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Abstract: Polluted sediments limit the useful and biotic life of a water reservoir. Therefore, the
classification and verification of the contamination and pollution levels of water reservoirs are
essentials for the preservation of the biota and to organize the actions of environmental management.
Thus, the aim of this study is to determine the concentrations of potentially toxic metals [lead
(Pb), zinc (Zn), nickel (Ni), copper (Cu), and cadmium (Cd)] in sediment samples collected in the
water reservoir of the Foz do Rio Claro Hydroelectric Power Plant (FRCHEPP) and estimate the
contamination level by using the geoaccumulation index (Igeo). All results were compared with
the values established by the CONAMA Resolution 454/2012. The Cu and Cd concentrations in
the sediment samples were above Level II for most of the analyzed points in comparison with the
data of the CONAMA resolution, being classified as poor quality sediments. Moreover, the Igeo
values indicated potential pollution of the water reservoir sediment by Cu and Cd. Hence, the water
reservoir was classified between moderately and extremely polluted. From this work it is possible
to conclude that the frequent monitoring of the sediment quality in the FRCHEPP water reservoir
is an indispensable action for periodic evaluation of the hydrographic basin quality in the study
region, considering its importance as water supply and power generation for the state of Goiás, Brazil.
Overall, the results of this work can be important to study other water reservoirs around the world.

Keywords: toxic metal; water; reservoir; contamination; environment

1. Introduction

Hydroelectric power plants (HEPP) are the main sources of electricity generation in
Brazil. This type of hydraulic enterprise leads to the formation of large water non-natural
reservoirs, resulting in hydrological, atmospheric, and biological changes in environmental
sites. HEPP causes environmental impacts during and after their construction due to
changes in the model of use and occupation in the watershed region [1–3]. However, the
importance and role of hydraulic enterprises for either soil irrigation or electricity genera-
tion are indisputable. Generally, the construction of HEPP alters the fluvial dynamics of
watercourses and sediment transports, which are deposited in the water non-natural reser-
voirs. Hence, potentially toxic metals existing in hydrographic basins are also deposited in
these environmental sites [4–6]. The water contamination by toxic metals is a worldwide
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issue due to high amount of HEPP constructed in the last years, and, lack of environmental
politics for the monitoring and management of HEPP direct influence areas [7].

Metals as Cr, Ni, Cu, Zn, Cd, Pb, and Hg are potentially toxic species that can be
anthropologically transferred to aquatic and terrestrial organisms, changing the natural
biodiversity [5]. Metals as Cu, Zn, and Ni can appear in the environment due to the
pesticide use in agricultural crops as these metals are essential micronutrients for the plant
growth [8,9]. Most of the fertilizers applied on agriculture and livestock has different
metal concentrations, which are toxic at high concentrations [9]. These metals are easily
transported for water bodies after leaching and precipitation processes in soils [10]. The
excessive accumulation of toxic metals in water reservoirs, animals, and plants alters the
food chain, generating harmful effects for the human beings [11,12]. Therefore, the quality
of waters and sediments is determined according to the land use and cover in the watershed
region [8]. High metal concentrations in water, soil, and sediment due to anthropological
activities cause harmful effects on the biota [13–16]. Phosphate-based fertilizers employed
in agropastoral activities generally have potentially toxic metal (Pb, Al, Cd, Cu, Fe, Zn, Ni,
Mn, Cr) and radionuclide (232Th and 40K) contents, being one of the main anthropological
sources of environmental site pollution [17–19].

Potentially toxic metal concentrations in sediments are commonly used for establishing
the contamination and pollution levels of aquatic ecosystems [6]. These information are
widely discussed with the use of statistical tools, error mathematical models, and standards
explaining the environmental problems occurring in water reservoirs [3,6,19]. The toxic
metals concentration in water reservoir sediments is useful to indicate the pollution degrees
and sources of some pollutants such as Pb, Cd, and Zn [20]. These studies are also important
to define pollution sources from industrial effluents, household waste slurries, agriculture
activities, and land uses [21]. Environmental pollution and contamination levels of soils
and sediments by toxic metals and radionuclides can be quantified by determining the
pollutant concentration, estimating the existing risk for the human, plant, and animal
health, and determining the accumulation degree during different periods of time [22–24].

The CONAMA resolution 454/2012 establishes maximum allowed concentrations
of toxic metals in the environment to be considered non-polluted site. These values are
then used for predicting the water and sediment contamination levels. The environmental
site is not polluted when the metal concentration is below the allowed limit (Level I). In
this case, there is lower probability of harmful effects on the biota. On the contrary, the
environmental site is polluted when the metal concentration is above the allowed limit
(Level II). In this case, there is higher probability of harmful effects on the biota [25]. One
of the most used parameters for the evaluation of environmental impacts on the biota is
the geoaccumulation index (Igeo) [26]. Igeo is commonly useful to determine the pollution
degree, and it helps in the identification of polluting sources [14,27–31].

