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Abstract: Currently, industries seek to optimize the development of technology from energy‐saving, 

economic, and environmental perspectives. Dissolved air flotation (DAF) is one of the most effective 

wastewater treatment systems. However, it requires considerable energy and causes significant op‐

erating costs. A recently emerged application of using fluidic oscillators (FOs) to generate microbub‐

bles has attracted extensive attention, as it consumes much less energy and has proven to be a more 

energy‐efficient technique. In this article, a microbubble generator based on FOs is introduced into 

the flotation tank, and an energy‐saving water treatment system, namely fluidic air flotation (FAF), 

is presented. Using the computational fluid dynamics (CFD) method, the flow pattern of the FAF is 

investigated. It is observed that FAF generates a dynamic flow pattern, which is beneficial for bubble 

removal. At the upper part of the separation zone, the flow pattern exhibits a wavy shape. The flow 

pattern at the lower part switches between clockwise and counterclockwise. The air distribution of 

the separation zone is also studied. It is found that the height of the “white water” zone almost 

linearly decreases with the increase in bubble diameter and diffuser size. FAF consumes almost no 

energy and occupies a small area, and it is expected to provide a promising solution to develop a 

new generation of the wastewater treatment system. 

Keywords: computational fluid dynamics; Euler–Euler; fluidic oscillators; microbubble;  

water treatment 

 

1. Introduction 

The dissolved air flotation (DAF) system has been extensively used in the wastewater 

treatment field [1–3]. As shown in Figure 1a, a typical DAF tank consists of two zones 

separated by a baffle: the contact zone and the separation zone. During the purification 

processes, air‐saturated water under high pressure is injected into the tank by needle 

valves, and microscopical air bubbles with a diameter of 10–100 μm are formed due to the 

sudden pressure drop [4]. Bubbles make contact with suspended solids, flocs, or oil drop‐

lets [5]. Agglomerates are then formed, which afterward are carried to the separation zone 

and rise to the surface, where they are removed by scrapers or by overflow. Meanwhile, 

the purified water is withdrawn from the bottom of this zone through the outlet. The DAF 

system has received extensive attention in recent decades, and much research has been 

devoted to developing the theory of flotation and investigating its mechanisms. In a DAF 

tank, the flow through the separation zone was originally considered plug flows in the 

vertical direction, and the originally designed surface loading rates of DAF tanks were 6‐

12 m/h before the 1990s [6]. However, some pilot data were summarized, showing that 

DAF tanks can be operated at 20–40 m/h, which is much higher than predicted [7,8]. This 
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may be explained by the stratified flow pattern presented by Lundh et al. [9]. The stratified 

flow was characterized as two different flow patterns (shown in Figure 1b). At the upper 

part of the separation zone, a horizontal flow in the direction of the far‐end wall was fol‐

lowed by a return horizontal flow immediately below. The lower part with fewer air bub‐

bles demonstrated a plug‐like flow. This depicted flow pattern effectively tripled the clar‐

ification separation area, which reduced the equivalent clarification hydraulic loading. As 

a result, the high hydraulic loadings of 20 to 40 m/h can be achieved. In recent years, the 

computational fluid dynamics (CFD) method has been developed to predict complex mul‐

tiphase flow behavior [1]. With such a method, it is possible to obtain further understand‐

ings of flow behavior in the DAF process, and great agreement with experiments was 

achieved. Using a two‐dimensional CFD model, Lakghomi et al. [10] concluded that the 

stratified flow pattern was beneficial for the removal process by increasing the residence 

time and bubble–bubble contact. Using CFD and population balance equation (PBE), the 

effect of breakage and coalescence of bubbles on air distribution was studied [11]. It was 

presented that bubble breakage had a weak influence on the air concentration values. 

Conversely, the coalescence model had a significant impact on air distribution, but unex‐

pected behavior was observed; namely, the microbubbles did not distribute throughout 

the height of the separation zone. Behina and Bahramib [4] presented mathematical ex‐

pressions to model the hydrodynamic characteristics of a DAF tank. Additionally, exper‐

imental investigations and CFD simulations were also conducted for comparison, and 

great agreements were achieved. Although the DAF was a well‐established process in the 

wastewater treatment field, the literature also indicated several obstacles to the scaling up 

of the DAF system. First, the energy requirement was a significant operating cost because 

the formation of bubbles depended on the pressurized water [12]. Second, the weather 

condition affected the efficiency of wastewater treatment; the snow and rain can freeze 

agglomerates and lead to the settlement phenomenon. Additionally, it was presented that 

a dead area was observed under the sloping baffle, which had a negative effect on water 

purification [13,14]. 

