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Abstract: Arsenic is an inorganic pollutant that, depending on oxidation-reduction and pH level
conditions, may be found in natural waters in two variants: As(Ill) and As(V). Any treatment to
effectively remove arsenic from water will be conditioned by the presence of one or both variants. In
this context, this study assesses using electrochemically produced Fe(VI) with Fe(III) to remove As(III),
As(V), and their combinations from the Synthetic Bangladesh Groundwater (SBGW) containing
anions that interfere with iron-based arsenic removal processes. The combined use of Fe(VI) and
Fe(IT) allowed us to remove the total arsenic below the 10 mg L~! threshold established by the
World Health Organization and Peruvian regulations for drinking water. An optimum combination
of 1 mg L1 of Fe(VI) and 30 mg L1 of Fe(lll) was identified and tested on the removal of four
different proportions of As(III):As(V) for two total concentrations: 500 and 250 mg L~L. There were no
significant differences in the final removal values under the different proportions of As(Ill):As(V) for
each total concentration, with a final removal average of 99.0% and 96.9% for the 500 and 250 pg L1
concentrations, respectively.

Keywords: Ferrate(VI); arsenite; arsenate; groundwater

1. Introduction

Arsenic is a metalloid widely distributed throughout the Earth’s crust, and it is
released into water sources as part of a leaching process from rocks and sediments, as well
as from anthropogenic sources [1]. Freshwater arsenic concentrations may range from
minor traces to as high as 44,000 pg L~! in Waiotapu Valley, New Zealand [2]. Considering
the 10 ug L~! threshold proposed by the World Health Organization (WHO), 100 million
people around the world are at risk of arsenic exposure from drinking water. In particular,
45 million people in Asian developing countries are exposed to concentrations exceeding
45 pg L1 [3]. Therefore, the WHO considers that contaminated drinking water poses the
greatest threat to public health from arsenic [4].

Arsenic groundwater contamination has had significant negative impacts on human
health, with the arsenic poisoning cases reported in Bangladesh and West Bengal being the
most prominent examples [5]. The toxic effects of arsenic in adults, depending on exposure
levels and times, include skin injuries, cardiovascular effects, gastrointestinal disturbances,
liver disease, and cancer [6]. In children, lung disease and defective intellectual functions [7]
are its toxic effects. Now, As(III) is reported as being 25-60 times more toxic than As(V) and
hundreds of times more toxic than its methylated forms [8,9]. In oral epidermal carcinoma
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cell lines, As(V) uptake is associated with diffusion, while As(Ill) uptake requires an
energy-dependent transport system, similar to the one required in phosphate uptake.
These differences represent an important factor in the elevated toxicity of As(IIl) [10]. The
pathogenesis of arsenic-induced toxicity is also associated with the damage caused by
Reactive Oxygen Species (ROS) [6].

In natural waters, arsenic is found as oxyanions or in neutral form and, depending
on Eh and pH levels, it may be released as types of As(IIl) and As(V). As(IIl) exists as
H;3AsO3, but it can also be found as HyAsO3 ™, HAsO52~, and AsO33~ ions; As(V) exists
as H3AsOy, but it can also be found as HyAsO,~, HAsO42~, and AsO4%~ anions [11,12].
Both arsenic types can coexist as vertically distributed in groundwater [8,13], but the
As(III) type is usually the prevailing one [14]. Hence, groundwater treatments must be
capable of removing both arsenic species. As(V) can be removed from the water through
coprecipitation with Fe(IIl), whereas using FeCl; to remove As(III) is more influenced by
groundwater composition [15]. Thus, some studies focusing on the removal of arsenic from
water use the Synthetic Bangladesh Groundwater as a model [16-19].

As(IIl) preoxidation is required for effectively removing arsenic from water sam-
ples [20]. It can be achieved using ozone, chlorine, hypochlorite, HyO,, or Fe(VI) [20,21].

Fe(VI) was used along with Fe(Ill) for removing As(Ill) from the Nakdong River
waters, reducing the initial concentration of 517 ug L~! to under 50 ug L~ [22]. Other
authors studied the use of Fe(VI) to remove an initial concentration of 500 g L~! of As(IIT)
from waters containing phosphate, silicate, and bicarbonate ions [23,24], achieving a final
concentration of under 10 pg L~!. Arsenic removal assays in the presence of some ions
found in natural waters—such as phosphate, silicate, bicarbonate—may prevent the re-
moval of arsenic [25] and are stringent tests. Groundwater usually contains combinations
of As(Ill) and As(V) at different concentration levels. A study conducted in the province
of Santa Fe, Argentina, reported that up to 36% of the total arsenic found in groundwater
was in trivalent arsenic form [26] while another study in Paba Upazila of Rajshahi district,
Bangladesh reported 88% for the same species [27]. Previous studies on arsenic removal
have focused on a single species: As(Ill) [28-30], As(V) [31-33], or both species in indepen-
dent assays [34,35]. As arsenic polluted groundwater contains both arsenic species and
anions known to interfere with the removal, testing combined Fe(VI)/Fe(Ill) treatment in
the presence of competing anions and varying ratios of both arsenic species could pinpoint
potential limitations of the proposed treatment.