Thus, the aim of this study is to determine the concentrations of potentially toxic metals
(Pb, Zn, Ni, Cu, Hg, and Cd) in sediment samples collected in the water reservoir of the
Foz do Rio Claro Hydroelectric Power Plant (FRCHEPP), and estimate the contamination
level by using the geoaccumulation index (Igeo). The FRCHEPP water reservoir was
selected due to the land use and occupation on the Rio Claro hydrographic basin region.
Currently, there are intense agricultural activities with sugarcane production, and several
hydroelectric plant projects for construction in this region.

2. Material and Methods
2.1. Study Area

The FRCHEPP water reservoir is located between the municipalities of São Simão
and Caçu, in the state of Goiás, Brazil (Figure 1). This enterprise occupies a total area of
approximately 7.69 km2, with average water residence time of 4.9 days. The FRCHEPP
is working since January 2010, generating 64.8 MW of electric energy for the country.
The direct influence area of the FRCHEPP water reservoir is geologically located in the
Paraná sedimentary basin, with two large lithostratigraphic groups: i) basalts of the serra
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geral formation of the são bento group, and ii) sandstones of the vale do rio do peixe
formation of the bauru group [32]. This basin has soils with slopes ranging from flat to
gently undulated [32]. The rainy season is from October to April, with higher rainfall
indices ranging from 80 to 500 mm/month. The drier period lasts from May to September.
Overall, this area is classified as Awa, tropical savannah, mesothermal. The average annual
rainfall indices range from 1400 to 1750 mm. The main activities in this area are livestock
and agriculture (sugarcane, maize, and soybean crops) [33].
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2.2. Sample Preparation and Analysis Methods

Twelve points were selected for collecting sediment samples in the FRCHEPP water
reservoir as shown in Figure 1. The sampling points were defined by satellite images
with the aim of covering different water reservoir regions. All the sediment samples were
collected on January, a period with high rainfall indices in the Brazilian Cerrado. This
experiment was performed using a Kajak-type bottom sediment sampler. The collected
samples were dried at room temperature for 30 days [34]. Afterwards, 50 g aliquots were
added to digestion tubes, followed by the addition of approximately 9 mL of HNO3 and
3 mL of sub-distilled HCl [35]. These tubes were placed in a microwave (Ethos UP brand,
Millestone) for 30 min for acidic digestion. Finally, these systems were removed from the
microwave oven for cooling and filtering. The cold supernatants were transferred to 50-mL
volumetric flasks, filling to the maximum volume with Milli-Q® water, and left at 4 ◦C prior
to the metal determination by inductively coupled plasma optical emission spectrometry
(ICP-OES: PERKIN ELMER brand, OPTIMA 8300 DV model) [35]. Detection limits of the
ICP-OES: Cu (0.52 mg kg−1); Zn (0.57 mg kg−1); Ni (0.18 mg kg−1); Cd (0.13 mg kg−1); Pb
(0.81 mg kg−1). The ICP-OES calibration solutions were prepared from 1000 mg L−1 stock
standard metal solutions. Recovery tests were performed to guarantee the analytical quality
control of the sample preparation and analysis methods. All experiments were performed
in triplicate. The metal concentrations in the FRCHEPP water reservoir sediments were
compared with those established by the CONAMA Resolution n◦ 454/2012 (Table 1).
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Table 1. Elements concentration established by the CONAMA Resolution n◦ 454/2012 for Level I and II.

Classification Level Ni Cd Pb Cu Zn

Level I (mg kg−1) 18.0 0.6 35.0 35.7 123.0
Level II (mg kg−1) 35.9 3.5 91.3 197.0 315.0

2.3. Organic Matter (OM) Content

The organic matter (OM) content was determined by measuring 1.0 g crushed sedi-
ment weights. These samples were calcinated in a muffle furnace at 500 ◦C for 4 h. Next,
the remaining ashes were cooled in moisture-free environment; with the OM contents
calculated using Equation (1):

OM =
Wd − Wm

Wd
× 100 (1)

in which, Wd is the total dried sample weight (mineral + OM), and Wm is the dried sample
weight (mineral particles).

2.4. Geoaccumulation Index (Igeo)

The geoaccumulation index (Igeo) was determined using Equation (2) [26]:

Igeo =
log2Cn

1.5 × CBn
(2)

in which, Cn is the metal concentration in the sediment fine fraction to be classified, CBn is
the average metal geochemical background concentration, and 1.5 is the correction factor
for possible background variations caused by lithological differences.

