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Abstract: Floods are natural hazards which have damaged cities and their architectural heritage over
the centuries. The heritage town of Alzira (Valencia, Spain) is a major case study for the assessment
of flood risk in architectural heritage. Alzira was founded by the Al-Andalus Moors on a river island
within a bend of the river Júcar, which has overflowed more than 80 times during its history. The
main aim of this work is to analyse the vulnerability to floods of the town’s architectural heritage,
especially that of earthen architecture, a constructive tradition of which several examples can be
found in the town. The proposed methodology attempts to calculate the vulnerability of the earthen
architecture through the evaluation and weighting of extrinsic and intrinsic parameters. This makes
it possible to identify the constructive characteristics and material weathering which worsen the
behaviour of structures during floods. Maximum vulnerability values have been obtained for poorly
conserved constructions without cladding. Results highlight the importance of ascertaining suitable
strategies for the prevention and mitigation of risk as future lines of research. The vulnerability
assessment methodology presented in this study could be applied to other case studies in other sites
with architectural heritage under threat from floods.

Keywords: flood risk; vulnerability; flood hazard; probability; risk maps; architectural heritage; Alzira

1. Introduction

Floods are a natural risk endangering human life and causing severe material damage.
However, over time, humanity has adapted settlements and constructions to overcome
these catastrophic events. Documents for risk management and assessment have made it
possible to develop risk maps and strategies for flood prevention [1–3]. In recent years, the
risk of flooding has increased considerably as a result of climate change [4], which causes
heavy rains alternating with extremely dry periods and a rise in temperatures that has been
especially detrimental to Spain [5–7]. Architectural and cultural heritage is often threatened
by natural hazards. Several studies have been conducted to assess flood risk for cultural
heritage [8–10] and its effect on society and economic issues [11,12]. Floods can affect
historic materials and architectural elements causing direct and indirect structural damage
that can lead to the collapse of buildings [13,14]. Currently, the concept of vulnerability
is considered an essential tool for risk prevention and several authors have developed
methodologies to assess the vulnerability of architectural and cultural heritage [15–18].

The city of Alzira (Valencia), part of the vast Spanish cultural heritage, has often been
threatened by the river Júcar. Built on one of its meanders, where a fluvial peninsula had
formed, the city gradually adapted to coexist with the river. The Moors who founded
the city made two major interventions affecting the river: an imposing wall and channel.
While the channel completely enclosed the city within the river to provide a greater defence
from enemy attacks, the wall protected the city and its inhabitants from the floods, whose
devastating effects are recorded in official chronicles and collective memory.
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The first known flood dates back to the year 1320. Since then, there have been over
80 floods, most notably the 1743 flood which destroyed 900 homes [7]. In 1573 the city was
under threat on several occasions while the year 1590 is remembered as the “year of floods”,
with 22 floods [19,20]. There were many major floods in the following centuries and in
1805 two major floods caused water levels to rise up to two metres, seriously damaging the
city [21]. However, the flood of 4 November 1864 was one of the most severe. After the
flood a report was drafted for the Ministry for Development by the Inspector General of
Engineers and Chief of the Commission for Overflowing of the Júcar, M. Bosch y Juliá. In
the report Bosch refers to the extraordinary high-water levels reached [22] and provides
data on the damage. In the town centre 100 homes were destroyed, 331 half-submerged,
203 showed major damage, and 50 were at risk of ruin [7]. Following this flood several
strategies were drawn up to prevent and mitigate flood risks in Alzira. One of these was
Bosch’s proposal to correct the course of the river Júcar, cutting off the channel on the
right and filling up the ditch. An initial phase of the project to change the course of the
river Júcar, drafted by the engineer Enrique González Granda and passed in 1909, was
completed in the 1920s and 1930s [23]. This project closed off the right channel of the river
with a masonry-clad earthen dam 10 metres high [23]. The data from the 1869 flood were
also used to design a dam near the town of Tous (Valencia), where a maximum (peak) flow
of 6000 m3/s had been recorded [24]. Unfortunately, the flow used in the design of the
size of the Tous dam was much lower than that recorded on 20 October 1982. After heavy
rain the input hydrograph in Tous recorded a maximum flow of 10,400 m3/s and a total
volume received of 867 hm3, almost 17 times higher than the capacity of the design. The
power cuts caused by the heavy rain prevented the floodgates from opening so that the
level of the water from the rivers Júcar and Escalona caused the dam to overflow, breaking
the central sector and submerging Alzira in over 2 metres of water and mud (Figure 1).
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Figure 1. Alzira. Flood of 20 October 1982. Source: http://www.fallamalva.com (accessed on 30 May 2020).

