input parameters, even with considerable time
advance. Furthermore, the forecasting model based on NARX has proved capable of predicting even
exceptional high tides. The proposed model could be a useful support tool for the management of
the MOSE system, which will protect Venice from high waters.

Keywords: tide prediction; artificial neural network; NARX; Venice Lagoon

1. Introduction

The city of Venice is a UNESCO world heritage site for the uniqueness of its historical,
archaeological, urban, architectural, and artistic legacy. The historic center of Venice is
located in the middle of the Venice Lagoon, a closed bay at the northwestern end of the
Adriatic Sea. In this area, some of the highest tides in the Mediterranean occur [1]. Over
the centuries, high tides have caused significant damage to the city, threatening its cultural
heritage [2]. The most relevant high tide events, called “acqua alta” (high waters) in Italian,
have significantly influenced the socioeconomic and environmental aspects of the Venice
Lagoon throughout history.

High-water events occur in the Lagoon when the effects of the astronomical tide due
to the attraction of celestial bodies are enhanced by meteorological disturbances. The most
relevant weather factors affecting the tide-level fluctuations are barometric pressure and
the wind. In particular, the Scirocco wind, from the southeast, and the Bora wind, from
north-northeast, can lead to significant increases compared to the normal astronomical
oscillations of the tide level.

One of the first reliable measures of high tide in the Venice Lagoon dates back to 1848
when the water surface reached 140 cm above the mean sea level. This is an exceptional
value considering that, currently, the average ground level of Venice is only 80 cm above
the mean sea level. Indeed, during the 20th century, Venice lost 25 cm in ground level,
approximately 15 cm because of subsidence mainly due to groundwater pumping in the
nearby industrial area and about 10 cm due to eustatism [3]. The highest extreme observed
event dates back to 4 November 1966, when the water level reached 194 cm [4]. More
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recently, the second-highest tide occurred: a sea level equal to 187 cm was measured on
12 November 2019. The issue becomes more evident by observing that 15 exceptional
events, with water level above 140 cm, have occurred in the past 20 years, while only 10
exceptional events had occurred in the previous 80 years [5]. In order to safeguard Venice
and its lagoon from high waters, the MOSE (MOdulo Sperimentale Elettromeccanico—
Experimental Electromechanical Module) system is nearing completion. It consists of a
submerged-barriers system that, in the case of tides higher than 110 cm, will rise, blocking
the water fluxes from the Adriatic Sea [6]. However, the rising of the sea level still remains
an open question on which it will be necessary to evaluate and possibly update the high-
tides protection systems.

Therefore, an accurate prediction of the tide level in Venice is an issue of relevant
practical and scientific interest. In literature, there are different approaches to forecast
the tide level in the Venice Lagoon: statistical models, such as the BIGSUMDP expert
model [7], hydrodynamic models [8,9], e.g., SHYFEM [10] and HYPSE [11,12] models,
Support Vector Machine [13], linear autoregressive models [14], and nonlinear models,
based on the cardinal B-spline (CBS) functions [15]. However, the results achieved with
Support Vector Machine, linear autoregressive models and nonlinear models were accurate
for a lag time between input data and forecast horizon lower than 24 h, while the statistical
and hydrodynamic models require a large number of input data, making them complex to
use. In the past few decades, Artificial Intelligence (AI) models have taken hold for the
prediction of complex natural phenomena [16–22]. However, to date their application for
the tide forecasting leads to accurate predictions only for a short forecast horizon [23] or is
related to ocean environments with a reduced number of measurement points [24,25].

In general, the disadvantages of machine learning algorithms, such as Support Vector
Machine, are related to relevant structure and computational complexities [26], which lead
to long training times [27] and to the requirement of large datasets in order to properly
evaluate the several algorithm parameters during the training stage [28].

Otherwise, autoregressive models with exogenous inputs, both linear (ARX) and
nonlinear (NARX), allow, in comparison with different machine learning algorithms, an
easier physical interpretation of the investigated parameter, based on the relationship
between exogenous inputs and the target parameter. At the same time, the recursive
update of predictors and model parameters allows for obtaining accurate forecasts even
for short time series [29,30]. The aim of this study is the development of a novel prediction
model of the tide in the entire Venetian lagoon, based on the Nonlinear Autoregressive
Exogenous (NARX) neural networks, with a forecast horizon up to 72 h. NARX networks
combine the Artificial Neural Networks (ANNs) with ARX models, allowing capture of
the nonlinear behavior in an autoregressive time series [31].