Table 2 shows classification parameters for the sediment sample quality according to
the geoaccumulation index.

Table 2. Classification parameters for the sediment sample quality according to the geoaccumulation
index (Igeo).

Description of the Sediment Quality Classification Igeo Igeo Value

Extremely polluted 6 Igeo > 5
Strongly to extremely polluted 5 4 < Igeo < 5

Strongly polluted 4 3 < Igeo < 4
Moderately to strongly polluted 3 2 < Igeo < 3

Moderately polluted 2 1 < Igeo < 2
Not polluted to moderately polluted 1 0 < Igeo < 1

Practically not polluted 0 Igeo ≤ 0

The regional background values for Igeo were established based on the lowest natural
metal concentration in the environment [36]. These values are shown in Table 3.

Table 3. Background values used for Igeo calculations in the sediment samples.

Background Values Ni Cd Pb Cu Zn

5.41 1.74 3.08 18.15 26.38

2.5. Particle Size Analysis

The particle size analysis was performed by placing the collected sediment samples in
an oven at 105 ◦C for approximately 48 h. Next, the samples were pounded to break up
clods and sieved using a 2-mm granulometric sieve, separating the sand fraction. The total
clay fraction (diameter lower than 0.002 mm) was determined by pipetting following the
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Stokes’ Law, whereas the silt fraction (diameter from 0.05 to 0.002 mm) was calculated by
the difference between the sum of sand and total clay fraction.

2.6. Linear Regression

The association and interference degree among the study variables was evaluated by
linear regression. This correlation was conducted at intervals ranging from +1 to −1, and
the base information are shown in Table 4 [37].

Table 4. Linear correlation coefficient intervals for explaining the association and interference degree
among the study variables.

Correlation Coefficient Correlation

r = 1 Perfect positive
0.7 ≤ r < 0.9 Strong positive
0.4 ≤ r < 0.7 Moderate positive
0.1 ≤ r < 0.4 Weak positive

0 Null
−0.4 < r ≤ −0.1 Weak negative
−0.7 < r ≤ −0.4 Moderate negative
−1 < r ≤ −0.7 Strong negative

r = −1 Perfect negative

The correlation coefficient significance was evaluated using the Student test (t) with
critical distribution for twelve samples, freedom degree for ten samples of 2.764, and
significance level of 98%.

3. Results and Discussion

Table 5 shows the pH values, cation exchange capacities, organic matter, clay, silt and
sand contents, and metal concentrations in the FRCHEPP water reservoir sediment samples.

Table 5. pH values, cation exchange capacities (CEC: cmolc kg−1), organic matter (OM: %), clay (%),
silt (%), and sand (%) contents, and metal concentrations (mg kg−1) in the FRCHEPP water reservoir
sediment samples.

Points Pb Zn Ni Cu Cd pH CEC OM Clay Silt Sand

1 3.080 26.38 5.410 18.15 1.741 5.50 2.400 2.28 0.79 2.20 97.0
2 16.86 71.67 18.41 57.24 5.470 4.60 17.40 6.85 45.0 44.2 10.8
3 18.49 59.52 18.39 80.39 5.762 4.50 13.30 7.03 15.0 75.3 9.70
4 25.57 59.49 25.37 80.32 7.621 4.50 21.40 4.55 36.0 39.3 24.7
5 24.58 56.43 24.04 76.88 7.720 4.50 24.00 4.90 13.0 80.0 7.00
6 32.60 122.0 37.18 160.5 9.630 4.80 20.20 3.25 24.0 65.6 10.4
7 32.86 159.6 35.23 201.9 15.53 4.60 21.30 6.89 38.0 54.3 7.70
8 22.13 48.96 23.05 52.67 4.490 4.50 15.90 8.02 13.0 58.6 28.4
9 35.02 137.8 40.30 150.3 14.04 4.70 22.80 2.70 38.0 30.1 31.9

10 32.27 132.3 34.86 152.7 13.18 4.70 19.40 2.31 14.0 61.9 24.1
11 31.79 119.3 31.49 133.6 13.49 4.60 19.90 10.5 33.0 44.2 22.8
12 31.42 63.33 31.82 75.54 6.801 4.60 16.30 1.55 7.00 42.4 50.6

