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Abstract: This study investigates the pore structure characteristics of a marine soft soil of the Beibu
Gulf, Guangxi Province, China and its variation with clay content. Pore-size distribution was
measured by Mercury intrusion porosimetry (MIP) and analyzed based on fractal theory. The
analysis of the results relies on the distinction of several types of pores: micropores, small pores,
mesopores and macropores, separated by the critical pore diameters of 0.02 µm, 0.18 µm and 0.78 µm,
respectively. Mesopores and small pores were dominant, accounting for more than 75% of the total
pore volume. Small pore volume increases with clay content at the expense of the mesopore volume.
Between 22.31% and 32.31% clay, the connectivity of pores improves with clay content, while the
tortuosity of pores increases from 22.31% to 32.31% of clay and then decreases between 32.31%
and 37.31% clay. Marine soft soil in the Beibu Gulf is characterized by multiple fractal dimensions.
Macropores had a large (close to 3) fractal dimension, independent of clay content. Mesopores
and small pores had a smaller fractal dimension comprised between 2.1 and 2.4, while the fractal
dimension of micropores did not exceed 1.5. The fractal dimension of mesopores and micropores are
influenced significantly by the clay content. The study of the porosity of the marine soft soil of the
Beibu Gulf could serve as a useful basis for the prediction of its hydraulic properties.

Keywords: marine soft soil; pore-size distribution; mercury intrusion porosimetry; connectivity;
tortuosity; fractal dimension

1. Introduction

In recent years, several high-rise buildings, high-speed highways and docks have
been built on marine soft soil in offshore areas. Marine soft soil is a kind of soil with strong
structure. Its porosity, complexity of particle arrangement and degree of cementation
between particles are the important reasons for its high-water content, structural sensitivity
and remarkable creep. Significant attention is paid to the deformation, strength and stability
of these structures owing to the influence of waves, tides, underground water and other
environmental factors [1–4]. The deformation and strength characteristics of soil under
stress conditions are a result of changes in pores and inter-particle connections. From
this perspective, the changes in pores have the most direct and significant influence [5,6].
Predicting and analyzing the development and damage trends of macroscopic deformation
characteristics based on the variation laws of pore characteristic parameters is essential in
monitoring the deformation and stability of a structure. Therefore, systematic and in-depth
study of the porosity of marine soft soils has a very practical importance.

Scanning electron microscopy (SEM) is the most common method in China to study
pores in soil. In past research, SEM images have been binarized using computer software
and statistically analyzed, allowing researchers to obtain the size, quantity and distri-
bution morphologies of pores in soil [7–10]. Although SEM can be used to acquire the
morphological features of pores, it has some disadvantages, especially the subjectivity of
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threshold values [11,12]. These lead to inevitable errors in analyses. Moreover, it is difficult
to use SEM to describe accurately the distribution features of pore-size distribution in soils.
Mercury intrusion porosimetry (MIP) has been applied to analyze pore sizes and pore
volumes in soil and assess the pore size distribution effectively [13–15].

Several studies have been conducted on pore-size distribution features in soil, in-
cluding qualitative descriptions of pore distribution of soils under different consolidation
pressures [16–19] and pore connectivity in soil [20,21]. Soil permeability is closely related
to pore connectivity and tortuosity and connected pores are important in the exploitation
of certain reservoirs (e.g., gas shales). Therefore, characterizing pore connectivity and tortu-
osity is useful in implementing technological solutions associated with stable foundations,
soil improvement and oil–gas reservoir exploitation.

Owing to the complexity of soil porosity, it is difficult to study and describe them
using traditional geometric methods. Hence, results, including pore size distributions, are
usually analyzed using fractal theory [22–26]. The fractal dimension of a pore volume can
be viewed as a synthetic parameter of pore types and their spatial distribution.