The NARX approach proved to be particularly effective in modeling wave height [32]
and groundwater level [33,34] time series. First, the NARX network was trained and tested
with the tide-level data measured in Punta della Salute station, located near the historic
center of Venice. Then, the trained network was used for a comprehensive modeling of
the tide level in the Venice Lagoon, with a detailed analysis of three stations located in
points of the lagoon with different characteristics relating to the propagation of the tide.
Furthermore, the sensitivity of the performance to changes in the input variables and lag
times was evaluated. A further detailed analysis was carried out on the most interesting
aspect in tide modeling, which is represented by the prediction of exceptionally high
tides. The proposed model could be a support tool for the decisions regarding the timely
activation of the MOSE system in the Venice lagoon. Indeed, the setting of the MOSE
barriers needs 48 h; therefore, reliable forecasting of the tides—with a predictive horizon
up to 72 h—is a fundamental need to protect Venice. Some recent extreme events of the
tide in the Venice Lagoon showed the necessity to improve the forecasting models. In fact,
inaccurate forecasting did not allow the activation of the MOSE barriers, and Venice was
again flooded.
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2. Materials and Methods
2.1. Study Area and Dataset

The Venice Lagoon extends for 550 km2 from the Sile River in the north to the Brenta
River in the south, making the Venice Lagoon the largest wetland in the Mediterranean
Basin [35,36]. For 80% of its surface, it consists of mudflats, tidal shallows, and salt marshes.
About 11% is permanently covered by open water, while only 8% is represented by land,
including the city of Venice and many smaller islands. The lagoon is connected to the
Adriatic Sea by means of three inlets: Lido, Malamocco, and Chioggia.

The tide-level dataset consisted of measures on a network of 19 tide-gauge stations
covering the Venice Lagoon. Wind direction, wind speed, and barometric pressure were
taken from a weather station, referred to as Piattaforma CNR and located in the Adriatic
Sea 13 km from the Malamocco inlet. For each station, data measured every 30 min were
available and were used in the analysis.

Both the time series of the tide-gauge station Punta della Salute and the time series of
the weather station were available for the period from January 2009 to December 2014. In
addition, the gravitational effects were included in the prediction model by means of the
astronomical tide height hastr, which was computed through a harmonic analysis:

hastr = A0 +
N

∑
n=1

An cos(σnt− kn) (1)

where A0 is the average sea level, An is the amplitude, σn the angular frequency, kn the phase
delay of component n, and N is the number of harmonics used to evaluate the astronomical
tide height. These values can be found on the Venice Municipality website [37]. Figure 1
shows the location of the tide gauge stations in the Venice Lagoon, and the weather station.
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2.2. NARX Model Architectures

NARX neural networks are a recurrent dynamic type of ANNs networks, which are
composed of interconnected nodes inspired by a simplification of the biological neural
system. Therefore, each node represents an artificial neuron that receives one or more
inputs and sums them to produce an output. These sums pass through a function, known
as an activation function, which, for the NARX network, is nonlinear. Based on the flow and
processing information direction, different categories of ANNs can be distinguished. While
in the feedforward neural networks (FNNs), the information flows in one direction with
nodes arranged in layers; in the recurrent neural networks, such as NARX, information
flows both in forward and backward directions, allowing a connection between neurons
located in the same or previous layers [38]. The faster convergence in reaching the optimal
connection weights between inputs and neurons and the reduced number of the latter to
calibrate and make the model effective [39] makes NARX more high-performing compared
to other ANNs and better at discovering long-time dependences in comparison with other
recurrent neural networks [40]. Moreover, the exogenous inputs of the NARX network
allow relating the current value of a time series to both past values of the same series and
current and past values of the exogenous series, which represent the external series that
affect the time series of interest. The basic equation for the NARX model is:

y(t) = f
(
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
, u(t− 1), u(t− 2), . . . , u(t− nu)

)
(2)

where u(t) and y(t) are the input and output values at time t, nu and ny are the input and
output network layers, and f is the nonlinear function, approximated by the FNN.

The NARX architectures include 3 different and sequential layers (Figure 2). The
first is the input layer, which consists of the input parameters of the neural network. The
second is the hidden layer, which represents the computational step between input and
output. The third is the output layer, which leads to the predicted value y(t). Four different
NARX-based models were implemented in MATLAB®2020a [41] environment. In all four
models, both the lagged values of the tide level htide(t− ta) and astronomical tide hastr(t− ta)
were considered as input values while the output was represented by the predicted htide(t),
with ta that is the lag time between input and target values. For each model, different
combinations of additional input values were considered.

In the first model, indicated as “Model I”, the lagged wind speed vwind(t − ta), the
lagged wind direction αwind(t − ta), and the lagged barometric pressure Patm(t − ta), were
also considered as input values. In the second model, “Model II”, vwind(t − ta) and
αwind(t − ta) were considered as additional input values while for “Model III” only Patm(t
− ta) was included as an additional input value. The fourth model, “Model IV”, did not
have additional input values, taking into account only the lagged values of the tide level
htide(t − ta) and astronomical tide hastr(t − ta). Therefore, input data were ahead of the tide
value to be predicted for a time equal to the lag time ta. It should be noted that, despite the
fact that meteorological parameters were partly neglected, as for “Model II” and “Model
III”, or completely neglected, as for “Model IV”, their influence is implicitly expressed by
including previously observed tidal height values, which in turn also depend on meteo-
rological factors. Moreover, as demonstrated by Di Nunno et al. (2021), considering only
the lagged tide level htide(t − ta) as an input variable led to relevant underestimation of the
high tides. This made the astronomical tide an essential parameter for tide prediction [42].