The pH values (from 4.50 to 5.50) of the sediment samples during the study period
indicated an acidic environment. This result is associated with the types of soils in the
water reservoir direct influence area. In this case, the dystrophic red latosol (type of oxisol)
found in this region have base saturation lower than 50% in the first 100 cm of the B horizon,
whereas the dystroferric red latosol (type of oxisol) have base saturation higher than 50%,
with presence of high Fe2O3, MnO, and TiO2 contents [38]. Overall, the pH values were
similar to those determined in latosols from dense Cerrado in the Goiás southwest and
native Forests in the state of Para, Brazil [39,40].
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The lowest OM content was noticed in the sampling point 12, whereas the highest OM
content was noticed in the sampling point 11. There are several phenolic and carboxylic
functional groups in OM interacting with metal cations via ionic bond or complexation
reaction, increasing the metal concentration in sediments [29]. However, these interactions
were not predominant as at acidic pH the carboxylic groups tend to be protonated, de-
creasing the intermolecular interaction forces with metal cations. In this condition, the
metallic species are bioavailable, being possibly toxic for the environment. The OM content
variations can be associated to the presence of allochthonous materials deposited in the
water reservoir, which transported considerable metal concentrations [3].

The CEC values ranged from 2.400 (point 1) to 24.00 cmolc kg−1 (point 5), indicating
that most of sediment samples has high cation exchange capacity. High CEC values can
be useful to adsorb metals and mitigate environmental impacts in water reservoirs [41].
Moreover, high silt, clay, and OM contents favor the metal cation adsorption in the sediment
structure, decreasing the metal concentration in water. This can decrease the environmental
impact due to presence of anthropological actions in hydrographic basin direct influence
areas [42].

Figure 2 shows the Pb concentration (a) and geoaccumulation index (b) for the
FRCHEPP water reservoir sediment samples.

Water 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

The pH values (from 4.50 to 5.50) of the sediment samples during the study period 
indicated an acidic environment. This result is associated with the types of soils in the 
water reservoir direct influence area. In this case, the dystrophic red latosol (type of 
oxisol) found in this region have base saturation lower than 50% in the first 100 cm of the 
B horizon, whereas the dystroferric red latosol (type of oxisol) have base saturation 
higher than 50%, with presence of high Fe2O3, MnO, and TiO2 contents [38]. Overall, the 
pH values were similar to those determined in latosols from dense Cerrado in the Goiás 
southwest and native Forests in the state of Para, Brazil [39,40]. 

The lowest OM content was noticed in the sampling point 12, whereas the highest 
OM content was noticed in the sampling point 11. There are several phenolic and car-
boxylic functional groups in OM interacting with metal cations via ionic bond or com-
plexation reaction, increasing the metal concentration in sediments [29]. However, these 
interactions were not predominant as at acidic pH the carboxylic groups tend to be pro-
tonated, decreasing the intermolecular interaction forces with metal cations. In this con-
dition, the metallic species are bioavailable, being possibly toxic for the environment. The 
OM content variations can be associated to the presence of allochthonous materials de-
posited in the water reservoir, which transported considerable metal concentrations [3]. 

The CEC values ranged from 2.400 (point 1) to 24.00 cmolc kg−1 (point 5), indicating 
that most of sediment samples has high cation exchange capacity. High CEC values can 
be useful to adsorb metals and mitigate environmental impacts in water reservoirs [41]. 
Moreover, high silt, clay, and OM contents favor the metal cation adsorption in the 
sediment structure, decreasing the metal concentration in water. This can decrease the 
environmental impact due to presence of anthropological actions in hydrographic basin 
direct influence areas [42]. 

Figure 2 shows the Pb concentration (a) and geoaccumulation index (b) for the 
FRCHEPP water reservoir sediment samples. 

(a) (b) 

  
Figure 2. Pb concentration (a) and geoaccumulation index (b) for the FRCHEPP water reservoir sediment samples. 

The Pb concentration in the FRCHEPP water reservoir sediment samples was lower 
than that established by the CONAMA Resolution 454/2012 (35 mg kg−1), and this envi-
ronmental site was classified as Level I for Pb [43]. Moreover, these samples were classi-
fied between the classes 1 to 6 according to the Igeo value. The lowest Pb concentration 
(point 1) was 3.080 mg kg−1, whereas the highest Pb concentration (point 9) was 35.02 mg 
kg−1. In this case, the Pb pollution level in the FRCHEPP water reservoir sediment sam-
ples was defined from not polluted to extremely polluted depending on the sampling 
point. The high sand content (97.0%) in the point 1 can be responsible for the lower Pb 
concentration as this sediment does not have the ability for adsorbing and 
pre-concentrating metals. Overall, there are lower influences of clays, hydroxides, oxides, 
humic acids, and colloids in the metal adsorption with higher sand contents. Higher silt, 

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10 11 12

(m
g 

kg
-1

)

sampling point

Concentration

level I

level II

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12

Ge
oa

cu
m

ul
at

io
n 

in
de

x

sampling point

qualitative
scale

not polluted
to moderately
polluted
moderately
polluted

moderately to
strongly
polluted
strongly
polluted

strongly to
extremely
polluted
extremely
polluted

Figure 2. Pb concentration (a) and geoaccumulation index (b) for the FRCHEPP water reservoir sediment samples.

