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Abstract: The efficiency of a fishway is determined by the ability of immigrating fish to follow its
attraction flow (i.e., its jet) to locate and enter the fishway entrance. The hydraulic characteristics of
fishway entrance jets can be simplified using findings from widely investigated surface jets produced
by shaped nozzles. However, the effect of the different boundary conditions of fishway entrance jets
(characterized by vertical entrance slots) compared to nozzle jets must be considered. We investigate
the downstream propagation of attraction jets from the vertical slot of a fishway entrance into a
quiescent tailrace, considering the following boundary conditions not considered for nozzle jets:
(1) slot geometry, (2) turbulence characteristics of the approach flow to the slot, and (3) presence of
a lateral wall downstream of the slot. We quantify the effect of these boundary conditions using
three-dimensional hydrodynamic-numeric flow simulations with DES and RANS turbulence models
and a volume-of-fluid method (VoF) to simulate the free water surface. In addition, we compare jet
propagation with existing analytical methods for describing jet propagations from nozzles. We show
that a turbulent and inhomogeneous approach flow towards a vertical slot reduces the propagation
length of the slot jet in the tailrace due to increased lateral spreading compared to that of a jet
produced by a shaped nozzle. An additional lateral wall in the tailrace reduces lateral spreading and
significantly increases the propagation length. For highly turbulent flows at fishway entrances, the
RANS model tends to overestimate the jet propagation compared to the transient DES model.

Keywords: turbulent rectangular jet; vertical slot; attraction flow; lateral wall; DES; RANS

1. Introduction

Efficient fishways restore connectivity in rivers fragmented by dams, weirs, and hy-
dropower plants and, thereby, enable fish to reach upstream spawning and rearing habitats
with minimal delay [1]. One of the primary challenges in designing a fishway is the deter-
mination of an effective attraction flow that creates an uninterrupted migration corridor
to guide fish through turbulent turbine discharges to the entrance of a fishway [2–4]. The
effectiveness of attraction flow can be quantified by its streamwise propagation length
with regard to threshold minimum flow velocities [5]. From a hydraulic perspective, the
attraction flow of common vertical slot fishways is a three-dimensional rectangular surface
jet formed by discharge through the entrance slot (the most downstream slot). Although
fishway hydraulics have been extensively studied, research on attraction flow propagation
in the tailrace is sparse and existing studies do not consider jet theory [3,4].

Many studies address rectangular surface jets that are created by flow through nozzles
or channels with an aspect ratio b/h at the water surface. Well-investigated analytical
methods exist to describe such jet propagation, in which the three-dimensional rectangular
surface jet created by nozzles can be divided into three sequential regions along the center-
line (Figure 1, [6–9]): (i) nearest the orifice, a core zone characterized by a constant velocity
that is equal to the inflow velocity at the nozzle occurs; (ii) a two-dimensional region is
next, where centerline velocity decay is that of a plane jet; (iii) the most downstream is an
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axisymmetric region where the centerline velocity decay is that of a round jet. Regions (ii)
and (iii) are characterized by self-similarity of velocity profiles at different cross-sections.
With nozzles, jet propagation mainly depends on nozzle geometry [10–13] and aspect ratio,
e.g., [6–9,14,15]. For example, [11,12] show that jet propagation in the near field close to
the orifice exit is influenced by the geometric shape of the orifices (i) and the beginning
of (ii). These studies show a similar jet propagation further downstream for all orifice
shapes. Typical parameters used to analyze jet behavior are the half-length Lx and the
half-width Ly. The half-length Lx is the distance from the orifice exit to the position where
half the velocity is reached. It may be used to determine the propagation length and thus
be suitable to estimate an attraction flow into the tailrace for fishways [5].
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However, specific boundary conditions at fishway entrances differ from those of
previous studies and must also be considered for their influence on jet propagation:

1. Orifice geometries of the considered fishways consist of vertical slots [16], which
differ from nozzles geometrically and with regard to their hydraulic properties. The
local head drop ∆h induces shear at the slot margins and forces the jet to submerge at
the water surface (Figure 1). In addition, the vena contracta effect causes velocities to
increase in and downstream of the slot [11].

2. Flow in fishway pools is turbulent [17,18] so that flow approaching the slot is inhomo-
geneous and highly turbulent, whereas flow approaching a nozzle is approximately
homogeneous with a low turbulence level [10–13]. Furthermore, [19] show that dif-
ferent velocity distribution and turbulence intensities impact jet propagation. These
differences may influence the propagation of the jet.

3. Tailrace geometry, specifically solid boundaries, may influence jet propagation. Wall
effects are common near fishway entrances because of the proximity of a nearby river
bank. Wall jets create different propagation characteristics compared to unbounded
free jets. For two-dimensional wall jets, propagation length increases because turbu-
lent mixing is suppressed at the walls (e.g., [20]). However, fishway entrances are
not located immediately next to a lateral wall but with a small offset distance that is
usually in the order of one slot width, so that fish may approach the slot from either
side [21]. The Coanda effect forces the jet to attach to the wall and the jet follows
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the pattern of the wall instead of its initial direction [22]. The distance between the
slot and the lateral wall denominated as offset determines the attachment point and
consequently influences the propagation characteristics of the jet [23–25].