Due to the long coastline and long-term influence of tides and waves in Beibu Gulf,
the clay content of marine soft soil varies greatly in each area. In order to explore the pore
structure characteristics of soil with different clay content, MIP and fractal analysis were
used to characterize the porosity of this soil. The aims of this study are: (1) ascertaining the
pore-size distribution features in soils; (2) characterizing pore connectivity and tortuosity;
(3) determining the fractal features of pores.

2. Materials and Methods
2.1. Soil Samples

Soil samples were collected from a sea reclamation area of Beibu Gulf (Figure 1).
The samples were grayish-brown and black and contained some organic humus and
marine biological impurities. The physical indexes, particle size distribution and mineral
compositions are shown in Tables 1–3, respectively. The soil has high natural moisture
content and high void ratio and is defined as mucky clay. Kaolinite and Illite are the major
components of the clay minerals.

Figure 1. Location of the reclaimed land (Beibu Gulf).
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Table 1. Physical properties of the soil samples.

Moisture
Content W

(%)

Void Ratio
e

Specific
Gravity of Soil

Particles GS

Liquid
Limit

WL (%)

Plastic
Limit

WP (%)

Plasticity
Index
IP (%)

Organic
Matter (%) pH

Soluble
Salt

Content
(%)

54.4 1.479 2.720 44.2 20.1 24.1 2.701 6.7 1.51

Table 2. Particle size distribution of the soil samples.

Particle Size (mm)
Sand Silt Clay

>0.075 0.005–0.075 <0.005

Content (%) 8.08 69.61 22.31

Table 3. Mineral composition of the soil (wt.%).

Quartz Kaolinite Illite Muscovite Chlorite Feldspar Tourmaline Zircon Calcite Pyrite

50.05 22.37 13.56 3.24 2.17 5.61 <1 <1 <1 <1

2.2. Sample Preparation

Soil particles smaller than 0.005 mm were extracted from the original soils through
hydrostatic settlement [27,28] and then added into the original soils (S1) according to
certain proportions, to prepare four groups of soil samples with different particle-size
distributions. In these four groups, the clay contents were 22.31%, 27.31%, 32.31% and
37.31%, respectively. The four groups of soil samples were measured using a laser particle
size analyzer, the results of which are shown in Table 4. It can be seen from Table 4 that the
measured values are basically consistent with the design values, verifying the accuracy of
sample preparation.

Table 4. Four groups of soil samples with different particle-size distributions.

Sample No. Comparison
Grain Composition (%)

>0.075 mm 0.005–0.075 mm <0.005 mm

S1
Theoretical 8.08 69.61 22.31

Measured 8.08 69.61 22.31

S2
Theoretical 7.56 65.13 27.31

Measured 7.59 65.11 27.30

S3
Theoretical 7.04 60.65 32.31

Measured 7.26 60.77 31.97

S4
Theoretical 6.52 56.17 37.31

Measured 6.46 56.16 37.38

A certain mass of soil samples was collected and distilled water was added to it. Four
groups of soil samples were prepared, with 22.5% of moisture content (moisture content
near the plastic limit). They were then stirred uniformly and sealed using a preservation
film for 24 h. The dry density (1.68 g/cm3) was used as the target value and 38 × 76 mm
cylindrical samples were prepared using the static pressure method (standard soil test
methods (GB/T 50123-1999)). In this way, four groups of cylindrical soil samples with the
same moisture content and dry density were obtained and cured in a moisturizing tank for
7 days. Subsequently, 1 cm3 cubes were cut using a thin fret saw and then dried via liquid
nitrogen freeze-drying for MIP. Each group of samples include two replicated samples.
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One cube was cut from each of the two samples in each group for MIP and the mean value
was used as final output.

Clay content is the only variable, so it is necessary to ensure that four groups of
different soil samples have the same initial conditions, that is, the initial moisture content
and dry density are the same. The optimum moisture content of 22.5% and the maximum
dry density of 1.68 g/cm3 were set as the initial conditions.