This water level was later exceeded in the 1987 flood when water levels reached
2.8 m in the historic town centre of Alzira, with a maximum flow of 5200 m3/s in the
floodplain [25]. Archaeological studies by Butzer et al. [26] reconstruct the variations in
the hydrological regime of the river Júcar in Alzira. According to these studies, until the
11th century the peak discharges were gentler, while from the mid-11th century the strata
suggest catastrophic floods in the city. Despite the numerous floods, the city of Alzira
still preserves its architectural heritage, while “La Vila”, its historic town centre, is listed
as an Asset of Cultural Interest, the highest level of protection granted by the Comunitat
Valenciana [27].

http://www.fallamalva.com
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As a case study the analysis of Alzira aims to provide a better understanding and
knowledge of earthen architecture in terms of flood vulnerability. Very few studies have
been conducted to assess the vulnerability of earthen architecture to floods.

This study proposes a methodology for vulnerability assessment based on the intrinsic
characteristics of buildings exposed to flood risk. This approach considers the building
as an asset and makes it possible to assess the vulnerability of heritage buildings faced
by potential floods, thus preventing possible damage. Moreover, the simple methodology
proposed aims to provide a very fast and versatile vulnerability assessment tool for heritage
buildings, which can be used in various historic contexts.

The determination of the vulnerability level, focusing on the design of flood risk
prevention and mitigation measures, will be the starting point for future research, aiming
to prevent the disappearance of a traditional architectural technique, an important part of
the cultural heritage of the Iberian Peninsula.

2. Geographical Setting and Geological Framework

The Júcar is a long meandering Mediterranean river which crosses the Spanish
provinces of Cuenca, Albacete, and Valencia before reaching the Mediterranean Sea. Known
in Roman times as the Sucro, the Júcar is born at an elevation of 1700 metres, on the south
slope of the Cerro de San Felipe in the Montes Universales, where another two Spanish
rivers, the Tajo and the Turia, are also born. The course of the river is divided into three
segments based on morphology: the initial section which crosses the mountainous terrain
of Cuenca; the middle course between Villalba de la Sierra and the Tous dam, where the
river Cabriel and the Cortes II reservoir converge; and the lower course between the Tous
dam and Cullera (Figure 2).
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Figure 2. (a) Hydrographic outline of the Júcar; (b) The Júcar as it passes through Alzira.

The river’s long course flows into the estuary of the Estany de Cullera. The sediments
in the basin of the river Júcar formed in the Mesozoic. During the Cenozoic and Quaternary,
the valley created was gradually filled with deposits from the erosion of nearby reliefs
and deposits from rivers and lakes (Figure 3). It is thought that the central floodplain of
Valencia was formed from the action of the rivers Júcar and Turia in this period [28].
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Figure 3. Geological map of Spain scale 1/50,000 MAGNA.Sheet 770 (Alzira) and legend. Source: IGME: http://info.igme.
es/cartografiadigital/geologica/Magna50Hoja.aspx?intranet=false&id=77 (accessed on 30 May 2020).

In the region of Vallfarta the Júcar forms twenty meanders, changing to five meanders
where it coincides with the river Magro, where the bottleneck formed promotes sedimenta-
tion. The meander of the Júcar is unequal due to the sedimentation of a large amount of
detritus from mountainous areas. This geological model results in the formation of large
sediment deposits, restricting the input of solid and liquid flow with output through a
small spillway [29–31].

The hydrological regime of the river is pluvio-nival at the head and Mediterranean in
the final section, presenting a maximum (autumn/winter) and minimum (summer) flow
per year. In addition, there is a characteristic disproportion between ordinary and extraor-
dinary flows. The major flows are observed in winter and spring due to the concentration
of rainfall, and they decrease in the warmer months [32,33]. The severity of the floods is
determined, among other factors, by the geological features and hydrological regime of
the river.