Different lag time ta values were considered, in order to assess the performance of the
models as ta increases. A preliminary analysis was conducted to select the optimal number
of hidden nodes. The best performances were achieved for 3 hidden nodes (indicated in
Figure 2 as h1, h2, and h3). For the hidden layer, a sigmoid activation function f 1 was used,
while a linear activation function f 2, with only one neuron n, was used for the output layer.
For the output layer (Figure 2), the weight w and bias b of the NARX model were optimized
through the training algorithm described below.

The output value, represented by the predicted htide, was then fed back to the input
values as part of the NARX architectures. In particular, the time delay td and the related



Water 2021, 13, 1173 5 of 19

feedback delay, which is equal to the number of output values that were fed back as
input, were both set to 1. This allowed minimizing the weight of fed-back values in the
tide prediction.

The Bayesian Regularization was used as a training algorithm. It consists of a Gauss–
Newton approximation to the Hessian matrix JT(w)J(w), where w is the weight vector, J
is the Jacobian matrix, and JT the transpose, based on the Bayesian technique [43], and
implemented in the Levenberg–Marquardt algorithm, in order to reduce the probability
of overfitting and the computational overhead [44]. The Levenberg–Marquardt algorithm
approximates the Hessian matrix according to the equation [45]:

∆w =
[

JT(w)J(w) + λI
]−1

JT(w)e(w) (3)

where I is the identity matrix, e is the error vector and λ is the learning constant, adjusted
iteratively to find the minimum error. Despite a slow convergence with respect to the direct
application of the Levenberg–Marquardt algorithm, the Bayesian Regularization algorithm
usually leads to improved predictions [33].

Furthermore, a normalization of the input values was conducted in order to have a
common range between 0 and 1 and improve the modeling performance. The tide level,
the astronomical tide, the barometric pressure and the wind speed were normalized with
respect to the respectively maximum values along the time series, while the wind direction
was divided by 360:

h∗tide,i =
htide,i

max(htide)
(4)

h∗astr,i =
hastr,i

max(hastr)
(5)

P∗atm,i =
Patm,i

max(Patm)
(6)

v∗wind,i =
vwind,i

max(vwind)
(7)

α∗wind,i =
αwind,i

360
(8)

where i indicates the temporal step.
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2.3. Evaluation Metrics

The performance of the NARX network was evaluated by means of four evaluation
metrics: the coefficient of determination R2, which provides a measure of how well experi-
mental data are replicated by the model, the Mean Absolute Error (MAE), which provides
the average error magnitude for the predicted values, the Root Mean Squared Error (RMSE),
which provides the square root of the average squared errors for the predicted values, and
the Relative Absolute Error (RAE), which is the ratio between the absolute error and the
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absolute value of the difference between average and each measured values. These metrics
are defined as:

R2 = 1− ∑m
i=1( fi − yi)

2

∑m
i=1(ya − yi)

2 (9)

MAE =
∑m

i=1| fi − yi|
m

(10)

RMSE =

√
∑m

i=1( fi − yi)
2

m
(11)

RAE =
∑m

i=1| fi − yi|
∑m

i=1|ya − yi|
(12)

where m is the total number of measured data, fi is the predicted value for the i-th data, yi is
the experimental value for the i-th data, and ya is the averaged value of the measured data.

3. Results and Discussion

The NARX modeling was performed in two different stages. The first was the training
and testing of the NARX network-based model, performed for the period between January
2009 and December 2011 using the tide level dataset of Punta della Salute and the weather
data of Piattaforma CNR. It should be noted that, for an accurate tide-level forecast, a
time-series length of at least 12 months is required [42]. The second stage was an analysis
extended to the Venice Lagoon, which consisted of validation of the NARX network
for the tide prediction in the different tide gauge stations that cover the entire lagoon,
including Punta della Salute. Validation was performed for periods not exceeding 1 year
and not considered for the previous training and testing step, between January 2012 and
December 2014. Table 1 reports, for each tide gauge station, the year considered for the
model validation.

Table 1. Year considered for the tide prediction for each tide gauge station.