2.3. Mercury Intrusion Porosimetry

MIP is based on the principle that external pressure must be applied to make mercury
enter the pores. The larger the external pressure, the smaller the radius of the pore into
which mercury can enter. The pore volume of a pore size category can be obtained by
measuring the amount of mercury entering the pore when varying the external pressure.
MIP views porous bodies as a series of capillary pores of different sizes. The relationship
between pore size and mercury intrusion pressure can be obtained using the Washburn
formula [29]:

P =
−2σ cos θ

r
(1)

where P is the absolute pressure, r is the radius of the pores, σ is the surface tension and θ
is the contact angle between the liquid and solid.

The AutoPore IV 9500 full-automatic mercury intrusion apparatus, made by Mi-
cromeritics (Norcross, GA, USA), was used in the study.

3. Test Results and Discussion
3.1. Pore-Size Distribution
3.1.1. Cumulative Pore-Volume Curve

The cumulative pore-volume percentage (p(d)) can be found using the following equation:

p(d) =
V(d)
VZ
× 100% (2)

where V(d) is the cumulative pore volume with pore diameter larger than d(mL/g) and
VZ is the total volume of the pores (mL/g).

For the convenience of analyzing the distribution of pore characteristics in marine
soft soil-according to the pore size division theory [17,30,31] and the characteristics of
the relationship curve between the cumulative mercury content and pore size in this
experiment (Figure 2)—the pores of soil are divided into macropores (d > 0.78 µm),
mesopores (0.18 µm < d ≤ 0.78 µm), small pores (0.02 µm < d ≤ 0.18 µm) and microp-
ores (d ≤ 0.02 µm).

It can be seen from Figure 2 that the cumulative pore-volume curves of soil samples
with different clay contents exhibit similar trends. They are all S-shaped—flat at two ends
and steep in the middle—indicating that high amounts of mercury flow into mesopores
and small pores in the middle region. Moreover, mesopores and small pores, with a
diameter range of 0.02–0.78 µm form a high proportion of the overall pores in the soil
samples. Within the range of these dominant pores, the inflection points of the curves
generally move toward the small pore diameter with increasing clay content, indicating
that mesopores transform into small pores. In other words, the clay content has a significant
influence on the mesopores and small pores of soil samples, but it influences micropores
and macropores slightly. Further, it can be seen from Figure 2 that the total cumulative
pore-volume of the four soil samples are the same. This is because the four groups of soil
samples with different clay contents have the same initial porosity ratios, which verifies
the accuracy of MIP. Figure 3 clearly shows that the volume of small pores and mesopores
in soils accounts for more than 75% of the total pore volume, while macropores and
micropores occupy only a small proportion. With increases in clay content, the proportion
of macropores and micropores remains basically unchanged. However, the proportion of
mesopores decreases gradually, while the proportion of small pores increases gradually.
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Further, mesopores gradually transform into small pores. The pore group having the
largest volumes adapt first to the variations in clay content. This differs from the previous
understanding that change in soil-structure under the influence of the external environment
always concerns macropores first. It is also found that the volume contents of mesopores
and small pores have an approximately linear relationship with clay content.
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3.1.2. Mercury Inflow—Outflow Curve

It can be seen from Figure 4 that the mercury inflows in soil samples with different
clay contents have some common features: the mercury inflow curve is typically S-shaped.
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When the mercury inflow pressure is 0.5–234 psia (1 psia = 6.895 kPa), the mercury inflow
curve is gentle and presents approximately linear changes. At 234–986 psia, the cumulative
mercury inflow increases significantly. Here, the slope of the mercury inflow curve is
the largest, indicating that the pore content reaches its peak in this pressure region. The
inflection point of the curves moves toward the relatively higher mercury inflow pressure,
which implies that the mesopores transform into small pores gradually. When the mercury
inflow pressure continues to increase to 986–8573 psia, the cumulative mercury inflow
decreases gradually and the mercury inflow curve flattens; the slope of the curve decreases
accordingly. When the mercury inflow pressure is 8573 psia, the cumulative mercury inflow
remains basically unchanged and the curve is approximately straight. In summary, the
mesopores and small pores play a dominant role in soft soil. Moreover, the mesopores
change into small pores with increases in clay content.