3. Materials and Methods

The severity of the floods of the Júcar is due to a series of natural and anthropic
factors, including the morphology of the Júcar basin and its floodplain, which play a key
role in the evolution of the floods. The Júcar basin area studied is large and low, two
characteristics which together with the formation of the floodplain favour the formation of
a complex pattern of flooding flows. These flows diverge when entering the floodplain to
converge near Alzira, where there is strong sedimentation in the meandering Júcar. The
progressive sedimentation and the slight slope of the river have caused the riverbed level
to rise and have increased the floodplain. The consequences of these geomorphological
changes have been key in the formation of the characteristic floods. In fact, given the new
geometry of the floodplain, small floods could also affect extensive areas, causing serious
damage. However, anthropic factors such as deforestation and the construction of transport
infrastructures have contributed to more intense floods [1]. Alzira is currently classed as
a floodable area, according to PATRICOVA (Plan de Acción Territorial sobre Prevención
del Riesgo de Inundación en la Comunitat Valenciana) guidelines, which establish six risk
levels based on frequency and water depth [34]. Alzira is affected by a high average risk of
levels 2 and 4 (frequency of 25–100 years and a water depth lower or higher than 80 cm)
within this danger scale (Table 1).

http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?intranet=false&id=77
http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?intranet=false&id=77
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Table 1. Risk levels established by PATRICOVA.

Level Frequency Water Depth

1 High (25 years) High (>0.8 m)
2 Medium (100 years) High (>0.8 m)
3 High (25 years) Low (<0.8 m)
4 Medium (100 years) Low (<0.8 m)
5 Low (500 years) High (>0.8 m)
6 Low (500 years) Low (<0.8 m)

According to the SNCZI (Sistema Nacional de Cartografía de Zonas Inundables)
map of floodable areas [3], in a 100-year return period the water depths would affect the
northeast area and in a 500-year return period they would affect the whole historic centre
of Alzira (Figure 4).
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Figure 4. (a) Water depths for the avenue over a period of 10 years. (b) Water depths for the avenue over a period of
100 years. (c) Water depths for the avenue over a period of 500 years. (d) Legend. Source: SNCZI.

The methodology proposed for the assessment of the vulnerability of heritage earthen
architecture in the event of floods was organized into phases (Figure 5), compiling,
analysing, and contrasting data [35–37].
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Figure 5. Methodological map.

Several resources were used to select buildings. Fieldwork was used to carry out an
initial selection of buildings which was subsequently reviewed using historic documents
and documents from the cadastre and the Special Protection Plan of the Vila de Alzira [38].
This information was contrasted with that provided by the MUMA museum (Museo
Municipal de Alzira), identifying 12 vernacular heritage dwellings and 2 examples of
monumental architecture (Table 2; Figure 6).

Table 2. Earthen heritage buildings in the historic town centre of Alzira.

Code Identification UTM Coordinates Typology

01V 6 Notari Bonet Street 39.152198, −0.439047 Vernacular
02V 25 B. d’Entrença Street 39.152905, −0.440007 Vernacular
03V 16 Carnissers Street 39.152805, −0.439330 Vernacular
04V 18 Carnissers Street 39.152816, −0.439397 Vernacular
05V 7 Carnissers Street 39.152718, −0.439190 Vernacular
06V 5 Carnissers Street 39.152706, −0.439146 Vernacular
07V 3 Casassus Square 39.152321, −0.440648 Vernacular
08V 16 Sant Roc Street 39.152248, −0.441911 Vernacular
09V 5 March Street 39.151643, −0.441696 Vernacular
10V 17 Chulvi Streeet 39.151135, −0.440368 Vernacular
11V 10 De la Sang Street 39.150870, −0.440365 Vernacular
12V 1 Mayor de S. María Street 39.152584, −0.443318 Vernacular
01M Royal House (“Casa Real”) 39.152597, −0.443380 Monumental
02M Arab Wall (“Muralla árabe”) - Monumental
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Finally, the case study map was superimposed on a map showing the flood risks for
the city of Alzira. Both maps were drawn up by PATRICOVA (Plan de Acción Territorial
sobre Prevención del Riesgo de Inundación en la Comunitat Valenciana) [34]. After the
superimposition, the buildings were catalogued using technical fiches divided into sections
identifying the architectural, morphological, and constructive features most closely linked
to the effects of the floods (Figure 7). Fourteen types were identified during the fieldwork.