To address (1) to (3), we assessed different fishway boundary conditions in a numerical
model. We chose a detached eddy simulation (DES) model to illustrate important hydraulic
phenomena present at vertical slots. However, Reynolds-averaged Navier–Stokes (RANS)
models are often applied during fishway design processes, as their computational burden is
reduced compared with other approaches such as direct numerical simulation (DNS), large
eddy simulation (LES), or detached eddy simulation (DES) while still yielding acceptable
accuracies. For this reason, we applied both RANS and DES to investigate the accuracy of
stand-alone RANS models which are used to simulate the velocity distribution of three-
dimensional rectangular surface jets from fishway entrances.

Our review identified significant knowledge gaps that prevent an accurate description
of the propagation of attraction flows from prototype fishway entrances. The application of
existing equations for jet propagation may not be feasible because of the unique boundary
conditions encountered at fishway entrances. Our overall goal was to address these
knowledge gaps and to improve the prediction of fishway attraction flow propagation.
Specifically, we aimed to: (a) quantify jet propagation with boundary conditions present at
fishways; (b) assess our results by comparing them to established analytical jet propagation
approaches for three-dimensional rectangular surface jets; and (c) investigate the capability
of a RANS model to adequately address the effects of boundary conditions by comparing
their output to the output of a DES model.

2. Material and Methods
2.1. Numerical Methods

We used the open source toolbox OpenFOAM 4.1 [26], which provides an integrated
framework for numerical calculations in continuum mechanics for three-dimensional com-
putational fluid dynamics (CFD) modelling. We chose the multi-phase solver interFoam for
modelling free surface and unsteady flow to discretize the incompressible Navier–Stokes
equations. The solver uses the Volume-of-Fluid approach to track the position of the
interface between water and air phases [27]. The multi-phase solver using Volume-of-Fluid
is applied to account for the head drop at the fishway slot. We applied two different
turbulence models: a Reynolds-averaged Navier–Stokes (RANS) model and a detached
eddy simulation (DES) model.

RANS models separate the turbulence fluctuations from the mean flow and consider
the influence of turbulence on the mean flow by modelling turbulence characteristics. The
applied RANS k-ω SST model [28,29] combines the advantages of the k-ω and k-ε model
by using k-ω near the wall and k-ε in the free flow region [30]. Only the most relevant
equations for the present investigation are given in the following. The k- and ω equations
are defined as follows in Equations (1) and (2):

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

= P̃k − β ∗ ρkω +
∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
and (1)

∂(ρω)

∂t
+

∂
(
ρujω

)
∂xj

= αρS2 − βρω2 +
∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1
ω

∂k
∂xi

∂ω

∂xi
. (2)

The turbulent eddy viscosity is defined as follows in Equation (3):

νT =
a1k

max(a1ω, SF2)
(3)
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F1 is a blending function for switching between the k-ω and k-ε formulation is as
follows in Equation (4):

F1 = tanh


{

min

[
max

( √
k

β ∗ωy
,

500ν

y2ω

)
,

4ρσω2k
CDkωy2

]}4
 (4)

with CDkω = max
(

2ρσω2
1
ω∇k∇ω

)
, 10−10 and y is the wall distance to the closest wall. F2

is a second blending function (Equation (5)):

F2 = tanh


[

max

(
2
√

k
β ∗ωy

,
500ν

y2ω

)]2
 (5)

To prevent the build-up of turbulence in stagnation regions, a production limiter is
included as (Equation (6))

P̃k = min(µtS, 10β ∗ ρkω) (6)

The transient DES model is a combination of LES and time-averaged RANS. Depend-
ing on the grid resolution and the distance to the wall, DES changes between the two
models, i.e., RANS is used near walls, and the higher accuracy of LES is applied in the other
regions. The principle of LES is to reduce computational costs compared to DNS by only
solving the large eddies and modelling small scale eddies. In our study, we applied the k-ω
SST-DES model [29], which is based on the RANS k-ω SST model. The dissipation term in
the k-Equation (1) is modified by FDES for the DES formulation (Equations (7) and (8)):

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

= P̃k − β ∗ ρkωFDES +
∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(7)

with FDES = max
(

Lt

CDES∆
(1− FSSt, 1

)
and FSST = 0, F1, F2 (8)

where ∆ is the maximum local grid spacing, Lt =
√

k
β ∗ ω is the turbulent length scale and

CDES = 0.61 is a calibration constant. A weak point of DES is the switch of RANS to LES
inside the boundary layer for fine grids. In order to avoid grid-induced separation (GIS)
in the wall boundary layer, the blending function FSST is set to F2 [29] so that the RANS
simulation is forced in the boundary layer.

2.2. Simulation Setup

The model domain is divided into two main parts, with the exit of the jet forming the
reference cross section at x = 0: the approach flow (x < 0) and the tailrace (x > 0) domain.
The approach flow x < 0 acts as a boundary condition for jet propagation (Section 3.1) into
the tailrace domain. The symmetry plane is set at y = 0. The bottom of the approach flow
domain (fishway entrance pool or channel bottom) is at z = 0. In order to avoid spurious
boundary effects on the free jet other than the presence of a lateral wall, a broad model
domain is chosen for the tailrace with a depth of 11 m (z = −11 m), a total length and
width of 45 m and 40 m, respectively.