Figure 4. Mercury inflow–outflow curves.

Furthermore, the mercury inflow—outflow curves do not overlap. This indicates
that there are “ink-bottle-shaped” pores in soil samples and mercury enters into narrow
pores. However, mercury outflow faces a bottleneck effect [32,33]. Hence, some mercury is
retained in the pores, resulting in the phenomenon of mercury inflow–outflow hysteresis.
The mercury inflow—outflow curves of soil samples with different clay contents generally
present the same shape. Differences in clay content lead to changes in the proportions of
mesopores and small pores in soil, influencing the mercury removal efficiency.

3.1.3. Pore-Size Distribution Curve

The pore-size distribution refers to the volume distributions of different types of pores
in soil. It influences the deformation characteristics, permeability and thermal conductivity
of soil; therefore, it is an important feature to analyze [34,35]. Pore diameters corresponding
to the peak of the pore-size distribution curve indicate the most abundant pore-size (dm).
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Physically, dm is the pore diameter with the highest occurrence in porous materials [36,37].
The functional formula of the pore-size distribution is as follows [38]:

f (log di) =
dVi

dlogdi
(3)

where V is the pore volume, di is the diameter of the pores and i is a pressure stage of MIP.
It can be seen from Figure 5 that the pore-size distribution curves of soil samples

with different clay contents have similar characteristics. Moreover, the pore-size range
of effective pores (the effective pores discussed here refer to the pores that account for
90% of the total pore volume) in four groups of soil samples with different clay contents
is 0.02–1 µm. The peaks of the four groups of soil samples are 0.364 mL/g, 0.332 mL/g,
0.267 mL/g and 0.245 mL/g, respectively; the most abundant pore-size of the four groups
are 0.554 µm, 0.435 µm, 0.350 µm and 0.290 µm, respectively. With increases in clay content,
the pore-size distribution curve moves toward to the left. The most abundant pore-size—
corresponding to the dominant pores—decreases gradually and the peaks also decline. This
reflects the fact that mesopores tend to disappear to the benefit of small pores. Nevertheless,
the effective pore range is neither expanded nor narrowed with changes in clay content.
This further proves that clay content primarily influences mesopores and small pores in
soils, but not macropores. It can be seen from Figure 6 that the most abundant pore-size
(dm) presents an approximately linear relationship with the clay content.

Figure 5. Curves of pore-size distribution.
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Figure 6. Relationship between the most probable pore-size and clay content.

3.1.4. Cumulative Specific Surface Area of Pore

Based on the hypothesis of cylindrical pores [39], the specific surface area (S) of all
pores filled by mercury under a certain mercury inflow pressure can be found using the
following formula:

S =
1

r|cos θ|

∫ V

0
pdV (4)

It can be seen from Figure 7 that the slope of the curve is nearly 0 when d > 0.78 µm.
When d < 0.78 µm, the cumulative specific surface area increases significantly. In summary,
macropores have a small contribution to the specific surface area of pores—mesopores,
small pores and micropores are major contributors to the specific surface area of pores in
soil samples, particularly small pores and micropores. It can be seen clearly from Figure 8
that the sum of the cumulative specific surface areas of mesopores, micropores and small
pores accounts for 95% of the total specific surface area of pores in soils. This is mainly
because only a few macropores exist in soil samples. Generally speaking, the specific
surface area is larger when the pore size is smaller. Hence, the specific surface area of
macropores is very small. Further, the total specific surface area of pores is positively related
to the clay content. This is mainly because the mesopores are changed into small pores
gradually with increases in clay content, increasing the number of small pores. Figure 9
shows that the total cumulative specific surface area of pores (ST) has an approximately
linear relationship with clay content.
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Figure 7. Relationship between cumulative specific surface area and pore diameter.