Another common approach to generate bubbles is to inject air into a diffuser with 

very small orifices [12]. Unfortunately, the size of bubbles generated this way is around 1 

mm, which is much larger than that of DAF [15]. This is because bubbles will be separated 

from apertures in a diffuser when they are 10 times larger than the diameter of the aper‐

ture. Moreover, the polydispersity of bubble sizes and irregularity of the spacing between 

bubbles also leads to quick coalescence of bubbles. Additionally, the largest bubble 

formed at apertures provides the path of the least resistance, which is conducive to form 

larger bubbles. Hence, this method has been only used to break down the major pollutants 

in wastewater and separate minerals from the host rock in the mining industry [16]. In the 

last decade, an improved microbubble generator based on the oscillating jet was reported 

[17]. This device consumes much less energy, occupies a small area, and it is convenient 

to carry and simple to operate [18]. Tesař [19] analyzed the mechanism of this microbubble 

generator. They demonstrated that the periodic oscillation of fluidic oscillators (FOs)can 

prevent the undesirable growth of microbubbles caused by repeated mutual conjunctions 

when they are near the exits of the microporous diffuser. As a result, smaller microbubbles 

were generated, and their size was close to DAF. Hanotu et al. [20] used microbubbles 

produced by FOs to treat oil‐contaminated water. They found that the maximum oil re‐

moval efficiency was up to 91%. Based on FOs, Zimmerman et al. [21] designed a bespoke 

experimental rig that adopted the flexible membrane diffuser network and achieved con‐

ventional aeration for a tank with a 30 m3/h throughput. They also illustrated that this 

kind of microbubble generator is a promising component of wastewater treatment. 

In the present study, a new wastewater treatment system composed of an oscillating 

air jet and DAF tank is presented. It is called fluidic air flotation (FAF) in this paper. In 

previous research, the airflow rate at the inlet was constant, but the flow rate of FAF os‐

cillated. Its influence on the evolution of flow field and air distribution remains to be re‐

vealed. In this paper, CFD transient analysis was used to reveal the complex dynamic 
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fluid flow pattern of FAF. The influence of bubble size and the diameter of the diffuser on 

the height of the “white water zone” was investigated. The results of this study are antic‐

ipated to enrich our understanding of the switching mechanism of FAF and offer refer‐

ences for effectively designing water treatment systems. 

 

Figure 1. (a) Geometry of the FAF and DAF tank, (b) velocity profile of separation zone in DAF 

tank. 

2. Description of FAF 

The bubbles injected into the FAF are generated by the combination of an FO and a 

diffuser. FOs are capable of creating self‐induced periodic oscillating jets without requir‐

ing any movable or deformable parts [22,23]. 

Regarding its application in microbubble generation, the schematic of this device is 

shown in Figure 2a. The microbubble generator mainly consists of two parts, namely an 

FO and a diffuser. According to the Coanda effect, the steady airflow supplied from the 

gas inlet will randomly enter one output channel [24]. If the airflow attaches to the left 

side and enters the output channel Y1, pressure at the control terminal X1 decreases and 

draws air through the feedback loop from the control terminal X2. This flow can gain suf‐

ficient momentum, which is sufficient to switch the jet to the opposite output channel Y2. 

By this point, half a cycle has been completed. The switching process is then continued in 

the same manner, and the self‐induced switching process is created. This process pro‐

duces the oscillating airflow, which will break off from the forming bubble while it is still 

a hemispherical cap and result in smaller bubbles [17]. Tesař et al. [25] showed that the 

switching frequency can be adjusted by the flow rate and the length and diameter of the 

feedback loop. According to the results, when the flow rate was 80 L/min, and the length 

and diameter of the feedback loop were 4.2 m and 10 mm, respectively, the switching 

frequency was around 40 Hz, which was conducive to the generation of bubbles [19]. Us‐

ing the CFD method, the switching process in FO was simulated. As shown in Figure 1b, 

the gas velocity at one outlet was monitored. The velocity periodically changed, and it 

was used as the original velocity of the gas inlet of FAF. 
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Figure 2. (a) Schematic of the microbubble generating device composed of fluidic oscillator and microporous diffuser, (b) 

simulated velocity at one outlet of a fluidic oscillator and the corresponding air switching process. 