Few studies have evaluated arsenic removal methods when both inorganic arsenic
species coexist in the same water. A study [29] using titanium xerogel coagulant reported
that when As(III) coexisted in the same solution with As(V) the removal efficiency of As(V)
was not affected, while As(III) removal decreased in a range from 4% to 17%, pointing
out that arsenic species could interact and impair the efficiency of arsenic removal. Other
groups studied simultaneous arsenic removal by adsorption of As(IIl) and As(V) using a
photoactive selective adsorbent to promote the oxidation of As(IIl) to As(V) [36] or used a
selective adsorbent for both arsenic species [37]. To our knowledge, this is the first time
Fe(VI)/Fe(Ill) combined treatment is used to remove As(IIl)/ As(V) mixtures in simulated
underground water.

Therefore, this study aimed to: assess the effectiveness of Fe(VI)/Fe(Ill) combined
treatment for removing arsenic when both ions, As(Ill) and As(V), were present simultane-
ously in the Synthetic Bangladesh Groundwater (SBGW);And assess the best Fe(VI)/Fe(II)
combination with four As(IlI):As(V) ratios at two concentrations (250 and 500 ug L1 by
measuring the residual concentration of each arsenic species at the end of the treatment.

2. Materials and Methods
2.1. Synthetic Bangladesh Groundwater (SBGW) Preparation
All arsenic removal tests were performed using the Synthetic Bangladesh Ground-

water or SBGW [38] in which arsenite, arsenate, or both had been added. The SBGW
was prepared using ultrapure water (18 M()-cm) and stock solutions of Na,HPO, -7H,O,
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NaHCO3, CaSO4 -2H,0, MgCl, -6H,0O, CaCl,, and NaySiO3-5H,0 (Table 1). In addition,
the pH level of the water was adjusted to 7.0 £ 0.2 using carbon dioxide. The water
composition used was similar to the one used in a previous study [19,38].

Table 1. SBGW composition used in this study.

PO43~ SiO32~ SO42— Ca?* Mg* Cl- Nat HCO;~ Fe
Concentrationsinmg L™ 1.3 195 8 61 8 125 138 275 0

2.2. Ferrate(VI) Quantification

The amount of ferrate present in the water was quantified via visible spectroscopy
using a Shimadzu UV-2600 spectrophotometer. Its concentration level was calculated
according to Equation (1).

— DAaps Vi
[FeO4]2 _ 2Abs Yfinal 1)
el Vsample

where A ayp, is the absorbance difference from the corresponding blank measured at 505 nm,
Viinal is the sum of sample volumes, Vsmple is the volume of solution added for dilution,
¢ is the reported molar extinction coefficient [39] for Fe(VI) at 505 nm (1070 L mol ! em™1),
and / represents the cell width (1 cm).

2.3. Ferrate(VI) Electrochemical Synthesis

The electrochemical synthesis of ferrate was conducted in a polymethylmethacrylate
(PMMA) cell comprised an anodic chamber with an iron electrode and a cathode chamber
with a graphite electrode. Both chambers were separated by a cation exchange membrane
(CTIEM-1 Perfluorosulfonic Acid Cation Exchange Membrane Zibo Cantian, China) at
2.3 Q) cm? (pore diameter < 100 nm according to FSEM measurements). The electrode area
used was 25 cm? and the electrolyte was 20 mol L~! NaOH. The ferrate was generated at
a current density of 80 A m~2 for 5 h, with which a 0.28-mol L~ solution of Fe(VI) was
achieved as described above [40].

2.4. Treatment Tests

A continuous variable-speed multiple flocculator (Platypus Jar Tester, Microfloc Pty)
with 1-L square-section jars was used. The tests aimed at removing arsenic in its As(III)
and As(V) forms, as well as a combination of both. At the beginning of the test, Fe(VI)
was added. Then, Fe(IlI) was added while mixing rapidly at 200 rpm for 60 s (velocity
gradient of 726 s71). After 60 s, mixing continued at a slow rate of 60 rpm for 15 min
(speed gradient of 119.9 s~1). After performing the jar test, the final reported pH level was
7.23 £ 0.15. Next, the samples were allowed to settle for 12 h, and an aliquot was taken
from the supernatant to determine the total arsenic concentration. During the speciation
tests, arsenic concentrations were determined immediately after treatment or using samples
preserved with EDTA and acetic acid [41] to avoid any preanalysis oxidation of As(III).