Tide Gauge Station Year

Lido Diga Nord, Meda Bocca Lido, San Giorgio in Alga, Sant’Erasmo 2012

Canal Ancora, Chioggia Vigo, Faro Rocchetta, Grassabò, Le Saline,
Malamocco Diga Nord, Marghera, Punta della Salute 2013

Chioggia Diga Sud, Cavallino Centro, Lido Diga Sud, Murano,
San Nicolò, Treporti, Valle Averto 2014

3.1. Training and Testing

With reference to the training and testing phases conducted on the data collected at
the Punta della Salute tide gauge, the NARX-based model shows very good performance
for all lag time and models (Table 2). The best performance was achieved for the lowest ta,
equal to 1 h, and Model I (R2 = 0.9980 − RAE = 0.0426). However, also for Model IV, which
did not include the meteorological parameters among the input variables, the prediction
was still very accurate, showing negligible differences compared to the other models
(R2 = 0.9980 − RAE = 0.0433). For ta = 2 h (Model I—R2 = 0.9980 − RAE = 0.0437, Model
IV—R2 = 0.9979 − RAE = 0.0443), performances were slightly lower than those achieved
for ta = 1 h.
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Table 2. Prediction performance in the training and testing of the NARX network for the four models.

Model I Model II Model III Model IV

ta
R2 MAE

(cm)
RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE(Hours)

1 0.9980 0.9668 1.2400 0.0426 0.9980 0.9773 1.2523 0.0431 0.9980 0.9797 1.2550 0.0432 0.9980 0.9831 1.2592 0.0433

2 0.9980 0.9929 1.2694 0.0437 0.9979 1.0160 1.2986 0.0448 0.9979 1.0136 1.2924 0.0447 0.9979 1.0058 1.2881 0.0443

3 0.9949 1.5830 1.9961 0.0697 0.9946 1.6305 2.0520 0.0718 0.9949 1.6015 2.0110 0.0705 0.9947 1.6272 2.0423 0.0717

6 0.9737 3.7215 4.5463 0.1639 0.9724 3.8238 4.6570 0.1684 0.9737 3.7246 4.5441 0.1640 0.9729 3.7752 4.6171 0.1662

12 0.9810 3.1069 3.8658 0.1368 0.9800 3.2172 3.9617 0.1417 0.9809 3.1123 3.8717 0.1371 0.9806 3.1506 3.9103 0.1388

18 0.9776 3.4265 4.2017 0.1509 0.9766 3.5183 4.2865 0.1549 0.9778 3.4101 4.1783 0.1502 0.9763 3.5566 4.3146 0.1566

24 0.9849 2.7610 3.4449 0.1216 0.9824 2.9933 3.7229 0.1318 0.9848 2.7622 3.4543 0.1216 0.9826 2.9653 3.6934 0.1306

30 0.9853 2.7086 3.4026 0.1193 0.9844 2.8079 3.4981 0.1236 0.9852 2.7156 3.4127 0.1196 0.9850 2.7444 3.4390 0.1208

36 0.9755 3.5943 4.3926 0.1582 0.9746 3.6599 4.4663 0.1611 0.9754 3.5982 4.3994 0.1584 0.9746 3.6486 4.4711 0.1606

42 0.9756 3.6013 4.3779 0.1585 0.9749 3.6765 4.4452 0.1618 0.9755 3.6065 4.3864 0.1587 0.9749 3.6762 4.4461 0.1618

48 0.9856 2.7151 3.3660 0.1195 0.9845 2.8283 3.4969 0.1245 0.9855 2.7229 3.3732 0.1199 0.9843 2.8414 3.5123 0.1251

54 0.9871 2.5676 3.1914 0.1130 0.9868 2.5922 3.2171 0.1141 0.9870 2.5700 3.1945 0.1131 0.9868 2.5953 3.2208 0.1142

60 0.9756 3.5952 4.3836 0.1582 0.9756 3.6023 4.3819 0.1585 0.9758 3.5764 4.3601 0.1574 0.9754 3.6060 4.3988 0.1587

66 0.9727 3.8478 4.6376 0.1693 0.9724 3.8686 4.6605 0.1702 0.9726 3.8555 4.6480 0.1696 0.9723 3.8764 4.6651 0.1705

72 0.9823 3.0501 3.7369 0.1342 0.9821 3.0594 3.7549 0.1346 0.9824 3.0324 3.7240 0.1334 0.9820 3.0729 3.7609 0.1352
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A more marked reduction in performance (Table 2) is observed passing from a lag
time of 3 h (Model I—R2 = 0.9949 − RAE = 0.0697, Model IV—R2 = 0.9947 − RAE = 0.0717)
to 6 h (Model I—R2 = 0.9737 − RAE = 0.1639, Model IV—R2 = 0.9729 − RAE = 0.1662). This
result may essentially be attributed to the characteristics of the astronomical tide, which is
basically semidiurnal, with two maximum heights and two minimum heights within 24 h.
This involves the autocorrelation function [46] of the tide level time series showing positive
peaks every 12 h starting from a lag time ta = 12 h and negative peaks every 12 h starting
from ta = 6 h (Figure 3). For lag times corresponding to negative peaks of autocorrelation,
the predictive ability of the model tends to decrease. However, the evaluation metrics show
that results are still accurate (Model IV—R2 = 0.9729 − RAE = 0.1662).