The Pb concentration in the FRCHEPP water reservoir sediment samples was lower
than that established by the CONAMA Resolution 454/2012 (35 mg kg−1), and this envi-
ronmental site was classified as Level I for Pb [43]. Moreover, these samples were classified
between the classes 1 to 6 according to the Igeo value. The lowest Pb concentration (point 1)
was 3.080 mg kg−1, whereas the highest Pb concentration (point 9) was 35.02 mg kg−1. In
this case, the Pb pollution level in the FRCHEPP water reservoir sediment samples was
defined from not polluted to extremely polluted depending on the sampling point. The
high sand content (97.0%) in the point 1 can be responsible for the lower Pb concentration
as this sediment does not have the ability for adsorbing and pre-concentrating metals.
Overall, there are lower influences of clays, hydroxides, oxides, humic acids, and colloids
in the metal adsorption with higher sand contents. Higher silt, clay, and OM contents
increase the cation adsorption capacity of sediments, whereas lower silt and clay contents
decrease the cation adsorption capacity [44].

The Pb concentrations in the FRCHEPP water reservoir sediment samples were similar
to those found for six water reservoirs (values ranging from 2.6 to 17.6 mg kg−1) in
Poland [6]. High Pb concentrations found in the Rio do Peixe hydrographic basin were
associated with the presence of industrial regions. This result was different from those
determined in the FRCHEPP water reservoir sediment samples due to the absence of
industrial district in the study direct influence area. As it is not common to find Pb in
the basalts of the serra geral formation of the são bento group, and sandstones of the
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vale do rio do peixe formation of the bauru group (study direct influence area) [16], the
Pb concentrations can have been originated from agricultural pesticides [45]. However,
urban wastes could increase the Pb concentrations in hydrographic basins near urban
areas [22]. According to the Igeo values, the sediments in the points 6, 7, 9, 10, 11, and
12 were classified as extremely polluted. The high metals concentration observed at these
sampling sites were mainly associated to anthropogenic activities at the hydrographic basin
and more specifically to livestock and agriculture activities. Moreover, lower watercourse
speed and higher sediment residence time in these points favor the deposition of thinner
particles in the bottom of the water reservoir, increasing the metal adsorption capacity.
The pollution levels in the sampling points from 6 to 12 can also be associated to reservoir
geometry facilitating the silt and clay deposition, and decreasing the suspended solid
content. These pollution indices can cause harmful effects on humans such as cancer and
neurological problems [46].

Figure 3 shows the Zn concentration (a) and geoaccumulation index (b) for the
FRCHEPP water reservoir sediment samples.

Water 2021, 13, x FOR PEER REVIEW 7 of 14 
 

 

clay, and OM contents increase the cation adsorption capacity of sediments, whereas 
lower silt and clay contents decrease the cation adsorption capacity [44]. 

The Pb concentrations in the FRCHEPP water reservoir sediment samples were 
similar to those found for six water reservoirs (values ranging from 2.6 to 17.6 mg kg−1) in 
Poland [6]. High Pb concentrations found in the Rio do Peixe hydrographic basin were 
associated with the presence of industrial regions. This result was different from those 
determined in the FRCHEPP water reservoir sediment samples due to the absence of 
industrial district in the study direct influence area. As it is not common to find Pb in the 
basalts of the serra geral formation of the são bento group, and sandstones of the vale do 
rio do peixe formation of the bauru group (study direct influence area) [16], the Pb con-
centrations can have been originated from agricultural pesticides [45]. However, urban 
wastes could increase the Pb concentrations in hydrographic basins near urban areas [22]. 
According to the Igeo values, the sediments in the points 6, 7, 9, 10, 11, and 12 were clas-
sified as extremely polluted. The high metals concentration observed at these sampling 
sites were mainly associated to anthropogenic activities at the hydrographic basin and 
more specifically to livestock and agriculture activities. Moreover, lower watercourse 
speed and higher sediment residence time in these points favor the deposition of thinner 
particles in the bottom of the water reservoir, increasing the metal adsorption capacity. 
The pollution levels in the sampling points from 6 to 12 can also be associated to reservoir 
geometry facilitating the silt and clay deposition, and decreasing the suspended solid 
content. These pollution indices can cause harmful effects on humans such as cancer and 
neurological problems [46]. 