3. Numerical Simulations 

3.1. Computational Domains and Boundary Conditions 

In this work, the flotation tank used by Bondelind et al. [26] and Chen et al. [27] was 

adopted. This tank is 1.71 m long and 1.24 m in height. Bondelind et al. [26] investigated 

the effects of 2D and 3D models on the flow pattern of DAF, and it was demonstrated that 

the flow pattern of the separation zone could be successfully reproduced by the 2D model. 

Additionally, the exclusion of the third dimension significantly decreased the time cost. 

Because the focus of the present work is to study the flow field and air concentration in 

the separation zone, the 2D model was a somewhat pragmatic method and was adopted 

in this work.  

The wastewater inlet and the oscillating air inlet were set as the velocity inlet, and 

the outlet was set as the pressure outlet. The velocity of wastewater was 0.0397 m/s, and 

that of air was the simulated velocity of the outlet of the fluidic oscillator. Using CFD 

methods, Rodrigues and Béttega [28] demonstrated that the degassing boundary condi‐

tion was more suitable than the non‐slip wall condition for the water surface. Hence, the 

degassing boundary condition was used in this study. The main characteristics of the sim‐

ulations are shown in Table 1. 

Table 1. Numeric parameters and boundary conditions. 

Information  Adopted Condition 

Multiphase model Euler–Euler 

Turbulence model Realizable κ‐ε 

Gravity 9.81 m/s2 

Discretization scheme for the momentum equation 2nd Order Upwind 

Discretization scheme for the volume fraction equation 1st Order Upwind 

Discretization scheme for the turbulent kinetic energy 

equation 
2nd Order Upwind 

Discretization scheme for the turbulence dissipation rate 

equation 
2nd Order Upwind 

Average time‐step 0.002 s 
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Total simulated flow time 200 s 

Wastewater inlet Velocity inlet 

Oscillating air inlet Velocity inlet 

Outlet Pressure outlet 

Walls and baffles Wall 

Surface of flotation tank Degassing 

3.2. Time Step and Computational Time 

The switching process of airflow in the fluidic oscillator was nearly 0.025 s (shown in 

Figure 2b), and the time step of 0.002 s was adopted. With this value, around 12 positions 

of the switching process could be captured, which was thought to be adequate for this 

work. The computational time of 200 s was adopted as the flow field tended to be steady. 

3.3. Grid Convergence Index 

The computational grids were built in the Hypermesh 2019 software (Altair. Engi‐

neering Inc., Troy, MI, USA), using a structured mesh. For quantifying the uncertainty of 

the result due to the grid discretization, the grid independence test was performed using 

the grid convergence index methodology [28]. Three grid refinements with mesh numbers 

varying from 2000, 5000, and 8000 cells were tested. Wang et al. [16] showed that the gen‐

eral flow field and mean fluid velocity predictions in the flotation process were not 

strongly influenced by either the grid resolution or discretization scheme. Considering the 

acceptable computational time and satisfactory model accuracy, medium grids were cho‐

sen. 

3.4. Turbulence Models and Multiphase Flow 

Under the oscillating effect of the fluidic oscillator, the turbulence phenomena in an 

FAF tank are universal. Additionally, various vortices that exist in the separation zone are 

closely connected with the working mechanism of FAF. Hence, it is important to choose a 

proper turbulence model for the internal flow simulation. Lee et al. [1] investigated the 

influence of turbulence models on the internal flow behavior inside a DAF tank, and it 

was found that the realizable k‐ε model resulted in greater agreement with the experi‐

mental results. This model was also adopted by many researchers [11,26]. Hence, the re‐

alizable k – ε model was used in the following simulations. This model is expressed as 

∂
∂𝑡

𝜌𝑘
∂
∂𝑥

𝜌𝑘𝑢
∂
∂𝑥

𝜇
𝜇
𝜎

∂𝑘
∂𝑥

𝜇 𝑆 𝜌𝜀 (1)

∂
∂𝑡

𝜌𝜀
∂
∂𝑥

𝜌𝜀𝑢
∂
∂𝑥

𝜇
𝜇
𝜎

∂𝜀
∂𝑥

𝜌𝐶 𝑆 𝜌𝐶
𝜀

𝑘 √𝜀𝑣
 (2)

where 𝑘 is the turbulence kinetic energy, and 𝜀 is the dissipation rate, while ∂𝑘 and ∂𝜀 

are the turbulent Prandtl numbers for 𝑘 and 𝜀. 𝐶 max 0.43,   , 𝜂 𝑆 , and 𝑆

2𝑆 𝑆 , and the model constants 𝐶  = 1.9, ∂𝑘 = 1.0, ∂𝜀 = 1.2. 