Water 2021, 13, x FOR PEER REVIEW 7 of 18 
 

 

h. This involves the autocorrelation function [46] of the tide level time series showing pos-
itive peaks every 12 h starting from a lag time ta = 12 h and negative peaks every 12 h 
starting from ta = 6 h (Figure 3). For lag times corresponding to negative peaks of autocor-
relation, the predictive ability of the model tends to decrease. However, the evaluation 
metrics show that results are still accurate (Model IV—R2 = 0.9729 − RAE = 0.1662). 

 
Figure 3. Autocorrelation function of the tide level time series measured at Punta della Salute. 

After ta = 6 h, the predictions returned to slightly improve with the best performances 
achieved for a lag time corresponding to the positive autocorrelation peaks, showing eval-
uation metrics that settled on good values even for ta equal to 72 h. Figure 4 shows the tide 
prediction with Model I and four different lag times for the high-tide event that took place 
between 23 and 26 December 2021. The three warning levels are also reported, with high 
tide between 80 cm and 110 cm, very high tide between 110 cm and 140 cm, and exceptional 
tide above 140 cm. It should be noted that at 110 cm, 12% of the Venice historical center 
and Giudecca is underwater and at 140 cm 59% is underwater [47]. During the shown 
period, two exceptional tide events were measured, respectively on 23 and 25 December, 
interspersed with a very high tide, measured on 24 December. For the first exceptional tide, 
the NARX modeling led to a slight overestimation of the tide level of 0.6 cm for ta = 1 h 
(Figure 4a) and to an underestimation of 3.28 cm, 6.03 cm and 2.40 cm computed respec-
tively for ta equal to 6 h (Figure 4b), 24 h (Figure 4c) and 72 h (Figure 4d). For the second 
exceptional tide, overestimations of 0.18 cm and 1.80 cm were computed for ta equal to 1 h 
(Figure 4a) and 6 h (Figure 4b), while underestimations equal to 4.59 cm and 0.23 cm were 
computed for ta equal to 24 h (Figure 4c) and 72 h (Figure 4d). For the intermediate very 
high tide, an overestimation of the tide level equal to 1.00 cm was computed for ta = 6 h, 
while underestimations of 0.48 cm, 7.45 cm and 3.70 cm were computed for ta = 72 h. 

Overall, regardless of the lag time, the NARX network is able to predict both the 
positive and negative peaks, including the exceptional tide, with the best performance ob-
served for the lowest ta equal to 1 h. Contrary to what was expected, tide predictions ob-
tained for ta = 72 h outperformed the ones achieved for ta = 24 h, confirming the ability of 
NARX models in long-term predictions. 

In addition, the training and testing stage was not significantly affected by the addi-
tional input parameters: the four models showed very similar values of the evaluation 
metrics. This obviously does not mean that the weather parameters have little influence 
on high waters: the fundamental influence of the weather parameters is taken into account 
by means of the lagged values of the tide height. 
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After ta = 6 h, the predictions returned to slightly improve with the best performances
achieved for a lag time corresponding to the positive autocorrelation peaks, showing
evaluation metrics that settled on good values even for ta equal to 72 h. Figure 4 shows
the tide prediction with Model I and four different lag times for the high-tide event that
took place between 23 and 26 December 2021. The three warning levels are also reported,
with high tide between 80 cm and 110 cm, very high tide between 110 cm and 140 cm,
and exceptional tide above 140 cm. It should be noted that at 110 cm, 12% of the Venice
historical center and Giudecca is underwater and at 140 cm 59% is underwater [47]. During
the shown period, two exceptional tide events were measured, respectively on 23 and 25
December, interspersed with a very high tide, measured on 24 December. For the first
exceptional tide, the NARX modeling led to a slight overestimation of the tide level of 0.6 cm
for ta = 1 h (Figure 4a) and to an underestimation of 3.28 cm, 6.03 cm and 2.40 cm computed
respectively for ta equal to 6 h (Figure 4b), 24 h (Figure 4c) and 72 h (Figure 4d). For the
second exceptional tide, overestimations of 0.18 cm and 1.80 cm were computed for ta equal
to 1 h (Figure 4a) and 6 h (Figure 4b), while underestimations equal to 4.59 cm and 0.23 cm
were computed for ta equal to 24 h (Figure 4c) and 72 h (Figure 4d). For the intermediate
very high tide, an overestimation of the tide level equal to 1.00 cm was computed for ta = 6 h,
while underestimations of 0.48 cm, 7.45 cm and 3.70 cm were computed for ta = 72 h.
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Overall, regardless of the lag time, the NARX network is able to predict both the
positive and negative peaks, including the exceptional tide, with the best performance
observed for the lowest ta equal to 1 h. Contrary to what was expected, tide predictions
obtained for ta = 72 h outperformed the ones achieved for ta = 24 h, confirming the ability
of NARX models in long-term predictions.

In addition, the training and testing stage was not significantly affected by the addi-
tional input parameters: the four models showed very similar values of the evaluation
metrics. This obviously does not mean that the weather parameters have little influence on
high waters: the fundamental influence of the weather parameters is taken into account by
means of the lagged values of the tide height.