For generating the local regression surfaces and the interaction analysis, each of the
three tested arsenic concentrations (1000 pg L~! As(V); 1000 ug L~! As(III); 1000 ug L1
As(IlI)/ As(V)) was confronted against a concentration of 15, 30, 45 and 60 mg L~ of
Fe(IIl) ions from FeCl; and a concentration of 0, 0.5, 0.9, and 1.3 mg L1 Fe(VI) ions,
resulting in 16 combinations per treatment. Subsequently, the removal of As(IlI) and As(V)
combinations was evaluated in 500 and 250 pg L1 concentrations at 80:20, 60:40, 40:60,
and 20:80 proportions of As(Ill) and As(V) and using the combination of Fe(VI) and Fe(III)
that achieved the best removal results for both species (1 mg Fe(VI) and 30 mg Fe(III)).

2.5. Determination of Total Concentrations of Arsenic and its Species

Total arsenic analyses required a prereduction step to convert all As(V) to As(III) [42],
which generated AsHj. Then, 12.5 mL of concentrated HCl and 1 mL of potassium iodide—
ascorbic acid reducing solutions were added to a 25-mL sample. After mixing, the sample



Water 2021, 13, 1134

40f11

was left for 30 min to complete the reaction, before being brought to a final volume of
50 mL with ultrapure water. Next, we took 2.5 mL from the said sample and analyzed
it using the PSA Millennium Excalibur HG-AFS. The reducing KI/ascorbic acid solution
was prepared by dissolving 25 g of KI and 5 g of ascorbic acid in 50 mL of ultrapure water.
The blank/carrier was prepared by mixing 250 mL of concentrated HCl and 20 mL of
the KI/ascorbic acid solution, which was then brought to a volume of 1 L. To determine
As(III) and As(V) concentration levels, 250 puL of each sample was introduced into a
chromatographic column (Hamilton, PRP-X100 10 um, 4.1 x 250 mm) with a flow rate
of 0.7 mL min~! at 650 psi. The mobile phase used for the separation was a NaH,PO,~
Nap,HPO4 20-mM buffer at a pH level of 6.20, which was degassed and filtered in 0.2 um
(Merck Millipore Durapore membrane filter GVWP04700). After the chromatographic
separation, the arsenic species were analyzed using the PSA Millennium Excalibur HG-
AFS. Detection limits for As(II) and As(V) are 0.1 and 0.2 ug L~ respectively.

2.6. Statistical Analysis

Two approaches were used to assess the effects of Fe(VI) and Fe(III) on arsenic re-
moval. First, by means of the quadratic polynomial regression model with interaction
(Equation (2)):

y=Po+ Pix1 + ﬁlez + Baxy + ﬁ4x22 + Bsx1 X3 + ¢, (2)

where v is the final concentration of arsenic, x; is the Fe(Ill) concentration, x; is the Fe(VI)
concentration, and e is a normally distributed error term. Through this model, we assessed
the significance of the linear, quadratic, and interaction effects of the Fe(VI) and Fe(III)
concentration levels in the removal of arsenic. Second, with a local regression model
fitted using quadratic polynomials in x; and x,. With this method, at each x point of
the regressor domain, the model is adjusted using the neighboring points, weighted by
their distance from x, to obtain a smooth representation of the relationship between the
regression variables and the response. This fitted response surface is more flexible than
that obtained in model (2) because it does not assume the form of a polynomial function
over the entire regression variable domain.

Differences between the remotion of 500 and 250 pg L~! concentrations of As(II) and
As(V) at 80:20, 60:40, 40:60, and 20:80 proportions with a fixed concentration of Fe(IIl) and
Fe(VI) were evaluated with an analysis of variance for the two factors, concentrations and
proportions.

All statistical analysis was done using the R software [43]. The local regression model
implemented in R follows Cleveland et al. [44].