In total, four different jet configurations (Figure 2) are tested, with one channel and
three slot geometries.

• Channel geometry (ch, Figure 2a) for comparison with previous studies;
• Slot geometry with a homogeneous approach flow (sh, Figure 2b) for investigating the

effect of a slot;
• Slot geometry with an inhomogeneous approach flow (si, Figure 2c wall not included

in the model domain) for identifying the effect of approach flow in combination with
a slot;
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• Slot geometry with an inhomogeneous approach flow and lateral wall in the tailrace
(siw, Figure 2c wall included in the model domain) for determination of the effect of
river bank in the tailwater.
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We selected the configurations to represent a range of possible upstream flow char-
acteristics and two different tailrace conditions. The channel configuration (ch) with slip
boundary conditions is comparable to a nozzle configuration and consists of a channel
profile entering the tailrace at x = 0 (Figure 2a). The three slot configurations (sh, si, siw)
consist of a basin with a vertical slot at x = 0 m, but with different upstream and tailrace
geometries. For the sh configuration, the approach flow to the slot is homogeneous to
provide the least possible turbulence intensity and velocity fluctuations at the slot orifice
at x = 0 (Figure 2b). At the inlet, a uniform velocity distribution is assigned to avoid an
increase in turbulence intensity, i.e., no significant shear zones or wall effects exist. For the
si configuration, we followed [31,32], who showed that two opposed jets result in a high
turbulent intensity. The two inlets are located at position inlet si in Figure 2c. Thus, the
water is forced to flow around two walls, resulting in an increase of turbulence intensity to
achieve an inhomogeneous, highly turbulent approach flow at x = 0. Both configurations
sh and si deviate from the real situation in a fishway entrance pool, where different flow
situations exist due to a large variety of pool designs [18,33,34]. The chosen configurations
represent two extrema: an ideally homogeneous approach flow with a low turbulence
intensity (sh) and an artificial, highly turbulent situation with an inhomogeneous approach
flow, which is unfavorable for a fishway entrance pool (si). The siw configuration uses the
si layout but adds a lateral wall in the tailrace to represent the river bank usually located
near the slot of fishway entrances (see Figure 2c). We set the distance of the wall to the slot
to be one slot width b0, which is often applied in practice and is a compromise between the
sufficient width for the fish access on either side of the slot, but narrow enough to allow
the jet to attach to the wall in order to propagate further downstream.

In sh, si, and siw, beveled slots are applied, which are preferred to sharp-edged slots
for constructability and to reduce fish injuries during passage [16]. All configurations were
modelled with RANS and DES (summarized in Table 1).
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Table 1. Properties of simulated cases.

Configuration Case Name Tailrace
Condition

Orifice
Geometry

Turbulence
Model

Approach
Flow

ch ch-rans Surface free jet channel RANS homogeneous
ch ch-des Surface free jet channel DES homogeneous

sh sh-rans Surface free jet slot RANS homogeneous
sh sh-des Surface free jet slot DES homogeneous

si si-rans Surface free jet slot RANS inhomogeneous
si si-des Surface free jet slot DES inhomogeneous

siw siw-rans Surface wall jet slot RANS inhomogeneous
siw siw-des Surface wall jet slot DES inhomogeneous

The basic grid resolution is set to 0.4 m, which is too coarse to model jet evolution,
but is adequate for the regions that the jet does not reach. Consequently, cell resolution
in the channel/entrance pool and regions in the tailrace reached by the jet are refined to
0.05 m for 0 < x ≤ 16 m and −4 ≤ y ≤ 4 m for the RANS simulations. The refinement
region is enlarged up to x=30 m and to −8 ≤ y ≤ 8 m for the DES simulations to achieve
accurate results in the far field with the DES model. In the vertical direction, the tailrace
is refined for −2 ≤ z ≤ 1.5 m to adequately reproduce the water surface. The cell size
in the slot and the channel profile respectively does not exceed 0.0125 m for a width of
0.45 m, which equals 36 cells. The region close to the water surface is additionally refined
to 0.025 m in vertical direction. The mesh discretization within the slot was determined
by sensitivity studies where only the chosen grid size was fine enough to reproduce the
velocity distribution in the slot. The total number of grid cells varies and is approximately
between 7 × 106 and 8 × 106 for all configurations modelled with RANS. The grids of the
DES simulations have about 16 × 106 cells.

We omitted sensitivity analyses of the overall grid size in the jet evolution region
because the results of the ch configuration simulated with RANS and DES fit well to
comparable data about decay rate and lateral spreading from literature [7,8,14].

2.3. Boundary Conditions

The boundary and initial conditions are derived from typical values for fishway
entrance designs usually applied to German rivers. The spatial average velocity (bulk-
mean) in the orifice cross section for the channel and the slot is set constant to u0 = 1.37 m/s,
which yields a discharge of Q = 0.74 m3/s and a head loss at the slot of about 0.12 m.
In all simulations, the channel and slot width is b0 = 0.45 m and the water depth is set
to h0 = 1.2 m, which is a common biological requirement for flow depth in fishways of
German waterways. The Reynolds number, based on orifice width b0, is 6.17 × 105. The
Froude number in the orifice is 0.40 and, therefore, flow is sub-critical.