3.2. Venice Lagoon Analysis

The model developed using Punta della Salute data was then validated for the entire
Venetian Lagoon. Before carrying out the validation, the propagation of the tide in the
lagoon was studied using an unconventional approach based on the cross-correlation
function XCF between the tide level in Piattaforma CNR and the tide level in the different
tide-gauge stations. The calculations were carried out with reference to the year 2009. After
calculating the cross-correlation between the tide time series (Figure 5), the tide lag time
td,c was evaluated as the time that maximizes the cross-correlation function:

td,c = max(XCF) = max

 s∫
0

htide,Piatta f orma CNR(t)htide,i(t + τ)dτ

 (13)

where s is the size of the time series and τ is the delay [48]. Lag times are represented in
Figure 6 and reported, with the peaks of cross-correlation, in Table 3. Peaks get high values,
greater than 0.95 for all tide gauge stations, showing a high similarity between the tide
levels inside and outside the lagoon. The lowest values are observed in correspondence
with the most distant stations and with shallower bottoms. However, the propagation of
the tide occurs gradually, with td,c that passes from values lower than or equal to 0.5 h near
the lagoon inlets (values below 0.5 h cannot be detected due to data temporal resolution),
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e.g., Malamocco Diga Nord (Figure 5a), Lido Diga Nord (Figure 5b), and Lido Diga Sud
(Figure 5c), up to values over 3 h in the peripheral areas of the lagoon, e.g., Grassabò (td,c =
3.5 h, Figure 5c). Instead, the central areas of the lagoon are characterized by intermediate
lag times. As an example, for Punta della Salute (Figure 5b) and Treporti (Figure 5c), td,c
equal to 1.5 h and 2.0 h was respectively estimated. It should be noted that the tide gauges
of Valle Averto (Figure 5a) and Marghera (Figure 5b), despite a relevant distance from the
Malamocco and Lido inlets, highlight a td,c = 2 h, equal to those computed in the central
area of the Lagoon. This could be explained by the less-sheltered position of these tide
gauges in comparison with other peripheral tide gauges, such as Grassabò (Figure 5c) and
Cavallino Centro (td,c = 4.0 h). These results are in agreement with Ferla et al. [49].
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Table 3. Lag times and cross-correlation peaks.

Tide Gauge Lag Times (Hours) Cross-Correlation Peaks

Canal Ancora 2.0 0.9814

Cavallino Centro 4.0 0.9548

Chioggia Diga Sud 0.5 0.9977

Chioggia Vigo 1.5 0.9913

Faro Rocchetta 1.5 0.9933

Grassabò 3.5 0.9546

Le Saline 1.5 0.9933

Lido Diga Nord 0.5 0.9969

Lido Diga Sud 0.5 0.9965

Malamocco Diga Nord 0.5 0.9946

Marghera 2.0 0.9883

Meda Bocca Lido 1.0 0.9914

Murano 2.0 0.9881

Punta della Salute 1.5 0.9915

San Giorgio in Alga 1.5 0.9882

San Nicolò 1.5 0.9912

Sant’Erasmo 1.5 0.9899

Treporti 2.0 0.9826

Valle Averto 2.0 0.9797

The R2 and RAE scattered maps for tide prediction in all the 19 tide gauge stations are
shown in Figure 7, for Model I and ta equal to 1 h and for Model IV and ta equal to 72 h.
The NARX modeling was accurate for all locations, with R2 values that never drop below
0.91 and RAE values always lower than 0.3 for ta = 72 h. Furthermore, for ta = 1 h, R2 was
always higher than 0.99 and RAE was lower than 0.085 for all tide-gauge stations.

An overview of the results is given in Table 4, with a statistical analysis that consists
of the evaluation of the minimum, maximum, mean, and standard deviation values of
the evaluation metrics computed considering all tide-gauge stations and lag times. The
best performances were observed for Model II, which exhibit mean R2 and RAE equal
to 0.9298 and 0.2446, respectively. Model I shows slightly lower performances, with
mean R2 = 0.9286 and mean RAE = 0.2472. This demonstrates the low impact of the
barometric pressure on the tide-level prediction. Model III is outperformed by Models I
and II (mean R2 = 0.9263 and mean RAE = 0.2494); this further highlights that wind speed
and direction have a greater impact on tide prediction in comparison with barometric
pressure. However, tide predictions were very accurate regardless of whether weather
parameters were considered as input variables, with Model IV that is characterized by
the least accurate outcomes, but still close to the results of the other three models (mean
R2 = 0.9257 and mean RAE = 0.2476)s, confirming the great forecasting capability of the
NARX network. For all 19 tide-gauge stations, an R2 greater than 0.7 was calculated, which
is usually considered the minimum value for a proper prediction [50].
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Table 4. Venice Lagoon prediction performance.