The selection of the Euler–Euler model and the Euler–Lagrange multiphase model 

was also discussed by many researchers, and it was demonstrated that the former is more 

suitable for the simulation of flow pattern in a DAF tank [27,28]. Within the Euler–Euler 

framework, the continuity equation for phase q can be defined as 

∂
∂𝑡

𝛼 𝜌 ∇ ⋅ 𝛼 𝜌 𝑉   𝑚 𝑚 𝑆  (3)

where 𝛼  denotes the volume fraction of phase q, 𝜌  denotes the density of phase q, 𝑉  

is the velocity of phase q, 𝑚  is the mass transfer from phase p to phase q (kg/s), 𝑚  is 
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the mass transfer from phase q to phase p (kg/s), 𝑆  denotes the source term. The momen‐

tum balance for phase q yields 

∂
∂𝑡

𝛼 𝜌 𝑉 ∇ ⋅ 𝛼 𝜌 �⃗� �⃗�

𝛼 ∇𝑝 ∇  ⋅   𝜏̅̅ 𝛼 𝜌 �⃗�   𝑅 𝑚 𝑉 𝑚 �⃗�

�⃗� �⃗� , �⃗� , �⃗� , �⃗� ,  

(4)

where g is the gravitational acceleration (m/s2), �⃗�  is interphase velocity (m/s), �⃗� ,  is 

lift force (N), �⃗�  is external body force (N), �⃗� ,  is wall lubrication force (N), �⃗� ,  is vir‐

tual mass force (N), �⃗� ,  is turbulent dispersion force (N), 𝜏̅̅  is the stress–strain tensor 

of phase q. 

  𝜏̅̅ 𝛼 𝜇 ∇�⃗� ∇�⃗� 𝛼 𝜆
2
3
𝜇 ∇ ⋅ 𝑉 𝐼 ̿  (5)

�⃗� 𝑅 ;  �⃗� 0 (6)

𝑅 𝐾 �⃗� �⃗�  (7)

where 𝜇  is the viscosity of phase q (Pa∙s), 𝜆  is the bulk viscosity of phase q (Pa∙s), 𝐼 ̿ is 

the deviatoric stress, �⃗�  is phase interaction force (N), 𝐾 is interphase momentum ex‐

change coefficient, �⃗�  is the second phase velocity (m/s), �⃗� is the primary phase velocity 

(m/s). 

4. Results and Discussion 

The research was concerned with two characteristics of the air flotation system, 

namely the flow pattern and the air distribution [1,11]. In this section, we systematically 

analyze the dynamic behavior of flow patterns and air distribution with various parame‐

ters.  

4.1. Analysis of the Dynamic Flow Pattern 

FAF generated a new dynamic flow pattern. At the upper part of the FAF, the flow 

pattern was similar to the stratified flow of the DAF (shown in Figure 3). It was not a 

complete horizontal flow but exhibited a wavy shape, and this pattern was relatively sta‐

ble during the purification process. The reason for this flow pattern may be the oscillation 

effect caused by the fluidic oscillator. The periodic velocity produced vortices in the hori‐

zontal layer, and the wavy flow was created. In the lower part of the separation zone, the 

flow pattern exhibited dynamic characteristics, which switched between clockwise and 

counterclockwise periodically (shown in Figures 4a and 6a). Additionally, it was observed 

that when the velocity of the outlet of the fluidic oscillator reached the maximum velocity, 

the water in the lower part flowed towards the outlet, as shown in Figure 3b. However, 

this flow pattern was an instant behavior because the peak velocity existed for a very short 

time. As a result, this flow pattern caused slight damage to the previous flow pattern, but 

when the peak velocity disappeared, the previous flow pattern was recovered. This in‐

stant behavior caused by the oscillation effect of the fluidic oscillator was of great signifi‐

cance to the switching of flow patterns. 
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Figure 3. Velocity profile before and after the maximum velocity generated by the fluidic oscillator in the FAF tank. (a) 

Velocity profile before the maximum velocity, (b) velocity profile at the maximum velocity, and (c) and (d) velocity profile 

after the maximum velocity. 