The RANS simulations are initialized to a water level of 1.2 m. All other variables
except at the fluid boundaries are initialized at zero. In order to optimize simulation time,
the DES simulations are initialized with the mapped values of the results of the RANS
simulations. The boundary conditions for RANS and DES are set as:

• inflow boundary of ch and sh: inlet velocity boundary with a flowrate of 0.74 m3/s;
turbulence intensity = 0;

• inflow boundaries for si and siw: two inlet velocity boundaries with a flowrate of
0.37 m3/s each; turbulence intensity = 0;

• outflow boundary: pressure outlet boundary with a fixed water surface of 1.2 m and a
water density of 1000 kg/m3;

• wall boundaries except the slot geometry and the walls of the entrance pool: slip
boundary conditions without friction for velocity; and

• wall boundary in the entrance pool and at the slot: fixed value of velocity = 0 m/s and
a wall function with wall roughness kS = 0.005 m.
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The run time for the RANS simulations is 480 s and 660 s for DES. The first 300 s
ensures a state independent from initial conditions. The subsequent 180 s (RANS) and
360 s (DES), resp., are averaged to obtain best possible stationary results.

2.4. Additional Physical Scale Model Investigations

The propagation of the channel jet (ch) and the slot jet with inhomogeneous approach
flow (si) were additionally investigated in an experimental flume at BAW. The geometry
of the inlet apparatus is the same as for the numerical model with a geometric length and
height scale of 1:7.5. The tailrace is 2 m long, 1.2 m wide and 0.4 m deep. Water is added
from a constant-head tank through a tubing system. The discharge is regulated with a slide
valve and an inducted magnetic discharge sensor. The tailrace water level is regulated
with a tilting weir. The flow is visualized using fluorescent dye illuminated with a black
light. Digital images from the top (1.5 m height) are recorded at a rate of 25 frames per
second [35].

3. Results
3.1. Approach Flow Velocity Distributions

To point out the differences in approach flow of the ch, sh and si configurations we
evaluated the velocity distribution and turbulence intensity at the orifice exit section (x = 0)
and the cross section of x = −3 (inlet sh) for the DES simulations (Figures 3–5). Both RANS
and DES, yielded similar results for the mean velocity distribution.
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v′2/u0 in the
orifice exit section (x = 0) at z = 0.5 h0 where u0 = Q/b0h0 for configurations ch-des, sh-des, si-des. Distances y are
normalized with channel/slot width b0.
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Figure 5. Lateral distributions of (a) mean normalized streamwise velocity u/u0 and (b) turbulence intensity
√

u′2/u0 in
the inlet section of the homogeneous slot configuration (inlet sh x = −3) at z = 0.5 h0 where u0 = Q/b0h0 for configurations
sh-des, si-des. Distances y are normalized with channel/slot width b0.

The distribution of normalized time-averaged velocities u/u0 in the streamwise direc-
tion of the channel configuration ch-des at the orifice exit section (x = 0) are homogeneous
at u/u0 = 1, whereas the slot configurations sh-des and si-des show a slight increase of
velocities up to 1.1 u0 at the edges (Figure 3a). The velocity peaks of sh are slightly more
pronounced compared to si. All slot configurations produce recirculating flow close to
the edges of the slot. The configurations ch-des and sh-des show a very low level of turbu-
lence (Figure 3b), whereas the turbulence intensities of si-des are distinctly higher (up to√

u′2/u0 = 0.3).
The normalized time-averaged lateral velocities v/u0 in the orifice exit of ch-des are

mostly homogenous whereas v/u0 of sh-des and si-des show the constriction effect of the slot
towards the centerline (Figure 4a). The peaks of the sh-des jet (v/u0 = 0.09) are higher than
those of the si-des jet (v/u0 = 0.06), but the fluctuations of si-des are more distinct and even

larger than the mean velocities (up to
√

v′2/u0 = 0.17, Figure 4b). For all configurations,
fluid is entrained from outside of the jet (Figure 4a).

sh-des and si-des have different velocity distributions and turbulence intensities in the
cross section of x = −3 (Figure 5). For the sh jet, a constant velocity distribution and zero
turbulence intensity are applied at inlet sh (x = −3). The si jet shows a normalized velocity
peak at y = 0 m of u/u0 = 0.35 and a back flow of about u/u0 = −0.1 close to the walls.

The normalized turbulence intensity
√

u′2/u0 at these positions is up to 0.12. The inlet
conditions of the siw case are equal to the si case.

3.2. Qualitative Assessment of the Jet Velocity Fields

We used a screen capture of the DES model output to qualitatively compare jet
propagation of the different configurations (Figure 6). The ch jet propagates downstream
near the centerline with low lateral spreading. It is characterized by a pronounced core
zone. The sh jet also propagates around the centerline but the velocities in the core zone
are increased and reach further into the tailrace compared to ch. Velocities in the far field
are similar. In contrast, the propagation of si jet is characterized by a more pronounced
lateral spreading and a shorter core zone. In the far field, a distinct jet is no longer visible.
Furthermore, the wall jet (siw) has a short core zone and starts to attach to the wall at x = 2
m. The jet concentrates near the wall and shows less lateral spreading than si.
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Figure 6. Representative instantaneous velocity fields at z = 0.5 h0 for all cases simulated with the transient DES model.