Model I Model II Model III Model IV

R2 MAE
(cm)

RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE R2 MAE

(cm)
RMSE
(cm) RAE

Min 0.7618 1.0035 1.3026 0.0483 0.7688 1.0067 1.3062 0.0485 0.7760 1.0129 1.3130 0.0488 0.7421 1.0079 1.3075 0.0486

Max 0.9974 11.087 13.7120 0.4895 0.9974 10.791 13.5100 0.4764 0.9973 10.679 13.481 0.4714 0.9974 11.389 14.255 0.5036

Mean 0.9286 5.2353 6.4746 0.2472 0.9298 5.1817 6.4370 0.2446 0.9263 5.2832 6.5582 0.2494 0.9257 5.2467 6.5586 0.2476

Std Dev 0.0499 2.2295 2.7109 0.1041 0.0492 2.1582 2.6578 0.1005 0.0525 2.2812 2.8037 0.1063 0.0576 2.3025 2.8918 0.1071
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3.3. High Tide Analysis

The most interesting issue in tide modeling is represented by the prediction of high
tides. In the training and testing stage, the NARX network proved to be able to predict
even an exceptional tide for Punta della Salute. In this section, the results relating to the
high-tide predictions for three tide-gauge stations located in different points of the Venice
Lagoon are described and discussed. Compared to the training and testing stage, a shorter
simulation period, equal to one year, was considered.

The first tide gauge was Chioggia Diga Sud located in proximity of the Chioggia Inlet,
in the south of the Venice Lagoon. In the period between 10 and 12 February 2014 in this
station, a very high tide of 130 cm was measured, followed by a high tide of 95 cm (Figure 8a).
The tide level reached at Chioggia Inlet was, however, higher than those recorded in the
same period at the Lido inlet and in the Venice historical center, with peaks of 98 cm and
108 cm measured, respectively, in the stations of Treporti and Punta della Salute. NARX
modeling, with Model IV and ta = 72 h, provided accurate forecasting of both high tide
measurements for Chioggia Diga Sud, with an underestimation of the very high tide event
of only 1.90 cm and to an underestimation of the high tide event of 2.85 cm.
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Figure 8. High tide prediction (Model IV—ta = 72 h). On the left: Chioggia Diga Sud—time series in the period between
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Ancora—time series in the period between 10 and 12 February 2013 (e). On the right, predicted versus measured values for
the validation period for: Chioggia Diga Sud (b); San Giorgio in Alga (d); Canal Ancora (e).

The second tide gauge was San Giorgio in Alga, located in a homonymous small
island in the middle of the lagoon, close to the Giudecca island and historical center. An
exceptional tide height of 150 cm was measured at this station on 11 November 2012 and
two high tides, with heights between 80 cm and 110 cm, were measured until the following
day (Figure 8c). In the nearby station of Punta della Salute, a similar exceptional tide height
of 148 cm was measured at the same time. For the exceptional tide measured in San Giorgio
in Alga, NARX modeling led to an overestimation of 1.37 cm computed, while for the
subsequent two high tides, higher overestimations were observed, respectively equal to
4.75 cm and 1.81 cm.

The third was Canal Ancora, located in the north of the lagoon. For this tide gauge,
the most significant peak measured in 2013 was equal to 126 cm, which corresponds to
a very high tide (Figure 8e). It should be noted that, in the same day, 11 February 2013, in
Punta della Salute an exceptional tide of 142 cm was recorded (Figure 4). The difference of
16 cm between Punta della Salute and Canal Ancora was caused by the propagation of
the flood event, which initially affected the central part of the lagoon and then reached
the peripheral areas, located at a greater distance from the three inlets, and by and the
configuration of the lagoon seabed. NARX modeling provided good predictions also for
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Canal Ancora, with limited overestimations of the tide level equal to 4.32 cm and 3.17 cm
for the very high tide and high tide, respectively.

Overall, the position of the three tide gauges with respect to the weather station, more
or less distant from the Lagoon inlets, did not affect the accuracy of the forecast. The tide
prediction performed with the simplest model, Model IV, and the highest lag time, equal
to 72 h, confirm the ability of the NARX network to predict high tides, even in case of
exceptional events. In addition, the forecasts of exceptional tide showed similar accuracy
to that observed for very high tides and high tides events, confirming the suitability of the
NARX network for the modeling of extreme events. The same accuracy was also achieved
in predicting negative peaks or tides between 0 and 80 cm (Figure 8b,d,f). The best perfor-
mance was obtained for Chioggia Diga Sud with R2 = 0.9764 and RAE = 0.1536. Slightly
lower but still very accurate predictions were achieved for Canal Ancora (R2 = 0.92613 and
RAE = 0.2709) and for San Giorgio in Alga (R2 = 0.9141 and RAE = 0.2906).