Figure 8. Relationship between the specific surface area of each group pores and clay content.
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Figure 9. Relationship between the total specific surface area of pores and clay content.

3.2. Connectivity and Tortuosity of Pores

Pore structure characteristics influence the connectivity and tortuosity of soils directly,
affecting their strength and deformation [40,41]. In this study, the mercury removal ef-
ficiency and tortuosity factor were used to characterize the connectivity and tortuosity
of pores.

3.2.1. Mercury Removal Efficiency

Pores in soils are mainly irregular, coarse and fine. The coarse parts are the pore belly,
while the fine parts are the pore throat. The ratio of the radii of the pore belly and pore
throat is called pore–throat ratio [42–44]. The pore–throat ratio is an important parameter
that reflects the pore shape. The higher the pore–throat ratio is, the more difficult it is for
the fluid to run through soil. Since the pore–throat ratio is difficult to determine, it can
be inferred from the mercury removal efficiency. he mercury removal efficiency refers
to the ratio of the total mercury outflow volume and the total mercury inflow volume
under the same pressure range when the injection pressure decreases from the peak to the
minimum during MIP. It has been found that the mercury removal efficiency decreases
with increases in the pore–throat ratio [45]. When the mercury removal efficiency is the
higher, the pore–throat ratio is smaller and the pore connectivity in soils is improved. The
mercury removal efficiency (W) can be expressed as:

W =
Smax − Sr

Smax
× 100% (5)

where Smax is the total volume of mercury injected into the soil at maximum pressure, Sr is
the total volume of mercury remaining in the soil when the maximum pressure drops to
0.1 MPa.

Figure 10 shows that the mercury removal efficiency first decreases and then stabilizes
with changes in clay content. When the clay content gradually increases from 22.31%
to 32.31%, the mercury removal efficiency increases. This demonstrates that the pore–
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throat ratio decreases gradually and the pore connectivity improves. The mercury removal
efficiency changes only slightly when the clay content is larger than 32.31%.

Figure 10. Relationship between mercury removal efficiency and clay content.

3.2.2. Tortuosity Factor

The tortuosity of pores reflects the complexity of the pore system. For soils with the
same pore volume, a higher tortuosity implies a longer and more bending pore channel on
the surface, which decreases the permeability of soils. The tortuosity factor (τ) of pores
refers to the ratio of the straight line between the practical length of the seepage channel and
seepage media (Figure 11). The tortuosity factor is an important parameter that describes
the seepage channel of fluids and can be expressed as follows:

τ =
Li
L0

(6)

where Li is the actual length and L0 is the apparent length.
The seepage model based on porous media hypothesizes that pores in porous media—

in a fractal distribution—can be represented as a beam of the bending channel. According
to the generalized Hagen–Poiseulle equation [46], the flow rate per unit volume is as
follows:

q(r) = nA
π

8
∆P
Lt

r4

µ
(7)

where q(r) is the flow rate of a bundle of n tubes of size r. n is the number of tubes per unit
area, A is the sectional area, r is the radius of a single tube, µ is the viscosity coefficient of
the fluid and ∆P is the pressure gradient.

According to Darcy’s law:

q =
KA∆P

µL0
(8)

where K is the permeability.
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Figure 11. Fluid running through soil.

The porosity is the volumetric ratio between the pore and porous media.

φ =
nπr2Lt

L0
(9)

Based on the above formula:

τ2 =
φr2

8K
(10)

The mean pore diameter or mean capillary radius (r) can use the mean hydraulic
radius (Rh) to replace the radius of the tube [47,48]:

Rh =
S
Z

=
πr2

2πr
=

r
2

(11)

Rh =
φDp

6(1− φ)
(12)

where S is the total sectional area that the fluid runs through, Z is the total circumference
of the particles and Dp is the mean particle size.