Despite knowing the risk level of the case study analysed, there is little information
on flood damage, preventing the use of depth-damage graphs typically employed in
vulnerability assessment. In this study, vulnerability was analysed by evaluating the
expected response of the building, based on the intrinsic characteristics of the building
itself and its conservation condition. This limits the number of parameters to those only
relevant to the building and its immediate surroundings, highly useful in the absence of
detailed information on previous damage to buildings caused by floods. In the present
study, the parameters are not weighted as they are considered equally critical in the overall
response of the building. This methodology is in agreement with other studies investigating
flood vulnerability of historic buildings [16,17].

The study of intrinsic characteristics has focused on measuring environmental, mor-
phological, and constructive characteristics. The influence of surroundings [39], including
the position in the urban context and the typology of the terrain and the correlation between
the building and the urban level of the ground, has been considered. The typology of the
terrain was assessed through maps from the IGME (Geological and Mining Institute of
Spain) and data from the geo-archaeological register of Alzira [26]. The morphological
features highlight the characteristic aspects of the buildings which define their form and
composition. Analysis of their vulnerability to floods assessed the footprint, building
typology, vertical constructive system, and wall thickness, which are used to measure the
building’s exposure to risk. Constructive characteristics such as architectural elements
(foundations, plinth, type of wall, rendering), materials and constructive techniques were
analysed, providing information on the vulnerability of the building. In order to obtain
the parameters for assessment, each characteristic was assigned a numerical value, from
1 (very low) to 5 (very high), on a scale of values by level of influence. The vulnerability
value of each parameter was chosen according to its response to flood risk, as vulnerability
is considered a function of this risk. For example, a rammed earth wall without a plinth
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will be more vulnerable than a rammed earth wall with a masonry plinth, as it will be more
prone to collapse due to the capillary absorption of water (Table 3).
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The effects of material weathering and structural damage have only been considered
for monumental architecture with various forms of material weathering linked to the risk
of flooding (Table 4). The conservation state of the historic buildings can be considered as
an index of their resistance to the effects of a specific hazard.
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Table 3. Building vulnerability descriptor ratings.

Descriptor Response Value

Type of ground
Rock (limestone) 1

Soil (sand) 3
Soil (clay) 5

Location (monuments)
Integrated 1

Isolated 5

Urban level

Above ground 1
Ground level 3
Below ground 4
Different levels 4
Basement level 5

Footprint
>150 m2 1

50–150 m2 3
0–50 m2 5

Typology
Between party walls 1

Corner 3
Freestanding 5

Vertical constructive system

Monolithic 1
Mixed monolithic 3

Mixed pieces 4
Pieces 5

Half timber 5
Complex half timber 5

Wall thickness (monuments)

>1.50 m 1
1.00–1.50 m 3
0.50–1.00 m 4

<0.50 m 5

Foundation

Lime concrete 1
Ashlar 2
Brick 3

Masonry 5

Basement

Ashlar 1
Brick 2

Masonry 3
No basement 5

Rammed Earth Wall

Lime concrete 1
Brick-clad 2

Reinforced brick layers 3
Reinforced masonry 4

Reinforced lime layers 4
Simple 5

Coating

Lime 1
Lime and earth 2
Earth and fibres 3

Earth 4
Gypsum 4

No coating 5
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Table 4. Material weathering and structural damage descriptor ratings.

Descriptor Response Value

Rammed-earth wall erosion

Absent 1
Superficial 2

Superficial loss 3
Deep 4

Volumetric loss 5

Coating erosion

Absent 1
Superficial 3

Partial 4
Significant 4
Complete 5

Plinth/springErosion

Absent 1
Superficial 2
On joints 3

Volumetric loss 4

Foundation Misalignment
Absent 1

Not significant 3
Significant 5

Settlement Differentials
Absent 1

Not significant 3
Significant 5

Wall saturation
Absent 1
Present 5

Dividing the total number of parameters by that of parameters used an average
vulnerability value was obtained for each earthen building, easily comparable following a
vulnerability scale from 1 to 5.