Figure 3 shows the Zn concentration (a) and geoaccumulation index (b) for the 
FRCHEPP water reservoir sediment samples.  

(a) (b) 

  
Figure 3. Zn concentration (a) and geoaccumulation index (b) for the FRCHEPP water reservoir sediment samples. 

The Zn concentration for nine sampling points was lower than 123 mg kg−1, inferring 
that these sediment samples are classified as Level I according to the CONAMA Resolu-
tion 454/2012. From Igeo values, the pollution levels were classified between the classes 1 
to 4 (from not polluted to strongly polluted), being just the points 7 and 9 considered 
strongly polluted. These results were similar to those found in the Itá, Cogotí, Corrales, 
La Paloma, and Recoleta water reservoirs [47]. In these cases, the authors concluded that 
there were no values considered harmful for the environment in 9 sampling points. 
However, such studies also demonstrated concern as contaminated sediments could be 
harmful for the surface water and human health [48]. The highest Zn pollution levels in 
the FRCHEPP water reservoir sediment samples were noticed in the sampling points 7, 9, 
and 10 (degrees between 3 and 4), indicating possible contamination in the study direct 
influence area. Higher Zn concentrations in the sampling points 7, 9, and 10 (near the 
dam) were related with the deposition of silt, clay, OM, and humic acid in the bottom of 

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

(m
g 

kg
-1

)

sampling point

Concentration

level I

level II

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

Ge
oa

cu
m

ul
at

io
n 

in
de

x

sampling point

qualitative scale

not polluted to
moderately
polluted
moderately
polluted

moderately to
strongly polluted

strongly polluted

strongly to
extremely polluted

extremely polluted

Figure 3. Zn concentration (a) and geoaccumulation index (b) for the FRCHEPP water reservoir sediment samples.

The Zn concentration for nine sampling points was lower than 123 mg kg−1, inferring
that these sediment samples are classified as Level I according to the CONAMA Resolution
454/2012. From Igeo values, the pollution levels were classified between the classes 1
to 4 (from not polluted to strongly polluted), being just the points 7 and 9 considered
strongly polluted. These results were similar to those found in the Itá, Cogotí, Corrales,
La Paloma, and Recoleta water reservoirs [47]. In these cases, the authors concluded
that there were no values considered harmful for the environment in 9 sampling points.
However, such studies also demonstrated concern as contaminated sediments could be
harmful for the surface water and human health [48]. The highest Zn pollution levels in
the FRCHEPP water reservoir sediment samples were noticed in the sampling points 7, 9,
and 10 (degrees between 3 and 4), indicating possible contamination in the study direct
influence area. Higher Zn concentrations in the sampling points 7, 9, and 10 (near the dam)
were related with the deposition of silt, clay, OM, and humic acid in the bottom of the water
reservoir due to lower water flow speed. This favored the Zn adsorption and increased its
concentration in the sediment samples due to reservoir geometry as previously discussed
for Pb analysis. As Zn is also not naturally found in the geological formation of the study
area, its presence can be originated from agricultural activities [45].

Figure 4 shows the Ni concentration (a) and geoaccumulation index (b) for the
FRCHEPP water reservoir sediment samples.