Lakghomi et al. [10] showed that the stratified flow of the DAF can help to increase 

the bubble removal ability by increasing bubble–bubble contact and the residence time of 

the bubble. This is because larger bubbles, which have larger rise velocities, are formed, 

and they can be more easily removed. Regarding the flow pattern of FAF, the wavy flow 

pattern in the upper part may be more effective in increasing bubble–bubble contact and 

residence time. Additionally, the switching flow pattern in the lower part of the FAF was 

considered as multiple stratified flows, which was also beneficial in removing the bubble. 

4.2. Switching Mechanism of the Dynamic Flow Pattern 

The dynamic flow pattern in the lower part of the separation zone periodically 

switched between clockwise and counterclockwise. The switching process from counter‐

clockwise to clockwise is presented in Figure 4. At the beginning of the process, a clock‐

wise vortex was formed on the right side (Figure 3b). This was caused by the larger verti‐

cal downward velocity on the right side. As the vortex moved to the left, the vertical 

downward velocity had little effect on this vortex. It was affected by the horizontal veloc‐

ity to the left, and the small vortex turned counterclockwise and increased gradually 

(shown in Figure 4c). In this situation, the contact parts of the two counterclockwise vor‐

tices interacted with each other. The flow pattern at the maximum velocity (shown in Fig‐

ure 3b) also affected the stability of the counterclockwise vortices. As a result, counter‐

clockwise vortices gradually disappeared, as shown in Figure 4d. At this time, the vertical 

upward velocity on the left was the largest, and a clockwise vortex was formed (shown in 

Figure 4e). Meanwhile, there was also a small clockwise vortex formed on the right side 

in the same manner as mentioned above (Figure 4b) because the vertical upward velocity 

on the left side was greater than the vertical downward velocity on the right side. Finally, 

the left vortex gradually swallowed the right vortex, and the flow pattern of the lower 

part switched to the clockwise vortex (shown in Figure 4f). It is worth noting that another 

switching manner was observed, as shown in Figure 5. If the small clockwise vortex 
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shown in Figure 4b did not move to the left but moved downward (shown in Figure 5a), 

the horizontal flow moving to the left was not enough to turn it counterclockwise. Under 

the influence of the vertical downward flow on the right side, the clockwise vortex became 

larger, and the counterclockwise vortex gradually disappeared. 

The switching process from clockwise to counterclockwise is presented in Figure 6. 

It was observed that a small counterclockwise vortex was first formed in the top‐left di‐

rection (shown in Figure 6a). The horizontal flow in the direction to the left and the origi‐

nal clockwise vortex both had positive effects on the generation of this counterclockwise 

vortex. Hence, the counterclockwise vortex grew easily. Additionally, the periodic flow 

pattern shown in Figure 3b had a significantly destructive effect on the clockwise vortex. 

Finally, the counterclockwise vortex replaced the clockwise vortex, and the flow pattern 

of the lower part switched to counterclockwise again (shown in Figure 6b). 

In summary, the flow pattern of the FAF was dynamic and complex. The working 

mechanisms of the FAF were not as simple as they seemed but included the growth and 

dissipation of the vortex, the coupling between the fluidic oscillator and FAF tank, and 

the characteristics of multiphase hydrodynamics. 

 

Figure 4. Switching process from counterclockwise to clockwise. 
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Figure 5. Another switching process from counterclockwise to clockwise. 

  

Figure 6. Switching process from clockwise to counterclockwise. 

4.3. Effect of the Size of Bubble on Air Distribution 

A vivid term, “white water zone”, has often been used to describe the area where the 

air concentration is above 1 ml/L [27]. The height of the “white water zone” in the separa‐

tion zone can intuitively reflect the air distribution. In this section, the height of the “white 

water zone” in the separation zone under various bubble diameters from 30 to 70 μm was 

studied. As shown in Figure 7, it was concluded that the height of the “white water zone” 

decreased almost linearly with the increase in the diameter of the bubble. This is because 

the rising speed of bubbles in water was proportional to the square of bubble diameter. 