3. Results and Discussion
3.1. Effects of Ferrate(VI) Ions Combined with Fe(IlI) Ions in the Removal of Arsenic(III)

Table 2 shows significant effects for all model terms. The sign of the linear term
coefficients is negative; this implies that the increase in Fe(IlI) and Fe(VI) concentrations
produces lower final As(Ill) concentrations. This behavior can also be seen in Figure 1,
where the lowest As(Ill) concentration values are displayed in the upper right corner. The
interaction, with a positive coefficient value, suggests a competition effect; in Figure 1
we see that as Fe(VI) increases, the marginal effect of Fe(Ill) decreases. This effect is
consistent with Prucek et al. [45] which demonstrated that Fe(VI) alone could be used to
achieve simultaneous As(Ill) oxidation and coprecipitation. Fe(VI) oxidizes As(III) to As(V)
(Equation (3)), which is in turn adsorbed and coprecipitated by Fe(Ill) ions undergoing
hydrolysis to form iron oxyhydroxides (Equation (4)), iron arsenate precipitate could be
formed to some extent, but this complexation reaction (Equation (5)) is weak under neutral
and alkaline conditions [30].

2HFeO;~ + 3AsO;® + 3H,O — 2Fe*™ + 3As0,2 + 8 OH™ ©)

Fe™ 4 3H,0 — Fe(OH), + 3H" (4)
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AsO,® + Fe’" — FeAsO, )

Table 2. t-test coefficients for a Quadratic Polynomial Regression Model with interaction that explains
the final arsenic concentration at the initial As(IIT) concentration of 1 mg L~!.

Factors Estimated Coefficient Standard Error t-Value p-Value
Fe(IIT) —0.017683 0.002826 —6.258 0.0001
Fe(VI) —0.684623 0.068568 —9.985 0.0000
Fe(1II)2 0.000114 0.000036 3.161 0.0101
Fe(VI)? 0.120680 0.042542 2.837 0.0176
Fe(III):Fe(VI) 0.006892 0.001003 6.870 0.0000
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Figure 1. Local polynomial regression adjustment to assess the effects of Fe(IlI) and Fe(VI) on the
final arsenic concentrations at the initial As(III) concentration of 1000 ug L1

The adsorption of As(V) on the iron oxyhydroxides surface (previous to coprecipita-
tion) has been described as a process where an inner sphere surface complex is formed [46]
(Equation (6)).

Surface — OH + H3AsO,; — Surface — AsO4_2 + HyO +2H" (6)

Jain et al. [23] working with an initial concentration of 500 ug As(II) L~! obtained
0.7 ug L~! residual arsenic concentration after combined treatment with 0.8 mg L™~! of

Fe(V]) as an oxidant and 20 mg L1 of Fe(Il) as a coagulant, Fe(VI) was not tested during
As(V) removal tests.

3.2. Effects of Ferrate(VI) Ions Combined with Fe(IlI) Ions in the Removal of As(V)

Table 3 denotes significant effects only for the linear and quadratic coefficients of Fe(III).
The Fe(Ill) linear coefficient is negative, implying that the concentration of As(V) decreases
as the concentration of Fe(Ill) increases. The coefficients of Fe(VI) are not significant, which
is consistent with the fact that As(V) is already oxidized. Hence, the oxidizing function of
Fe(VI) is not required, and the extra iron provided by the Fe(VI) is insufficient to exert a
clear effect on As(V) removal as shown in Figure 2, where the isolines are nearly vertically
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parallel within 0-30-mg L~! range of Fe(IIl). Fe(VI) has been used to remove efficiently
As(V) but required a Fe(VI):As mass ratio of 4:1 [45].

Table 3. t-test coefficients for a Quadratic Polynomial Regression Model with interaction that explains
the final arsenic concentration at the initial As(V) concentration of 1000 pug L-L

Factors Estimated Coefficient Standard Error t-Value p-Value
Fe(III) —0.002775 0.000441 —6.288 0.0001
Fe(VI) 0.011415 0.010710 1.066 0.3116
Fe(III)? 0.000030 0.000006 5.359 0.0003
Fe(VI1)2 0.003330 0.006645 0.501 0.6272
Fe(III):Fe(VI) —0.000320 0.000157 —2.042 0.0685

- 50

- 40

- 30

Fe(VI) mg/L

20

10

20 30 40 50
Fe(lll) mg/L

Figure 2. Local polynomial regression adjustment to assess the effects of Fe(IlI) and Fe(VI) on the
final arsenic concentrations at the initial As(V) concentration of 1000 pg L1

3.3. Effects of Ferrate(VI) Ions Combined with Fe(IlI) Ions in the Removal of As(III) Combined
with As(V)

For the removal of As(III) combined with As(V), Fe(Ill) and Fe(VI) exhibit significant
linear effects (higher concentration, less remaining arsenic), but only Fe(VI) shows a
significant quadratic effect (Table 4). Figure 3 suggests a stronger effect due to Fe(VI), a
higher Fe(VI):As(Ill) ratio results in higher oxidized As(IIl) proportion, which is translated
in lower residual arsenic concentrations than those shown in Figure 1 where the As(III)
concentration was 1000 pg L1

Table 4. Local polynomial regression adjustment to assess the effects of Fe(IIl) and Fe(VI) on the final
arsenic concentrations at the initial concentration of 500 ug L~ of As(III) and 500 ug L~ of As(V).