4. Results

Using this methodology, the data necessary for vulnerability assessment were obtained
in an initial phase. Fieldwork has provided data on the constructive characteristics of
vernacular architecture (Table 5) and monumental architecture (Table 6), as well as data on
material weathering (Table 7).

Following data collection, the vulnerability value of individual case studies was
calculated (Table 8), obtaining values of 2.14–3.00 for vernacular architecture and of 4.25–
4.83 for monumental architecture (Figure 8).

Table 5. Vernacular building characteristics.

Building
Code E1 E3 M1 M2 M3 C1 C2 C3 C4

01V Sandy Below ground 88 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
02V Sandy Ground level 118 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
03V Sandy Below ground 17 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
04V Sandy Ground level 129 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
05V Sandy Below ground 55 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
06V Sandy Below ground 53 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
07V Clayey Below ground 338 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers No coating
08V Sandy Below ground 335 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
09V Sandy Below ground 48 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
10V Clayey Below ground 173 m2 Corner Mixed monolithic Brick Brick Reinforced brick layers Lime
11V Clayey Below ground 34 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime
12V Clayey Below ground 51 m2 Between party walls Mixed monolithic Brick Brick Reinforced brick layers Lime

Note: Codes for characteristics: E1 = type of soil; E3 = urban level; M1 = footprint; M2 = building typology; M3 = vertical constructive
system; C1 = foundations; C2 = plinth; C3 = rammed earth wall; C4 = coating.
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Table 6. Monumental building characteristics.

Building
Code E1 E2 M3 M4 C1 C2 C3 C4

01M Clayey Integrated Monolithic 1–1.50 m Masonry No basement Reinforced
masonry

Lime and
earth

02M Clayey Integrated Monolithic 1.50–2 m Masonry No basement Reinforced
masonry

Lime and
earth

Note: Codes for characteristics: E1 = type of soil; E2 = urban location; M3 = vertical constructive system; M4 = wall thickness; C1 =
foundations; C2 = plinth; C3 = rammed earth wall; C4 = coating.

Table 7. Material weathering on monumental architecture.

Building Code ER1 ER2 ER3 MS SD SA

01M - - - - - -
02M Superficial Partial Superficial - - -

Note: Codes for material weathering: ER = wall erosion; ER2 = coating erosion; ER3 = springing/plinth erosion;
MS = misalignment of foundations; SD = settlement differentials; SA = saturation.

Table 8. Building vulnerability level.

Building Code Vulnerability Rating Vulnerability Level

01V 2.43 Low-Medium
02V 2.29 Low-Medium
03V 2.71 Low-Medium
04V 2.43 Low-Medium
05V 2.43 Low-Medium
06V 2.71 Low-Medium
07V 3.00 Medium
08V 2.14 Low-Medium
09V 2.43 Low-Medium
10V 2.71 Low-Medium
11V 3.00 Medium
12V 2.71 Low-Medium
01M 4.25 High
02M 4.83 High

Based on the intermediate vulnerability levels 75% of samples are in the medium-low
vulnerability level, 13% at medium level, and 8% at low level. It should also be emphasized
that these results were obtained analysing case studies with the same constructive system
and comparable characteristics. When evaluating monumental architecture, the values cal-
culated also take into account the effect of material weathering, obtaining a minimum value
of 4.25 and a maximum value of 4.38. According to the proposed scale these vulnerability
levels are considered to be high (Figure 9).