With the increase in bubble diameter, the rising speed was faster. The air distribution in 

the upper part of the separation zone also exhibited a wavy shape, and there was a small 

blank area at the top, both of which were caused by the wavy flow pattern.  
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4.4. Effect of the Size of Microporous Diffuser on Air Distribution 

The size of the microporous diffuser also affected the air distribution by changing the 

velocity of the bubbles. As shown in Figure 8, with the increase in the size of the mi‐

croporous diffuser, the height of the “white water zone” linearly decreased. This can be 

explained by the fact that under a certain flow rate, with the increase in diffuser size, the 

velocity of bubbles was lower. Hence, there was not sufficient momentum to force bubbles 

to move to the bottom of the tank, and more bubbles escaped from the water surface. 

 

Figure 7. Effect of the size of bubble on air distribution. 
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Figure 8. Effect of the size of microporous diffuser on air distribution. 

5. Conclusions 

An energy‐saving water treatment system, FAF, was presented. Using the CFD 

method, in this study, we conducted extensive numerical simulations to investigate the 

dynamic flow pattern and air distribution in FOs. The following findings can be derived 

from this study. 

1. The flow pattern in the separation zone was dynamic. The upper part of the separa‐

tion zone contained a wavy flow, and the flow pattern at the lower part periodically 

switched between clockwise and counterclockwise. This dynamic flow pattern can 

help to improve bubble removal because it leads to the formation of larger bubbles 

by increasing the residence time and bubble–bubble contact. Additionally, this flow 

pattern eliminates the dead zone, which also improves the efficiency of wastewater 

purification. 

2. The flow pattern also affected the air distribution, which exhibited a wavy shape in 

the upper part of the separation zone. The height of the “white water zone” is larger 

than that of the DAF, which demonstrated that the efficiency of generating bubbles 

was also improved. It was also found that the height of the “white water zone” almost 

linearly decreased with the increase in bubble size and microporous diffuser size.  

Author Contributions: Data curation, L.T. and X.Z.; Formal analysis, L.T. and X.Z.; Investigation, 

L.T. and X.Z.; Methodology, M.L. and X.Z.; Software, Z.W. and L.M.; Supervision, S.Z. All authors 

have read and agreed to the published version of the manuscript. 



Water 2021, 13, 1101 12 of 13 
 

 

Funding: The authors would like to acknowledge the support of the National Natural Science Foun‐

dation of China (Grant No. 41872186) and the Natural Science Foundation of Hunan Province (Grant 

No. 2019JJ50798). The authors also thank the reviewers for their helpful advice. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this paper. 

References 

1. Lee, K.H.; Kim, H.; KuK, J.W.; Chung, J.D.; Park, S.; Kwon, E.E. Micro‐bubble flow simulation of dissolved air flotation process 

for water treatment using computational fluid dynamics technique. Environ. Pollut. 2020, 256, 112050. 

2. Saththasivam, J.; Loganathan, K.; Sarp, S. An overview of oil–water separation using gas flotation systems. Chemosphere 2016, 

144, 671–680. 

3. Laamanen, C.A.; Ross, GM.; Scott, J.A. Flotation harvesting of microalgae. Renew. Sust. Energ. Rev. 2016, 58, 75–86. 

4. Behina, J.; Bahrami, S. Modeling an industrial dissolved air flotation tank used for separating oil from wastewater. Chem. Eng. 

Process. 2012, 59, 1–8. 

5. Moruzzi, R.B.; Reali, M.A.P. Characterization of micro‐bubble size distribution and flow configuration in DAF contact zone by 

a non‐intrusive image analysis system and tracer tests. Water Sci. Technol. 2010, 61, 253–262. 

6. Edzwald, J.K. Developments of high rate dissolved air flotation for drinking water treatment. J. Water Supply Res. T. 2007, 44, 

2077–2106. 

7. Edzwald, J.K.; Tobiason, J.E.; Amato, T.; Maggi, L.J. Integrating high rate dissolved air flotation technology into plant design. J. 

AWWA 1999, 91, 41–53. 

8. Kiuru, H.J. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in tur‐

bulent flow conditions). Water Sci. Technol. 2001, 43, 1–7. 

9. Lundh, M.; Jönsson, L.; Dahlquist, J. The flow structure in the separation zone of a DAF pilot plant and the relation with bubble 

concentration. Water Sci. Technol. 2001, 43, 185–194. 

10. Lakghomi, B.; Lawryshyn, Y.; Hofmann, R. Importance of flow stratification and bubble aggregation in the separation zone of 

a dissolved air flotation tank. Water Res. 2012, 46, 4468–4476. 