The Ni concentration in the sampling points 6 and 9 of the FRCHEPP water reservoir
was higher than that established by the CONAMA resolution 454/2012 [43], being classified
as Level II (values higher than 35.9 mg kg−1). The sampling points from 1 to 5, 7 to 8, and
10 to 12 were classified as Level I, inferring that there are lower possibilities of harmful
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effects on the biota in these situations. According to the Igeo values, most of study points
were classified from moderately polluted to strongly polluted. However, the sampling
point 9 was considered from strongly to extremely polluted, corroborating the Zn and Pb
results. The highest Ni concentration was determined in the sampling point 9, which has
pH 4.70, CEC 22.80 cmolc kg−1, OM content of 2.70%, sand content of 31.9% and silt plus
clay content of 68.1%. The lowest Ni concentration was determined in the sampling point 1,
with lower pH, CEC and silt plus clay content, confirming the occurrence of different
interactions between Ni and sediment. The Ni concentration found in the study sampling
points can be originated from weathering processes of basaltic rocks of the Serra Geral
Formation [16]. Moreover, the agricultural activities in the Brazilian Cerrado contribute to
the appearance of metals in soil due to the presence of metal sulfate in agricultural inputs.
There is no information on mining activities with Ni in the study area when studying
the Madeira River basin and fluvial systems of the Iron Quadrangle [36]. Possible Ni
anthropological sources in hydrographic basin direct influence areas include urban and
industrial wastes as described elsewhere [49–51]. In this sense, the high Ni concentration
in the sampling point 2 could be associated to the discharge of urban wastes from the
Itaguaçu city, in the state of Goiás, Brazil. The Ni pollution levels in this study worry as
the intake of foods contaminated with this metal lead to harmful effects on the biota and
human health [7,52].
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Figure 5 shows the Cu concentration (a) and geoaccumulation index (b) for the
FRCHEPP water reservoir sediment samples.
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Figure 5. Cu concentration (a) and geoaccumulation index (b) for the FRCHEPP water reservoir sediment samples.
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The Cu concentration determined in the FRCHEPP water reservoir sediment samples
ranged from approximately 20 to 205 mg kg−1. The sampling point 7 was classified
as Level II (values higher than 197 mg kg−1), whereas the sampling points from 2 to 6,
and 8 to 12 were classified as Level I (values higher than 35.7 mg kg−1). The sampling
point 1 was considered not polluted (values lower than 35.7 mg kg−1) according to the
CONAMA Resolution 454/2012 [43]. From geoaccumulation index values, the FRCHEPP
water reservoir sediment samples were classified from not polluted to extremely polluted,
depending on the sampling point. The highest Cu concentration was determined in the
sampling point 7 due to the high CEC (21.30 cmolc kg−1) value, and high OM (6.89%)
and silt plus clay (92.3%) contents [53]. Sediments having high OM, silt and clay contents
adsorb high metal amounts due to the presence of active chemical groups in the material
structure. This facilitates the transfer of pollutants from river water to solid matrices. The
lowest Cu concentration was determined in the sampling point 1 due to the high sand
content (97.0%). Moreover, acidic media (pH = 5.50) favor the carboxylic group protonation
in the sediment structure, decreasing the cation adsorption capacity of the solid material.
Suspended solids, high watercourse speed, and shallow soil depth decrease the metal
concentrations in bottom sediment samples [54]. Generally, higher Cu concentrations are
determined near to dam areas due to lower water flow speed when comparing with other
reservoir sectors. In this case, longer sediment residence times in the water reservoirs
facilitate the metal adsorption in the solid materials. Sometimes, high Cu concentrations
in either water or sediment is the result of the metal bioavailability [19]. This species can
appear in the environment due to the presence of CuSO4 used to control the phytoplankton
(cyanobacteria) growth [55]. But, it is not a predominant factor in the FRCHEPP water
reservoir area. However, the basalt soil mineralization could be a possible source of Cu
origin in the study area [56]. Although Cu is essential for both plants and humans, high
dosages in human organisms cause Wilson’s disease, intestinal and hepatic inflammation,
hemolysis, and hyperglycemia [57,58]. On the contrary, Cu deficiency causes osteoporosis,
white blood cell deficiency, and immune system problems [59,60].

Figure 6 shows the Cd concentration (a) and geoaccumulation index (b) for the
FRCHEPP water reservoir sediment samples.
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The Cd concentration in the sampling points from 2 to 12 of the FRCHEPP water
reservoir was higher than that value established by the CONAMA Resolution 454/2012,
being classified as Level II (values higher than 3.5 mg kg−1) [43]. These Cd concentrations
potentially cause harmful effects on the biota. From geoaccumulation index values, the
sediment samples from 1 to 6, 8 and 12 were classified from not polluted to strongly
polluted. Moreover, the sampling points 7, 9, 10, and 11 were classified from strongly to
extremely polluted. The highest Cd concentration was determined in the sampling point 7,
whereas the lowest Cd concentration was determined in the sampling point 1. Similar
results were noticed for Zn and Cu in this work. This confirms that the reservoir geometry,
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water diffusion speed, and bottom sediment deposition influence the metal pollution
indices in the FRCHEPP water reservoir. Higher Cd concentrations in the sampling
point 7 can also be associated to the high CEC (21.30 cmolc kg−1) value, and OM (6.89%),
silt plus clay (92.3%) contents. Similar results were determined in the Bonsucesso Lake
located in the Rio Claro hydrographic basin in the state of Goiás, Brazil [61]. This basin
is approximately 200 km from the FRCHEPP direct influence area. Moreover, studies in
the Guarapiranga and Rio Grande reservoirs indicated that agropastoral anthropological
activities are possible Cd pollution sources [3] as occurred in the FRCHEPP direct influence
area. Cd pollution is commonly a result of either urban or rural activities in different
countries [62,63]. Overall, the Cd concentrations determined in the FRCHEPP water
reservoir sediments are potentially harmful to the environment. The Cd origin in the study
area is mainly from anthropological sources due to the absence of Cd in the geological
formation of the FRCHEPP water reservoir [64].