We used a frame grab of the video of tracer concentration in the scale model to
qualitatively describe jet propagation for the ch and si configurations (Figure 7). The ch
jet concentrates along the centerline whereas the si jet spreads more in a lateral direction.
Note that the DES model output and scale model results show good qualitative accordance
for the ch and si configurations.
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3.3. Influence of Slot and Approach Flow on Free Jet Propagation
3.3.1. Velocity Fields

In order to assess spatial jet propagation, distributions of time-averaged streamwise
velocity components u in vertical yz-planes were evaluated at various distances x > 0
representing different jet regions for RANS and DES (Figures 8–10). In all subfigures, the
velocity is normalized with mean velocity u0 = Q0/(b0h0). Distances x are normalized
with channel/slot width b0.

The velocity fields output by the ch-rans and ch-des models are similar and show the
typical characteristics of rectangular jets (Figure 8). The three typical jet regions can be
identified: (1) the primary core region with the core velocity of u/u0 and the rectangular
shape imposed by the orifice is present directly downstream of the exit (x/b0 = 0.833
and x/b0 = 4.44); (2) followed by the two-dimensional region (x/b0 = 15.6); and (3) the
axisymmetric region at x/b0 = 33.3. The ch-des jet shows a more distinct lateral spreading
at the surface in the axisymmetric region than the ch-rans jet.
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Figure 8. Channel jet showing isolines of the normalized streamwise velocity component u/u0 in yz-sections with relative
distances x/b0 from the orifice as simulated for (a) ch-rans and (b) ch-des channel configuration. Distances y and z are
normalized with channel/slot width b0.
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The RANS and DES model results for the sh jet show initial similarities near the slot
and slightly deviate progressively with the distance from the slot (Figure 9). Initially, at
x/b0 = 0.833, the jet has the rectangular shape imposed by the orifice and propagates at the
surface. The core region with core velocity of u/u0 = 1 can be identified at x/b0 = 0.833
and 4.44 where the jet is submerged. The submergence effect results from the vertical
velocity component as induced by the water level difference at the slot. At x/b0 = 15.6,
the two-dimensional propagation is less pronounced but can still be identified and at
x/b0 = 33.3 an axisymmetric region can be discerned. The general shapes of the jet
propagation predicted by the DES and RANS models are similar, but the DES simulations
exhibit a slightly more intensive lateral spreading.
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Figure 9. Slot jet with homogeneous approach flow showing isolines of the normalized streamwise velocity component
u/u0 in yz-sections with relative distances x/b0 from the orifice as simulated for (a) sh-rans and (b) sh-des slot configuration.
Distances y and z are normalized with channel/slot width b0.

The velocity profiles of si-rans show similar velocity distributions as the sh jet (Figure 10a).
The core region extends up to x/b0 = 4.44 and the submergence effect is apparent at
x/b0 = 4.44 and 15.6. The two-dimensional (x/b0 = 15.6) and axisymmetric regions
(x/b0 = 33.3) can be identified. Close to the orifice at x/b0 = 0.833, si-des is similar to
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si-rans (Figure 10b). However, further downstream, the DES simulations show a different
propagation compared to all the other simulations. The core velocity is already reduced at
x/b0 = 4.44, and thus the transition to the two-dimensional region occurs earlier. In the far
field at x/b0 = 33.3, no distinct axisymmetric zone develops. The lateral propagation of
the transient si-des jet is distinctly larger than that of the si-rans jet.
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Distances y and z are normalized with channel/slot width b0.

3.3.2. Jet Half-Width Growth

We used the jet half-width Ly at z = 0.5 h0 as a metric to describe the lateral spreading
of the propagation jets as simulated by the RANS and DES models (Figure 11). Here, Ly
is the distance in the y-direction from the jet center, characterized by the local maximum
velocity, to the location where the time-averaged velocity is half the local maximum. We
define Ly as the mean value of the left- and right-side half-widths and calculate it from
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the corresponding lateral velocity profiles. The growth of the half-widths is approximated
by linear expressions Ly/x. The lateral growth rates of the ch and sh jet are determined to
Ly/x = 0.10 for both RANS and DES models. This value is comparable to the growth rates
for plane and rectangular surface jets ([14,15,22], Table 2). The lateral growth rates are the
same for all configurations (ch, sh, si) using the RANS model (Figure 11a). However, the si
slot configuration differs substantially using the DES model (Figure 11b). Ly/x of si-des can
be approximated to 0.25, about 2.5 times the growth rate of the RANS simulations. This
value is consistent with the differences in spatial jet propagation, where a more pronounced
lateral spreading of the jet was observed (Section 3.3.1).
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Figure 11. Downstream evolution of normalized half width Ly/b0 at z = 0.5 h0 from (a) simulation with RANS and
(b) simulation with DES.

Table 2. Lateral growth rates in literature.

