
water

Article

Introducing Non-Stationarity Into the Development of
Intensity-Duration-Frequency Curves under a
Changing Climate

Daniele Feitoza Silva 1,* , Slobodan P. Simonovic 2,3 , Andre Schardong 2,3 and Joel Avruch Goldenfum 1

����������
�������

Citation: Silva, D.F.; Simonovic, S.P.;

Schardong, A.; Goldenfum, J.A.

Introducing Non-Stationarity Into the

Development of

Intensity-Duration-Frequency Curves

under a Changing Climate. Water

2021, 13, 1008.

https://doi.org/10.3390/

w13081008

Academic Editor: David Dunkerley

Received: 16 March 2021

Accepted: 1 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Hydraulic Research (IPH), Federal University of Rio Grande do Sul, Porto Alegre, RS 15029, Brazil;
joel@iph.ufrgs.br

2 Department of Civil and Environmental Engineering, Western University, London, ON N6G 1G8, Canada;
simonovic@uwo.ca (S.P.S.); aschardo@uwo.ca (A.S.)

3 Institute for Catastrophic Loss Reduction, Toronto, ON M5C 2R9, Canada
* Correspondence: daniele.silva@ufrgs.br; Tel.: +55-51-982-104-261

Abstract: Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure
planning and design. IDFs are developed under a stationarity assumption which may not be realistic,
neither in the present nor in the future, under a changing climatic condition. This paper introduces a
framework for generating non-stationary IDFs under climate change, assuming that probability of
occurrence of quantiles changes over time. Using Extreme Value Theory, eight trend combinations in
Generalized Extreme Value (GEV) parameters using time as covariate are compared with a stationary
GEV, to identify the best alternative. Additionally, a modified Equidistance Quantile Matching
(EQMNS) method is implemented to develop IDFs for future conditions, introducing non-stationarity
where justified, based on the Global Climate Models (GCM). The methodology is applied for Moncton
and Shearwater gauges in Northeast Canada. From the results, it is observed that EQMNS is able
to capture the trends in the present and to translate them to estimated future rainfall intensities.
Comparison of present and future IDFs strongly suggest that return period can be reduced by more
than 50 years in the estimates of future rainfall intensities (e.g., historical 100-yr return period extreme
rainfall may have frequency smaller than 50-yr under future conditions), raising attention to emerging
risks to water infrastructure systems.

Keywords: intensity-duration-frequency curve; non-stationarity; climate change; rainfall intensities

1. Introduction

Extreme precipitation is expected to increase in intensity and magnitude due to the
effects of global warming, also recognized as climate change [1,2]. Changes in patterns of
climate have already been observed in many parts of the globe since the last century [3]. In
urban areas, the rise of intense precipitation can negatively impact the urban infrastructure,
economic activities, and social well-being through the drainage system overflow and
resulting flooding events.

The intensity-duration-frequency (IDF) curve is one of the most traditional tools for
engineering planning and design of various urban infrastructure systems, including urban
drainage infrastructure and flood protection measures. The IDF curves are generated based
on a stationary frequency-based analysis of historical annual maximum precipitation for a
given duration, which assumes that the frequency of occurrence of extreme precipitation
remains constant over time. However, under a changing climate, current IDF curves may
be underestimating rainfall intensity because: (i) IDF curves are developed for earlier
climatic conditions that may not be adequately representing future conditions [4]; (ii) IDF
curves are developed based on an assumption of stationarity which may not be valid
anymore [5,6]; and (iii) combination of (i) and (ii). For previously mentioned scenarios, a
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frequent overload of the water infrastructure systems is expected, resulting in an increase in
probability of failure. Given the effects of climate change and non-stationarity on IDFs, it is
necessary to investigate new methods for their development [7]. The development of future
climate based IDF curves has been explored in the literature to some extent [8–12]. Most
of the research is using precipitation outputs from Global Climate Models (GCMs) that
simulate future climate states for different scenarios of radiative forcing, the Representative
Concentration Pathways (RCPs) [2]. Climate projection data from GCMs are of great value,
in spite of coarse spatial and temporal resolutions (usual grid size is 100 by 100 km) [11]
which may lead to misrepresentation of extreme rainfall events and high uncertainty [7,13],
especially for precipitation events with low frequency (large return period). That limitation
can be addressed with the use of downscaling (dynamic or statistical) techniques.