Correlations among physical and chemical variables determined in sediment samples
were evaluated using the Pearson correlation coefficient (p < 0.02). Table 6 shows the
correlation results for the study variables.

Table 6. Correlation results for the study variables.

Pb Zn Ni Cu Cd pH CEC OM Clay Silt Sand
Pb 1000
Zn 0.785 * 1000
Ni 0.982 * 0.839 * 1000
Cu 0.820 * 0.971 * 0.858 * 1000
Cd 0.841 * 0.951 * 0.853 * 0.938 * 1000
pH −0.566 −0.202 −0.451 −0.260 −0.320 1000

CEC 0.825 * 0.590 0.779 * 0.629 0.696 * −0.748
* 1000

OM −0.013 0.058 −0.103 0.040 0.109 −0.449 0.155 1000
Clay 0.388 0.544 0.402 0.468 0.527 −0.403 0.583 0.398 1000
Silt 0.387 0.171 0.309 0.296 0.197 -0.711* 0.542 0.288 −0.016 1000

Sand −0.542 −0.452 −0.486 −0.512 −0.464 0.821 * −0.782
* −0.466 −0.554 −0.823

* 1000

Correlation
Perfect Strong Moderate Weak Null

=1 0.7≤ r <0.9 0.4≤ r <0.7 0.1≤ r <0.4 0
* Significance level of 98%.

The correlations among Pb, Zn, Cu, and Cd with silt in the sediment samples were
positive and weak, confirming that the increase in the silt content increases the metal
adsorption capacity of the sediment samples. There is a stronger interaction tendency
between Ni and silt due to positive moderate correlation. Positive correlations were also
observed among metals and clay, with moderate intensities for Zn, Ni, Cu, and Cd. Signifi-
cant positive correlations were recorded elsewhere for Hg and Pb at similar conditions [65].
The correlations among Pb, Zn, Ni, Cu, and Cd with sand were negative and moderate,
indicating that the increase in the sand content decreases the metal accumulation capacity
in the environment.

Strong correlations were noticed among CEC, Pb, and Ni, whereas moderate correla-
tions were noticed among CEC, Zn, Cu, and Cd. Positive strong correlations were noticed
with sand, and negative correlations with silt and clay. The clay content in sediment is
crucial for metal adsorption due to the presence of active interaction groups in the solid ma-
terial. It can be important to mitigate environmental impacts in hydrographic basins. Clays
contained in tropical soils have mainly Fe and Al oxides for the occurrence of interactions
with pollutants [66].

The correlations among metals, pH, and OM were not significant, as also described
in other studied soils [67], due to probably lower metal concentrations extracted from
sediment masses in strongly acidic medium. There were no significant correlations among
Pb, Zn, Ni, Cu, and Cd, indicating the possible adsorption processes in oxyhydroxides [68].
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Interactions among metals are normally affected by the atomic mass, ionic radius, and
oxidation state of the chemical species [69]. The correlation coefficient values determined in
the studies of the FRCHEPP water reservoir sediments were similar to those determined for
surface sediments of the Awash River hydrographic Basin, Ethiopia [70]. High correlation
coefficients for interactions among metals indicate the presence of similar contamination
sources. Although these correlations do not necessarily point out a cause-effect relationship,
they suggest a possible similar contamination source due to the use of agrochemicals in
agropastoral activities [71].

4. Conclusions

The Foz do Rio Claro hydroelectric power plant water reservoir sediment samples
were classified as Level I for Pb and Level II for Cd, according to CONAMA resolution
454/2012. Overall, lower metal concentrations were determined in sediments containing
higher sand content, acidic pH, and lower OM content due to decreased metal adsorption
capacity. On the contrary, higher metal concentrations were determined in sediments
containing higher silt, clay, and OM contents, in addition to higher CEC values. According
to Igeo classification, the Pb and Ni pollution levels in the Foz do Rio Claro hydroelec-
tric power plant water reservoir sediments were classified from moderately polluted to
strongly polluted. Moreover, the Zn and Cu pollution levels were classified from moder-
ately to strongly polluted, and strongly to extremely polluted. Finally, the Cd pollution
level was classified from not polluted to moderately polluted or strongly polluted. This
demonstrates that further studies should be conducted to investigate the polluting-metal
origin. Some high pollution levels recorded in the study sediments are indicatives of
the need of sustainable management practices to ensure the environmental quality of the
water reservoir direct influence area. The CEC values, and clay, silt, and sand contents
indicated correlations varying from moderate and strong with Pb, Zn, Ni, Cu, and Cd.
Mitigating practices such as restoration or remediation should be adopted to minimize
the environmental liabilities, including sediment removal by dredging or remediation by
using rhizofiltration techniques.
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