Paper Jet Type Ly/x

Miozzi et al. [22] Plane surface jet 0.10
Kashi [15] Rectangular surface jet 0.12

Rajaratnam and Humphries [14] Circular or rectangular surface jet 0.09
Present study Rectangular surface channel jet (ch) 0.10
Present study Rectangular surface slot jet (sh) 0.10
Present study Rectangular surface slot jet (si) 0.25

3.3.3. Self-Similarity

The lateral distributions of u in the height z = 0.5 h0 normalized by the local velocity
maximum umax on the centerline at the respective x was used to assess self-similarity in
the propagation of the jet [36] (Figure 12). Locations y are normalized by Ly. The symbols
represent the distributions at four distances x/b0 from the orifice. For comparison, the
normalized standard Gaussian function is plotted. The potential core zone with the non-
Gaussian distribution is present for all simulations at x/b0 = 1. Outside the potential
core zone, the profiles for all cases approach the Gaussian distribution, indicating the
self-similar development of the jets. The transient DES simulations slightly deviate from
the Gaussian distribution in the far field, suggesting that the temporal averaging time of
360 s is still not sufficient to exactly represent the si jet in the far-field. However, in general,
self-similarity is reached for all jets independently of the simulated configuration.
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3.3.4. Velocity Decay

We compared downstream evolution of streamwise mean velocities at the water
surface to analytical approaches [7,8] (Figure 13). The evaluation along the water surface
centerline is used since the maximum velocity is located at the water surface and along the
centerline for surface jets from nozzle orifices and in theoretical models. All velocities are
normalized by the bulk-mean exit velocity u0. The ch jet shows good agreement for the
entire range of velocities at the water surface when compared to theoretical decay for both
simulation methods (Figure 13a,b). Transition locations between the characteristic zones
(from core zone to two-dimensional region at x/b0 ≈ 6 and from the two-dimensional
region to the axisymmetric region at x/b0 ≈ 30) are predicted correctly. In contrast, both
slot jets show higher velocities close to the exit caused by the vena contracta effect at the
slots. Downstream of the exit, u/u0 substantially decreases until x/b0 = 7 because of the
water level drop at the slot and the corresponding jet submersion. The flow reattaches the
surface at approximately x/b0 = 20. Thereafter, the jet develops similar to axisymmetric
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jets. In the near field, the decay is strongly influenced by these effects for both types of
approach flow for the slot jets (sh and si). However, both effects are not appreciable in the
far field for sh jet where its velocity decay follows the same trend as the ch jet, which is
in accordance with [11]. In the far field, there is no difference in surface velocities among
ch, sh, and si-rans configurations. However, streamwise surface velocities in the far field
of si-des are reduced by 30%. The reduction is consistent with the higher lateral growth
rates of the jet observed in Section 3.3.3. It should be noted that the velocities downstream
x/b0 = 66 are subject to inaccuracies because of grid resolution effects.
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Figure 13. Downstream evolution of the mean streamwise centerline velocity u/u0 at y = 0 and z = h0 for (a) simulation
with RANS (kw-SST turbulence model) (b) simulation with DES. Analytical models are given for comparison: [7,8].

The analysis of centerline velocities at the water surface cannot be exhaustive for
slot jets due to the submergence of the jet. Additionally, maximum streamwise veloci-
ties independent of their location in the yz-plane were determined for every time step,
temporally averaged and normalized by u0 (Figure 14). The velocity decay of the ch jet is
similarly compared to the centerline velocity at the surface for both simulation methods.
Only velocities in the two-dimensional region are slightly higher for ch-rans compared
to the velocities at the water surface. In contrast, there is a large difference between the
surface velocity and the maximum velocity for all slot jets in the two-dimensional region.
This confirms that the maximum velocities of the slot jets are below the water surface. The
core zone of sh-des is significantly larger than the core zone of si and ch. For the si-des jet the
maximum velocities substantially decrease in the two-dimensional zone and are reduced
by about 25% compared to the ch jet in the far field.
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The half-length Lx defined as the longitudinal distance from the orifice exit, where
u/u0 = 0.5, is evaluated as a further measure to compare jet propagation. For homogeneous
approach flows, ch and sh, Lx/b0 = 24 correspond well to the half-length derived from
analytical expressions [7,8] independent of the simulation methods. Half-length for the slot
with an inhomogeneous approach flow si is about 2.3 times shorter (Lx/b0 = 11) as com-
puted with DES while results computed from si-rans are substantially longer (Lx/b0 = 22).