Further confirmation of the results accuracy obtained through Model IV is shown in
Figure 9, which reports a notched box plots representation of the Residuals, expressed as
the difference between measured and predicted values, for htide > 80 cm, as the lag time
increases. It should be noted that positive Residuals involve an underestimation of positive
tide peaks that correspond to high tides, while negative Residuals involve an overestimation
of negative tide peaks that correspond to low tides. For the three stations, whiskers ranged
between −4 cm and 6 cm and medians between −0.5 cm and 2.5 cm. Exceptions to these
results were observed for ta = 6 h where there is a relevant underestimation of high tides
with whiskers ranged between 5 cm and 20 cm and the medians between 9 cm and 13 cm.
These discrepancies may be explained with the autocorrelation analysis reported in Section
3.2. The best performances were achieved for ta equal to 1 h. However, for ta equal to 72 h,
the outliers (red crosses in Figure 9) were a small percentage: 4.62% for Chioggia Diga Sud,
3.04% for San Giorgio in Alga, and 4.82% for Canal Ancora.
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Good results were also achieved without including the weather data related to the
wind and barometric pressure, with Model IV capable of providing accurate predictions.
This aspect probably represents one of the most interesting novel results of this study.
Moreover, this made it possible to extend the analysis through Model IV to a longer period,
from January 2009 to December 2018, allowing the validation of the model on a wider
range of events, using the tide-level dataset measured in Punta della Salute, while the
trained NARX-based model is the same developed and described in Section 3.1.

Figure 10 shows some results of this modeling, obtained for a ta = 72 h, focusing
on the highest tide measured in Punta della Salute in the period 2009–2018, equal to 154
cm. As can be seen from the residuals, properly divided in order to take into account the
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values of high tide, very high tide and exceptional tide, the model provided predictions with
small underestimation and overestimations. For the exceptional tide, equal to 154 cm, the
level is underestimated at about 6.08 cm. The second exceptional tide, which was observed
after few hours, shows an even lower underestimation, equal to 2.95 cm. For htide < 80 cm
and 80 cm < htide < 110 cm, some overestimations of the tide level are also observed, with
values lower than 5.4 cm. A maximum underestimation of 4.15 cm was evaluated for a
high tide event, on 31 October 2018. In any case, forecast errors can be significantly reduced
with the progressive use of NARX-based models characterized by gradually decreasing ta.
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The results obtained also lend themselves to an interesting interpretation from the
physical point of view. The possibility of predicting high waters with excellent accuracy
regardless of weather-forcing data, even a few days in advance, shows that the complex
system represented by the Venice lagoon is characterized by considerable “inertia”. In
particular, when exceptional high waters occur, meteorological factors begin to influence the
phenomenon a few days earlier. The effects persist for some days, during which there are
some significant peaks of high tide. Furthermore, the study of the cross-correlation function
between the oscillations in the different points of the lagoon allow obtaining relevant
information on the propagation of the tide without having to conduct a hydrodynamic
study and without having to know in detail the configuration of the lagoon itself. Ultimately,
the proposed models make it possible to obtain accurate forecasts for a large area on the
basis of limited information relating to two or even a single measurement station: this
aspect also distinguishes them from commonly used forecasting models, which instead
require measurements of the input in a large area.

4. Conclusions

This study assessed the ability of the Nonlinear Autoregressive Exogenous neural
network to develop forecasting models of the tide level in the Venice Lagoon. Four models
were built, including both the lagged values of the tide level and astronomical tide as input
values. In each model, different combinations of additional input values were considered
in order to take into account the meteorological parameters related to wind features and
barometric pressure.

Very accurate tide predictions were achieved regardless of whether the meteorological
parameters were considered as input parameters. The ability to forecast even exception-
ally high tides makes the NARX neural networks a reliable tool for predicting tide-level
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fluctuation. In addition, the modeling was not particularly affected by lag-time increase,
with a satisfactory performance achieved also for a ta equal to 72 h: this demonstrates the
great capability of NARX networks to predict high waters with a forecasting horizon of
several days.

Therefore, NARX modeling could represent a reliable approach for the management of
the MOSE, ensuring an adequate time interval for the activation of the barriers. This would
allow a reduction of the disaster risk for the city of Venice (Goal 11 of the 2030 Agenda for
Sustainable Development), contrasting the effects of climate change that will lead to a rise
in the average sea level (Goal 13) and, at the same time, protecting the biodiversity and
ecosystem of the Venice Lagoon (Goal 15).

However, even though meteorological parameters may not be included in the model
input data, their significant influence is implicitly expressed by including previously
observed tidal height values. In addition, in order to provide accurate forecasting of
the tide level, it is recommended to consider the astronomical tide as exogenous input.
Furthermore, a time-series length of at least 12 months, with different extreme events
during the time interval, is necessary for a proper training of the NARX network.

The good results obtained for the Venice Lagoon recommend the use of the NARX
network for tide prediction in coastal areas affected by problems related to high tides. A
proper evaluation of the tide level is a key factor for the safeguard of the economic, social,
and cultural heritage of these places. In addition, the proposed model could be a support
tool for the decisions regarding the timely activation of the MOSE in the Venice Lagoon,
and of similar systems in other places around the world.
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