Dynamic downscaling reduces the scale by refining climate processes and simulat-
ing local conditions, generating small spatiotemporal gridded Regional Climate Models
(RCMs) (usually from 25 to 50 km and sub-daily time step). In general, for urban drainage
engineering and planning, RCMs are recommended for local rainfall extreme analysis,
given their representation of the convective processes that dominate short-duration rainfall
extremes and the higher precision and accuracy when compared to the GCMs [14,15].
High-resolution RCMs, as examples of convection-permitting climate models (about 1
km), allow the explicit simulation of atmospheric deep convection and improve the rep-
resentation of orography and land-surface interactions [16,17]. However, climate models
often provide biased representations of observed time series [18] and RCMs inherit the
biases and other deficiencies from the GCMs, and hence further (statistical) downscaling is
often necessary for RCM projections [19]. The fundamental assumption of the statistical
downscaling is to correct the biases presented in climate model products compared to the
observed data [20]. There are several methods to manage bias correction but performance
of all is highly dependent on the goal of the study. Specially, for updating future IDF curves
studies, statistical downscaling is used as the main process since time scales as low as
10 min can be necessary [7]. Among the existing statistical downscaling methods, those
which consider both spatial and temporal downscaling have received significant atten-
tion [8,9,11,14,21,22]. Those methods that include the downscaling of the whole rainfall
series remain less certain since they cannot adequately represent the frequency of rainfall
extremes [23]. The quantile-mapping based downscaling methods focus on downscaling
extreme rainfall quantiles and reduces the error propagation [9,11,24,25]. However, the
use of quantile-mapping based statistical downscaling models including an assumption
that the relationship between GCM and the observed data remains the same for projected
future period, and does not account for the non-stationarity inherent in the climate change
context [11].

Non-stationarity of precipitation is characterized by a variation in the form of a trend
or oscillation in the patterns of a rainfall time series. Based on recent theoretical devel-
opments in the Extreme Value Theory (EVT), several studies investigated development
of non-stationary rainfall IDF curve [6,26,27]. In general, different trend functions can
introduce one or more covariates, and their combinations, in the parameters of probability
distributions, such as Generalized Extreme Value (GEV) and peaks-over-threshold (POT)
Generalized Pareto Distribution (GPD). Linear trend functions are the most frequently used
for the development of non-stationary IDF curves. They are applied to different parameters,
such as, for example, the location parameter of the GEV distribution [26], location and
shape parameters [27], or the scale parameter of the GPD distribution [28].

Quantile-mapping-based downscaling methods have been used to develop future IDF
curves under climate change over Canada [29,30]. The original methodology, as proposed
by [11], named Equidistance Quantile Matching method (EQM), incorporates the changes
in the distribution characteristics of the GCM model between the baseline and projected
periods. Even though there are advances in improving the projections of future IDFs, only
a few studies include assessment or consideration of the non-stationary behavior of the
precipitation data. A recent research carried by [14] assessed the effects of non-stationarity
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on the IDF curves by comparison with stationary IDFs, using climate change projections
over the Southern Ontario, Canada. The authors used the RCM outputs and bias-correction
for generating future annual maxima precipitation (AMP) time series. Their statistics are
further modeled by taking into account the non-stationarity and introduction of the linear
trend in the location parameter of GEV distribution. This implies that non-stationarity
is considered after the statistical downscaling, ignoring its possible effects even in the
reference period (i.e., present).

Note that the several approaches using non-stationarity in IDF relationships have
been reported in the literature [6,26,27]. In addition, studies of non-stationarity in future
IDF relationships under climate change are already ongoing [14]. However, to the authors’
best knowledge, no research was reported which (i) considered non-stationary modelling
conditions to the reference period before the downscaling procedure to generate future
AMP series in the projected period, and then (ii) developed non-stationary future IDF
curves under climate change. Using the EQM algorithm, this study aims to assess and
develop non-stationary GEV models, and non-stationary IDF relationships under climate
change. Unlike the straightforward application of non-stationarity in modeling GEV
parameters, this new framework to update IDF curves (called EQMNS) is based on statistical
analysis which identifies if the non-stationary GEV model is the best GEV model fitted
to the data. Time is adopted as a covariate in the location and scale parameters of the
GEV distribution. Different time-variant and trend functions lead to eight combinations
of non-stationary models which are considered in this study together with one stationary
GEV model. The new framework is applied to Moncton City gauging station data in the
Province of New Brunswick, Canada, in order to analyze its performance in developing
future IDF curves.

2. Study Area and Data Used

Since this study aims to analyze the impact of non-stationarity on IDF curves under
climate change, the case study area is selected based on the presence of non-stationary
behavior in the observed rainfall data. The proposed methodology is implemented with the
annual maximum rainfall series at two gauging stations located in the Maritime Provinces
of Canada: Halifax and Moncton (Figure 1).