3.4. Influence of a Lateral Wall on Jet Propagation

We used the distributions of time-averaged streamwise velocity component u of the
jet with an inhomogeneous approach flow and lateral wall in the tailrace (siw) of RANS
and DES simulations in order to assess spatial jet propagation in the presence of a lateral
wall (Figure 15). The core zone for both models can be identified at x/b0 = 0.833 and the
submergence effect is visible at x/b0 = 0.833 and x/b0 = 4.44. The presence of the wall
triggers the typical behavior of an offset jet [25]. The jet starts to deviate from the centerline
(y = 0 ) at x/b0 = 4.44 and attaches to the wall at x/b0 = 15.6 due to the Coanda effect [22].
The transient simulated siw-des jet ascends to the surface earlier (x/b0 = 15.6) than the
time-averaged siw-rans jet (x/b0 = 33.3).
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Figure 15. Slot jet with inhomogeneous approach flow and wall distance equal to b0 showing isolines of the normalized, time-
averaged, streamwise velocity component in yz-sections with relative distances to the orifice as simulated for (a) siw-rans
and (b) siw-des. The wall is situated at y/b0 = −1.5 and the wall distance equals the slot width.
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The development of wall jets was compared to that of free jets by examining the
evolution of jet half-width Ly/b0 with the downstream location (Figure 16a). The results
of siw-rans suggest a relatively constant growth rate for half-width, which is lower than
that of a free jet simulated with RANS (si-rans) where growth rates of 0.1 are determined.
In contrast, the siw-des results show a more distinct behavior where development of the
half-width can be divided into two regions in which the first is associated with the free
flow region and the second with the influence of the lateral wall. In the first region close to
the orifice exit, the growth rate of the half-width is approximately 0.25, which is identical
to that of the free slot jet (si-des). Beginning at x/b0 = 6, the growth rate substantially
decreases until the half-width transitions to a local minimum at x/b0 = 12 because of
the attachment of the jet to the wall. Further downstream, the half-width increases at a
constant growth rate of 0.65, which is identical to the experimental results of plane jets
with the same wall distance to slot width ratio reported in [24].
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We further compared the decay of the maximum velocities of the wall slot jets (siw-rans
and siw-des) to the results for the free slot jet (si-rans and si-des) to assess the influence
of a lateral wall on the downstream evolution (Figure 16b) of RANS and DES modeling.
The results obtained by both simulation methods indicate that a slot jet with lateral wall
produces velocities that are higher than those of the free jet. The half-lengths Lx/b0 of
the siw-rans jet and siw-des jet are 35 and 29, respectively. Thus, Lx/b0 o f siw-rans is 1.6
times larger than the one of si-rans and Lx/b0 of siw-des 2.6 larger than the one of si-des.
Compared to the free ch and sh jet, the half-length of siw-des is 1.16 larger. Notably, results of
both simulation methods differ less for the wall jet than for the free jet. Between x/b0 = 20
and 40 results of the siw-rans and siw-des are comparable (10–15% deviation), whereas in
the far field the deviation increases (20–26% deviation).

4. Discussion

The results of DES modelling show systematic differences in downstream propagation
of slot jets for homogeneous and inhomogeneous approach flows. Slot jets with homo-
geneous approach flows are consistent with [7,8], while slot jets with inhomogeneous
approach flows show an increased lateral growth rate of time-averaged streamwise veloci-
ties and a reduced downstream propagation in the far-field. The results suggest that the
differences in propagation arise from an interaction between the slot and its approach flow
conditions. Under inhomogeneous conditions, the velocity distribution at the orifice exit
section shows that both streamwise and lateral velocities exhibit strong temporal fluctua-
tions. These fluctuations are associated with oscillations of the jet apparent in the transient
numerical DES simulations and in the experimental investigations. In a time-averaged
representation, these oscillations are shown in a larger lateral expansion and decreased
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streamwise velocities of the jet. The instantaneous characteristic under inhomogeneous
approach conditions are not significantly broader than under homogeneous approach
conditions, but lateral jet oscillation results in an increased lateral manifestation of time-
averaged velocities. This assumption is supported by the finding that there is a large
difference between centerline velocities and maximum velocities (Section 3.3.4) because
the local velocity maximum shifts its position on either side of the centerline in every
instantaneous moment and is rarely on the centerline itself. Similar effects of oscillating
jets are observed in fishway pools [37] and jets issued from fluidic oscillators (e.g., [38]).

Results of a slot jet propagation with a lateral wall downstream of the slot suggest that
oscillations are reduced due to the Coanda effect [22]. The jet shows the above-described
behavior with strong oscillations and increased lateral growth rate before it begins to incline
towards the wall. After a transition phase the jet attaches to the wall and shows typical
lateral growth rates that are consistent with findings of pure wall jets [24]. We assume that
this characteristic is largely an effect of the offset distance. At zero offset, oscillation will
hardly occur while for large offsets oscillations may possibly overrun the Coanda wall
effect and the attachment might be impeded. A comprehensive study of offset distance
might be a future research direction.

A variety of entrance pool designs may be encountered during the planning of new
fishways or the modification of existing fishways, each of which goes along with its own
specific approach flow to the entrance slot. Parameters that may affect the turbulent con-
ditions are among others: geometry of entrance pool, deviation of layout (straight pool
or turning pool), distance to upstream slot, slot velocity, and the way auxiliary discharge
is added. In the absence of standard design rules for entrance pools, we considered two
extreme scenarios: a homogeneous approach flow with low turbulence and an inhomo-
geneous approach flow with high turbulence. The inhomogeneous and highly turbulent
conditions are generated by the collision of two opposing flows to produce large scale
eddies larger than in real fishway pools. We assume that the effect of approach flow on
jet propagation is therefore less pronounced in real fishways and, as a consequence, the
use of the results obtained may be considered as a conservative approach for assessing the
attraction jet propagation.

Moreover, the lateral distance from the entrance slot to the river bank or lateral wall is
subject to site-specific constraints. Our results are obtained for lateral wall distance of a slot
that is equal to one slot width, representing a value which is in a typical range for fishways
adjacent to river banks. For smaller distances, an application of our results is conservative
since a faster wall attachment results in increased propagation with higher velocities. When
offset distances between the slot and the wall increase, downstream propagation of the jet
will further reduce until the wall effect becomes negligible and converges towards the jet
without a lateral wall.