By substituting Equations (11) and (12) into Equation (10), the following can be obtained:

τ =

√
φ

2K
φDp

6(1− φ)
(13)

It can be seen from Equation (13) that the tortuosity factor is a function of the per-
meability, porosity and mean particle size. All of these physical indexes can be obtained
through MIP and SEM.

It can be seen from Figure 12 that the tortuosity factor of pores in soils increases first
and then decreases with increases in clay content. The tortuosity increases when the clay
content increases from 22.31 to 32.31%. When the clay content is higher than 32.31%, the
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tortuosity decreases. This is mainly because the mesopores are changed into small pores,
resulting in increased tortuosity of the whole pore system.

Figure 12. Relationship between tortuosity factor and clay content.

3.3. Fractal Features of the Pore
3.3.1. Fractal Model of the Pore Structure in Soil

The pore structures of soils exhibit fractal features [49–54]. Researchers have proposed
many fractal models of soil particles or pores [55–58]. On this basis, the permeability,
connectivity and structural constitutive relations of rocks and soils have been studied.
Based on fractal theory, higher fractal dimensions have larger heterogeneity in pore size
and the spatial distribution state of the internal pores is more complex. In this study, the
pore volume fractal model proposed by Tao [50] was applied. The pore volume fractal
model can be expressed as follows:

V(> di) = Va

{
1− (

di
L0

)
3−D

}
(14)

where V(> di) is the total soil volume with pore diameters larger than di, Va is the total
volume of the soil samples, L0 is the size of the study area and D is the fractal dimension
of the pore volume.

According to Equation (14):

ϕ(> di)= 1−V(> di)

Vv
∝
(

di
L

)3−D
(15)

where ϕ(> di) is the percentage of soil volume with a pore diameter larger than di.
Equation (15) can be rewritten as:

ϕ(≤ di) =
V(≤ di)

Vv
∝ (di)

3−D (16)
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where ϕ(< di) is the percentage of soil volume with pore diameters smaller than or equal
to di, Vv is the total pore volume in soil.

The following can be obtained after taking the logarithm of both sides of Equation (16):

lg(ϕ(≤ di)) = lg
V(≤ di)

Vv
∝ (3− D)lgdi (17)

According to Equation (17), the slope of the percentage of cumulative volume with a
pore diameter smaller than d and the pore diameter (d) in log—log coordinates is k. Then,
the fractal dimension of the pore volume is D = 3− k. The high fractal dimension indicates
the high irregularity and complexity of the pore volume.

It can be seen from Figure 13 that

Figure 13. Fractal feature curves of pores in soil samples with clay contents. (a) Clay content is 22.31%; (b) Clay content is
27.31%; (c) Clay content is 32.31%; (d) Clay content is 37.31%.
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(1) The overall curve comprises multiple broken lines. This reflects the fact that soil pores
are not single fractal features, but exhibit multi-fractal properties. Pores in the scale
range of each broken line have similar characteristics. There are several broken lines,
indicating several fractals of the structural layers in pores.

(2) The inflection points of each broken line are limits that characterize changes in pore
properties. The pores at two sides of the inflection point have different structural
features. The pore diameter corresponding to the inflection point can comprehensively
characterize the features of pores on different layers. The pore diameter corresponding
to the inflection point can be used as a division standard for the pore diameter. There
are three inflection points for the marine soft soil samples in this study: 0.02 µm, 0.18
µm and 0.78 µm. These are consistent with the pore diameter divisions in Section 3.1.

(3) According to fractal curve features, the curve is divided into four broken lines. Each
broken line has approximately linear characteristics. With increases in pore diameter,
the slope of the curve decreases gradually. The slopes of curves in the region II and
III were consistent, indicating the ambiguous boundary between mesopores and
small pores.