11. Rodrigues, J.P.; Batista, J.N.M.; Béttega, R. Application of population balance equations and interaction models in CFD simula‐

tion of the bubble distribution in dissolved air flotation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 723–732. 

12. Edzwald, J.K. Dissolved air flotation and me. Water Res. 2010, 44, 2077–2106. 

13. Bondelind, M.; Sasic, S.; Pettersson, T.J.R.; Karapantsios, T.D.; Kostoglou, M.; Bergdahl, L. Setting up a numerical model of a 

DAF tank: Turbulence, geometry, and bubble size. J. Environ. Eng. 2010, 136, 1424–1434. 

14. Kwon, S.B.; Park, N.S.; Lee, S.J.; Ahn, H.W.; Wang, C.K. Examining the effect of length/width ratio on the hydro‐dynamic be‐

haviour in a DAF system using CFD and ADV techniques. Water Sci. Technol. 2006, 53, 141–149. 

15. Zimmerman, W.B.; Tesař, V.; Bandulasena, H.C.H.; Omotowa, O.A. Efficiency of An Aerator Driven by Fluidic Oscillation. Part I: 

Laboratory Bench Scale Studies; University of Sheffield: Sheffield, UK, 2009. 

16. Wang, G.; Ge, L.; Mitra, S.; Evans, G.M.; Joshi, J.B.; Chen, S. A review of CFD modelling studies on the flotation process. Miner. 

Eng. 2018, 127, 153–177. 

17. Zimmerman, W.B.; Tesař, V.; Butler, S.; Bandulasena, H.H. Microbubble Generation. Recent Pat. Eng. 2008, 2, 1–8. 

18. Ying, K.; Al‐Mashhadani, M.K.H.; Hanotu, J.O.; Gilmour, D.J.; Zimmerman, W.B. Enhanced mass transfer in microbubble 

driven airlift bioreactor for microalgal culture. Engineering. 2013, 5, 735–743. 

19. Tesař, V. Mechanisms of fluidic microbubble generation part II: Suppressing the conjunctions. Chem. Eng. Sci. 2014, 116, 849–

856. 

20. Hanotu, J.; Bandulasena, H.C.H.; Chiu, T.Y.; Zimmerman, W.B. Oil emulsion separation with fluidic oscillator generated mi‐

crobubbles. Int. J. Multiph. Flow. 2013, 56, 119–125. 

21. Zimmerman, W.B.; Tesař, V.; Bandulasena, H.C.H.; Omotowa, O.A. Efficiency of an aerator driven by fluidic oscillation. Part 

II: Pilot scale trials with flexible membrane diffusers. Chem. Eng. Sci. 2010, 95, 1–30. 

22. Nakayama, A.; Kuwahara, F.; Kamiya, Y. A two‐dimensional numerical procedure for a three dimensional internal flow 

through a complex passage with a small depth (its application to numerical analysis of fluidic oscillators). Int. J. Numer. Methods 

Heat Fluid Flow. 2005, 15, 863–871. 

23. Tang, L.; Zhang, S.; Zhang, X.; Ma, L.; Pu, B. A review of axial vibration tool development and application for friction‐reduction 

in extended reach wells. J. Pet. Sci. Eng. 2021, 199, 108348. 

24. Coanda, H. Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid. U.S. Patent 2,052,869, 1 September 

1936. 



Water 2021, 13, 1101 13 of 13 
 

 

25. Tesař, V.; Hung, C.H.; Zimmerman, W.B. No‐moving‐part hybrid‐synthetic jet actuator. Sens. Actuator A‐Phys. 2006, 125, 159–

169. 

26. Bondelind, M.; Sasic, S.; Kostoglou, M.; Bergdahl, L.; Pettersson, T.J.R. Single‐ and two‐phase numerical models of dissolved air 

flotation: Comparison of 2D and 3D simulations. Colloids Surf. A‐Physicochem. Eng. Asp. 2010, 365, 137–144. 

27. Chen, A.; Wang, Z.; Yang, J. Influence of bubble size on the fluid dynamic behavior of a DAF tank: A 3D numerical investigation. 

Colloids Surf. A‐Physicochem. Eng. Asp. 2016, 495, 200–207. 

28. Rodrigues, J.P.; Béttega, R. Evaluation of multiphase CFD models for Dissolved Air Flotation (DAF) process. Colloids Surf. A‐

Physicochem. Eng. Asp. 2018, 539, 116–123. 