We additionally applied a RANS model because they are the tools of choice for
engineering design of fishways, even though the more complex DES model includes a
more complete description of the physics of water flow. The application of DES models
may be the exception because its complexity leads to increased difficulty of use and high
computational costs. The results show that the propagation of jets with homogeneous
approach flows with low turbulence velocity distributions are reproduced reasonably well
by RANS models and only differ slightly from DES model results. Small differences may
arise from the isotropic turbulence model in RANS, which cannot adequately reproduce
surface currents [39]. This observation holds for both channel and slot orifice shapes.
In contrast, highly turbulent approach flows of vertical slots cause flow velocities to be
significantly overestimated by a RANS model. For RANS models, turbulence is transported
as scalars (here k and ω) and it is not possible to resolve the turbulent quantities in the time-
averaged mean flow. Consequently, the physical processes are not resolved as evidenced
by the fact that the RANS simulations for both approach flows of the slot are similar.
To apply other two-equation RANS models than the k-ω SST model we used would not
enhance RANS because the turbulent quantities would still not be resolved. Reynolds Stress
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Models can be used to improve the simulation of surface currents due to the anisotropy of
turbulence but the oscillations are also not represented by these models.

RANS model predictions improve progressively as turbulent fluctuations play a
reduced role in jet propagation. This is the case for the investigated jet when the lateral wall
is in a short distance from the slot. RANS models can better resolve the flow after having
been attached to a lateral wall. The remaining differences arise because we simulated an
offset jet and therefore the influence of the wall is not present until the flow attaches to
the wall. Until this occurs, fluctuating forces dominate which are not resolved by RANS.
For pure wall jets with no offset to the wall, RANS modeling showed good agreement to
experimental data for velocity distributions [40]. In summary, RANS simulations may be
appropriate as long as turbulent fluctuations are not the predominant driver of the flow.
Modelers who use RANS for inhomogeneous, highly turbulent approach flows should be
aware that the length of jet propagation may be overestimated.

Analytical methods for nozzle jets do not represent the submergence effect at slots but
may be used to predict the evolution of centerline velocities in the axisymmetric region for
slot jets with a homogeneous approach flow. However, the equations with the given shape
parameters do not represent jet propagation of slots with an inhomogeneous approach
flow, as shape parameters are calibrated to the boundary conditions given by nozzles that
differ in orifice geometry and approach flow.

Summarizing, the results show that the combination of a vertical slot with an inho-
mogeneous and turbulent approach flow typical for fishway entrances reduces the length
of attraction flow compared to homogeneous approach flows. If this effect is ignored—
either by applying RANS simulations or by using analytical equations for homogeneous
conditions— the attraction flow propagation may be overestimated. As a consequence,
the actual attraction flow might be shorter than planned, and the functionality of the
fishway might be reduced. The propagation length overestimation is strongly reduced
by the existence of a lateral wall in the tailwater. Possibilities to adapt existing analytical
equations to jets with an inhomogeneous approach flow include application of constant
correction factors or adjustment of shape parameters of the equations. The same applies
to jets with an inhomogeneous approach flow and the existence of a lateral wall in the
tailrace.

5. Conclusions

We used numerical investigations (RANS and DES) to assess the impact of different
boundary conditions present at vertical slot fishways on attraction flow propagation. The
results were compared with established analytical jet propagation approaches. Further-
more, we compared results of DES and RANS simulations to investigate the accuracy of
RANS models. The main findings are summarized as follows:

• The impact of a slot with a homogeneous approach flow on jet propagation is limited
to the near-field downstream of the orifice.

• Inhomogeneous approach flow of fishways in combination with an entrance slot may
reduce propagation length of attraction flow about 50% because of increased lateral
spreading.

• A lateral wall in the tailrace enhances the propagation length for a slot set-up with an
inhomogeneous approach flow so that length reduction is compensated and propaga-
tion of attraction flow is 20% farther downstream than that of a jet with a homogeneous
approach flow without a wall.

• Existing analytical methods cannot readily be applied for fishway attraction flow
assessment in the presence of a slot and an inhomogeneous approach flow.

• Our results may be applied to provide useful correction factors to account for the
inhomogeneous approach flow in combination with slot geometry and the river bank
effect for determination of the fishway attraction flow [5].

• DES models resolved the effects of a slot and inhomogeneous, highly turbulent ap-
proach flow on jet propagation.
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• RANS simulations performed for jets with inhomogeneous and turbulent approach
flow overestimated jet propagation in the tailrace.

• The RANS model yielded a more reliable propagation assessment in the presence of a
wall or for a homogeneous approach flow.

Our studies of flow properties focused on an idealized geometry of the fishway
entrance to study flow properties, although being faced with a large variety of other
design possibilities. For future research, we recommend the investigation of additional
configurations of existing fishway entrances to enhance the understanding of the influence
of slot approach flows. Moreover, we recommend future investigations into different
entrance pool designs to identify designs that increase jet propagation lengths with reduced
attraction flows.
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