The analysis of results leads to several considerations. The assessment of the vulnera-
bility of vernacular architecture provides a minimum value (2.14) for the building “Casa
del Empeño” (08V), while the maximum value (3.00) is reached for Palacio Casassus (07V)
and the dwelling located on Sang Street 10 (11V). The Casa del Empeño and the Palacio
Casassus fall within the same constructive and building typology. However, calculating
the vulnerability level has provided very different results given the varying degrees of
influence of some parameters. Firstly, the terrain parameter, sandy in one case and clayey
in the other, results in a difference of two points in this value. Lime rendering is also found
on the Casa del Empeño, while the walls of the Palacio Casassus are left bare. This leads to
a major variation in the vulnerability level of both buildings, despite the great similarities
in their constructive typology. Thus, the presence of rendering improves resistance to the
effects of water and the formation of damp. Therefore, the maximum vulnerability levels
were found not only in a grand mansion, Palacio Casassus (07V), but also in a far smaller
traditional dwelling (11V). In this regard it should be noted that parameters such as the
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surface occupied by buildings and their rendering were decisive in the calculation of the
vulnerability level. The Palacio has a footprint of 150 m2 while the traditional dwelling
is smaller and occupies approximately 50 m2. However, the difference in the scores for
this parameter is balanced by the rating assigned to the rendering parameter, lime in the
dwelling and none in the case of the Palacio (Table 9).
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Table 9. Comparison of characteristics affecting the vulnerability of vernacular earthen architecture.

Building Code Vulnerability Level Type of Soil Footprint m2 Coating

07V 3.00 (max) Clayey ~150 None
11V 3.00 (max) Clayey ~50 Lime
08V 2.14 (min) Sandy ~150 Lime

The comparison of the results obtained in the calculation of the vulnerability of
this monumental architecture provides interesting data on the influence of the state of
conservation of monuments in the event of flooding. In fact, the maximum vulnerability
level is observed in the Muralla Árabe (02M), which presents several forms of material
weathering (erosion at the springing, erosion of the rammed earth wall, and erosion of
the rendering) which worsen resistance during floods, allowing water infiltration, and
threatening the cohesion of the system (Table 10). In addition, in the case of monumental
architecture the constructions analysed share the same constructive system so that the
difference between the two levels of vulnerability can be attributed to material weathering
of the walls.

Table 10. Comparison of characteristics affecting the vulnerability of monumental earthen architecture.

Building Code Vulnerability Level Wall Thickness m Rammed Earth Erosion Coating Erosion Basement Erosion

01M 4.25 (min) 1–1.50 - - -
02M 4.83 (max) >1.50 Superficial Partial Superficial

5. Discussion

The present study has focused on flood vulnerability assessment of earthen historic
buildings in the historic centre of the heritage city of Alzira, Spain. As historic buildings
are an irreplaceable cultural heritage, reducing their vulnerability is crucial to reducing
flood risk and preventing their disappearance. This study has highlighted that the most
vulnerable buildings are those which are poorly conserved, whose walls do not have
coating and which are built on clayey soil. Building conservation conditions have proved
to be a key feature in assessing flood vulnerability. Despite the constructive and typological
differences of the buildings analysed, this result agrees with those of Stephenson and
D’Ayala [16]. In their quantitative analysis of the flood vulnerability of historic buildings
in England, they found that the vulnerability rating increased in buildings in very poor
condition. Some of the buildings assessed in the present study display erosion in the walls,
a form of weathering which makes them more vulnerable to the action of water. However,
different forms of material weathering can be critical to building conservation conditions.
Ortiz et al. [18], in their assessment of the vulnerability of monumental buildings in the
historic centre of Seville, Spain, point out that the proximity of the currently diverted
river, the presence of groundwater, and soil permeability damage the lower sections of
the heritage buildings studied. Among the most relevant forms of material weathering,
Ortiz et al. [18] identify efflorescence and patches of damp associated with capillary action.
Therefore, the results obtained by Ortiz et al. [18] in the context of the heritage city of
Seville also show the influence of building condition in the evaluation of the vulnerability
of historical buildings. In the assessment of the vulnerability of the historic buildings
of the city of Guimarães, in Portugal, Miranda and Ferreira [40] find that most of the
buildings studied are in good condition, with only a few cases with moderate structural
damage suffering from damp. However, most of these buildings are in a flood risk area
and therefore potentially at risk. This result is comparable with the results obtained in
the present study for vernacular buildings which, unlike monuments, are kept in good
condition. Therefore, in this case, vulnerability depends on the intrinsic characteristics
of the buildings analysed and their potential exposure to floods. Lanza [41] uses the
collection of historical data on the frequency and magnitude of flood events observed over
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the past century to draw up a map of the historic centre of Genoa, Italy. This map shows
the vulnerability of its artistic and monumental heritage to flooding. However, it only
considers the frequency of flooding episodes near vulnerable heritage buildings, rather
than their characteristics. Arrighi et al. [42] conducted a flood risk study of the city of
Florence, cataloguing the buildings at three risk levels (high, medium, and low). According
to the results obtained, represented in a risk map, most of the buildings have been classified
as high and medium risk.