When triaxial test and permeability test were carried out later, it was found that the
permeability and mechanical properties of the samples are clearly related to the fractal
dimension of pores. When mesopores and small pores are classified into one category, it
was found that there is no good match between the fractal dimension and the permeability
and mechanical properties of soil samples. However, when the mesopores and small pores
are discussed separately, it is found that the fractal dimensions of mesopore and small
pore have good relationship with the permeability and mechanical properties of samples.
Therefore, we considered the mesopores and small pores separately.

3.3.2. Effects of Clay Content on the Fractal Features of Pores

It can be seen from Figure 14 that the fractal dimension of macropores ranges between
2.9724–2.9793 and changes only slightly. This is because the clay content has an extremely
small influence on the cumulative volume of macropores. Therefore, the fractal features of
macropores do not change much with changes in clay content. The fractal dimension of
mesopores ranges between 2.1462–2.4086. As clay content increases, the fractal dimension
decreases first and then increases. The fractal dimension of small pores is in the range
of 2.1812–2.2324 and is only slightly influenced by clay content. The fractal dimension
of micropores is 1.2185–1.4308. The smaller fractal dimension of micropore may be due
to the following two reasons: (a) micropores are formed by very small clay particles,
mostly extended in two dimensions, with little difference in shape; (b) the determination of
pore size distribution of materials by MIP is based on Washburn equation and the basic
theoretical model is cylindrical pore model. The shape of micropores is quite different
from that of the cylindrical pore model. When the clay content is smaller than 32.31%,
the difference in the fractal dimension between mesopores and small pores is only slight,
indicating the insignificant boundaries between mesopores and small pores; further, the
fractal features of pores tend to be consistent. When the clay content is higher than
32.31%, the fractal dimension of mesopores increases, while the fractal dimension of small
pores remains basically constant. This demonstrates that the differences in fractal features
between mesopores and small pores are gradually increasing.
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Figure 14. Fractal dimensions of various types of each group pores with clay content.

It is clear that the fractal dimensions of macropores and small pores are influenced
by clay content only slightly. Therefore, the pore morphology and spatial distribution
of macropores and small pores are relatively stable. The fractal dimension of mesopores
decreases first and then increases with increases in clay content. When the clay content
is higher than 32.31%, the structural morphology of mesopores becomes more complex.
When the clay content is lower than 32.31%, the fractal features of mesopores and small
pores tend to be consistent. When the clay content is higher than 32.31%, the difference in
fractal features between mesopores and small pores is gradually increasing.

4. Conclusions

This study investigates the pore-size distribution features and fractal features of
marine soft soil at various clay contents. The main findings are as follows:

(1) According to the pore-size distribution and fractal features, pores in marine soft soil
in Beibu Gulf can be divided into macropores, mesopores, small pores and micropores
by using 0.02 µm, 0.18 µm and 0.78 µm as the critical pore diameters.

(2) The volumes of mesopores and small pores account for more than 75% of the total
pore volume. The sensitivity of different pore groups to clay content is positively
related to the pore volume. The pore group with the highest volume percentage
adjusts its structure first when the clay content changes, rather than the macropores
being adjusted first. The sum of the cumulative specific surface area of mesopores,
small pores and micropores accounts for 95% of the total specific surface area of the
pores. Mesopores, small pores and micropores are major contributors to the specific
surface area of pores.

(3) The mercury removal efficiency and tortuosity factor can characterize the connectivity
and tortuosity of pores in soil well. As the clay content increases, the mercury removal
efficiency increases gradually, indicating that the connectivity of pores is improving.
With increases in clay content, the tortuosity first increases and then decreases.

(4) There are multiple fractal features for marine soft soil in Beibu Gulf. Macropores
and small pores have strong fractal features and their fractal dimension is influenced
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only slightly by clay content. When the clay content is higher than 27.31%, the fractal
dimension of mesopores is positively related to the clay content. The pore structure
becomes more and more complex when the clay content increases. When the clay
content is lower than 32.31%, the fractal features of mesopores and small pores are
similar. When the clay content is higher than 32.31%, the difference in fractal features
between mesopores and small pores increases.
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