Factors Estimated Coefficient Standard Error t-Value p-Value
Fe(III) —0.008022 0.003044 —2.636 0.0249
Fe(VI) —0.504883 0.073853 —6.836 0.0000
Fe(III)? 0.000054 0.000039 1.394 0.1936
Fe(VI)? 0.199681 0.045822 4.358 0.0014

Fe(IIT):Fe(VI) 0.003098 0.001081 2.867 0.0168
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Figure 3. Local polynomial regression-fitting adjustment to assess the effects of Fe(III) and Fe(VI) on
the final arsenic concentrations at the initial concentration of 500 ug L~ of As(IIT) and 500 ug L1 of
As(V).

The use of Fe(VI) allows an important reduction of Fe(Ill) to achieve comparable
arsenic removals, e.g., according to the estimated values of Figure 3, to remove 99% of
the arsenic (10 pg L~! residual concentration) we can use a Fe(VI):Fe(IIl) mass ratio of
0.85:24 or 0.68:40. In that case, the first ratio is more desirable because we add fewer water
treatment chemicals, which traduces in better water quality and less sludge production.

3.4. Arsenic Removal Using Different As(Ill) and As(V) Proportions

The removal of As(IIl), and of the As(Ill)/As(V) mixtures by the combined action
of Fe(VI) and Fe(Ill) were effective at a total arsenic concentration of 1000 ug L=l The
percentage of arsenic removal by any coprecipitation process depends directly on the
initial concentration of arsenic, among other variables [47]. Therefore, arsenic removal
effectiveness with a combination of 1 mg L~! of Fe(VI) and 30 mg L~! of Fe(III), identified
as a highly effective combination in Figure 3, was tested against different As(III)/As(V)
proportions, decreasing the total arsenic concentration in the mixture to 500 pg L~ and
250 ug L~! (Figure 4). Arsenic removal—measured as a total arsenic concentration—is sig-
nificantly greater (F-test, p-value = 0.0196) at 500 ug L1 (99% removal) than at 250 ug L~}
(96.9% removal) and similar for all the four As(IlI):As(V) proportions (no significant differ-
ences with an F-test, p-value = 0.4447). When the pollutant concentration decreases, the
removal mechanisms are faced with mass transfer limitations, and their removal efficiency
decreases [48].

The speciation tests also reveal that, in practically all cases, the removal of As(IIl) was
below the detection limit of the equipment (Figure 5) except for the 80:20 As(III):As(V)
proportion at a concentration of 250 g L1
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Figure 4. Residual arsenic concentration after treating four As(Il):As(V) proportions at a total
concentration of 250 ug L~ (dots) and 500 ug L~! (triangles) with two repetitions. Lines connect the
mean values (6.19, 7.41, 9.00, and 8.68 for a concentration of 250 pug L1 and 3.88,5.61, 5.89, and 4.27
for a concentration of 500 ug L~1). Fe(VI) and Fe(IlI) dosage of 1 mg L~ and 30 mg L1, respectively.
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Figure 5. Final arsenic concentration per species at different final As(III):As(V) concentrations and
proportions.

4. Conclusions

Combined treatment using 1 mg Fe(VI) and 30 mg Fe(IlI) for As(III)/ As(V) mixture
produced a final average removal of 99.0% and 96.9% for the 500 and 250 pg L~! con-
centrations, respectively. The arsenic removal percentage -measured as a total arsenic
concentration is significantly greater at 500 pg L~! than at 250 ug L=}, and is similar for all
the As(IlI)/ As(V) tested proportions (no significant differences).
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The use of Fe(VI) allows the use of a lower dose of Fe(IIl) ions to reach the limit of
10 pg L1 treating equimolar mixtures of As(Ill)/As(V) at a total arsenic concentration of
1000 pg L1, Increasing the dose of Fe(VI) from 0.68 to 0.85 mg L~! allowed the reduction
of the Fe(Ill) dosing from 40 to 24 mg L~ 1.

Regardless of whether As(III) or As(V) was the species present in higher proportion
at the beginning of tests, after Fe(VI)/Fe(Ill) combined treatment the predominant form
was As(V) and below the 10 pg L~! threshold. As(V) is less toxic than As(V) but still
dangerous; therefore, is worth noting that residual arsenic concentration and species
must be determined frequently when applying the described removal process to natural
underground waters whose characteristics can fluctuate with time.
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