Strategies can be designed to reduce the vulnerability of historic buildings once this
level is known. Intervention strategies may be structural or non-structural and may be
aimed at consolidating and improving the conditions of the environment or the building
itself. According to D’Alaya et al. [17] the combined use of structural and non-structural
measures to increase the resilience of buildings in a heritage district in Kuala Lumpur,
Malaysia, has been very effective on the urban scale, halving economic losses. The eval-
uation of economic losses is influenced by several factors that need to be assessed when
estimating flood damage, as seen in Garrote and Bernal [12]. In order to prevent and
mitigate flood damage it is essential to design strategies to reduce the impact of floods on
architectural heritage. Emergency plans and guidelines are crucial to reducing damage
and loss. In addition, the constant maintenance of historic buildings is fundamental to
conserving their structural integrity. The identification of structural damage and material
weathering is essential when deciding on the most appropriate interventions, restoring
deteriorated elements and materials, and consolidating and reinforcing structural elements.
Temporary protective measures such as increasing the strength of light doors or walls, and
introducing surface protection for the materials and structures most sensitive to water
action (adobe walls, rammed earth walls, clay coating), can also prevent further dam-
age [43,44]. The implications of economic factors, together with the design of appropriate
restoration measures, will be developed as a research topic in the next stage of this study.

The proposed methodology has been developed using the minimum number of param-
eters, included in three main categories, and with a simple evaluation system applicable to
other case studies with an easy comparison of results. In the present study a total of sixteen
parameters has been used, whereas Stephenson and D’Ayala [16] reduce the parameters to
the minimum number of seven parameters, applicable to individual building typologies.
In contrast, Gandini et al. [15] developed an assessment tree composed of two require-
ments, eight criteria, and fourteen parameters. These studies also provide information
on uncertainty relating to the parameters involved in this methodology. This uncertainty
is due to the subjectivity of the indicators, sometimes depending on the experience and
knowledge of surveyors, who may assess the conservation status and other parameters
differently. Therefore, the application of this methodology to other case studies and its
implementation in land planning involves adapting the parameters to each specific context,
aiming to establish a set of parameters to reduce uncertainty.

The assessment of the intrinsic vulnerability of buildings ascertains their vulnerability
in the face of flooding events regardless of the risk level of the site. Although this study has
not incorporated risk exposure assessments for individual buildings this will be covered in
future lines of research, thus providing a more comprehensive risk analysis and assessment.
Moreover, the use of unweighted parameters provides a qualitative assessment of the
vulnerability of each building. The next phase of this research will study and introduce
coefficients for a more quantitative assessment to form the basis for further analysis,
extended to more heritage sites in the Iberian Peninsula.

6. Conclusions

Since its foundation, the heritage city of Alzira has endured flooding from the Júcar.
Historic earthen constructions have been at particular risk from the devastating effects of
water. The analysis of the characteristics of the historic buildings of Alzira, both monu-
mental and vernacular, has highlighted the vulnerability of earthen architecture to floods.
The cases selected and analysed using the proposed methodology to assess vulnerability
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have provided a picture of the weaknesses of earthen heritage architecture. Despite the
limited number of samples, differences were observed between buildings when comparing
characteristics and assessing the influence of their state of conservation in the event of
floods. Using a small number of independent parameters, the methodology presented in
this study has proven to be an effective tool in determining the fragility and vulnerability
of each heritage building analysed. Applying this methodology to more heritage sites will
help improve it and correct uncertainties, aiming to develop a tool for flood vulnerability
assessment, specifically for architectural heritage. Equally, the buildings assessed in this
study have been conserved until the present thanks to their morphology, materials, and
constructive characteristics, factors which have ensured their survival in the face of many
floods. The study of these characteristics and the effect of the superficial and structural
damages opens up future lines of research to identify strategies for the protection and
mitigation of flood risk and conservation of this architectural heritage.
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