Figure 1. Study area.
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Moncton City is located at the Petitcodiac River, area bordered by the Atlantic Ocean,
with a maximum height of about 70 m above sea level, and an average precipitation of
1146 mm/year. The Moncton City Köppen–Geiger classification is Dfb (short for a warm-
summer humid continental climate [31]), and there is uniform precipitation distribution
during the year. Halifax City is bordered by the Atlantic Ocean, lying 8 m above sea level.
As Moncton’s, the climate of Halifax is classified as Dfb, with an average precipitation
of 1410 mm/year, varying between the drier and colder months. A brief description of
the stations used in this study is presented in Table 1. Datasets are available through the
Environment and Climate Change Canada. Series of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h,
6 h, 12 h and 24 h duration rainfall can be downloaded from https://climate.weather.gc.ca/
prods_servs/engineering_e.html (accessed on 15 November 2020) for the available period.

Table 1. Stations selected for the study.

Study Area Station Name Station ID Latitude x
Longitude Data Availability

Moncton Moncton INTL A 8103201 46◦7′ N 64◦41′ W 1946–2016 (67 years)
Halifax Shearwater RCS 8205092 46◦7′ N 64◦41′ W 1955–2016 (59 years)

For this study, precipitation data is derived from 24 GCMs produced for Coupled
Model Intercomparison Project Phase 5 (CMIP5) [2] (Table 2). These data are bias cor-
rected and statistically downscaled GCM projections generated using the Bias Correction
Constructed Analogues with quantile (version 2) mapping reordering (BCCAQv2) for
Canada, at a gridded resolution of 300 arc-seconds (0.0833 degrees, or roughly 10 km)
for the simulated period of 1950–2100 [32]. BCCAQv2 corrects the bias in daily pre-
cipitation series obtained from climate models so the distribution properties are close
to historical [33,34]. The climate models were selected based on the availability of pre-
cipitation projections for different RCP scenarios (2.6, 4.5 and 8.5). The data used in
the study is available from the Pacific Climate Impacts Consortium (PCIC) website (
https://data.pacificclimate.org/portal/downscaled_gcms/map/, accessed on 1 July 2020).

Table 2. Global Climate Models (GCM) models used in this study.

Model Country Centre Name Spatial Resolution
(Longitude vs. Latitude)

bcc-csm1-1 China Beijing Climate Center, China Meteorological
Administration 2.8 × 2.8

bcc-csm1-1-m China Beijing Climate Center, China Meteorological
Administration 2.8 × 2.8

BNU-ESM China College of Global Change and Earth System Science 2.8 × 2.8
CanESM2 Canada Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8
CCSM4 USA National Center of Atmospheric Research 1.25 × 0.94

CESM1-CAM5 USA National Center of Atmospheric Research 1.25 × 0.94

CNRM-CM5 France
Centre National de Recherches Meteorologiques and

Centre Europeen de Recherches et de Formation
Avancee en Calcul Scientifique

1.4 × 1.4

CSIRO-Mk3-6-0 Australia
Australian Commonwealth Scientific and Industrial

Research Organization in collaboration with the
Queensland Climate Change Centre of Excellence

1.8 × 1.8

FGOALS-g2 China
IAP (Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China) and THU

(Tsinghua University)
2.55 × 2.48

GFDL-CM3 USA
National Oceanic and Atmospheric Administration’s

Geophysical Fluid
Dynamic Laboratory

2.5 × 2.0

https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://data.pacificclimate.org/portal/downscaled_gcms/map/
https://data.pacificclimate.org/portal/downscaled_gcms/map/
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Table 2. Cont.

GFDL-ESM2G USA National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0

HadGEM2-AO United Kingdom Met Office Hadley Centre 1.25 × 1.875
HadGEM2-ES United Kingdom Met Office Hadley Centre 1.25 × 1.875

IPSL-CM5A-LR France Institut Pierre Simon Laplace 3.75 × 1.8
IPSL-CM5A-MR France Institut Pierre Simon Laplace 3.75 × 1.8

MIROC5 Japan Japan Agency for Marine-Earth Science and Technology 1.41 × 1.41
MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technology 2.8 × 2.8
MIROC-ESM-

CHEM Japan Japan Agency for Marine-Earth Science and Technology 2.8 × 2.8

MPI-ESM-LR Germany Max Planck Institute for Meteorology 1.88 × 1.87
MPI-ESM-MR Germany Max Planck Institute for Meteorology 1.88 × 1.87
MRI-CGCM3 Japan Meteorological Research Institute 1.1 × 1.1
NorESM1-M Norway Norwegian Climate Center 2.5 × 1.9

NorESM1-ME Norway Norwegian Climate Center 2.5 × 1.9

GFDL-ESM2M USA National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0

3. Methodology

The presented methodology is based on a modification of the EQM method, originally
developed by [11] and updated by [24]. The EQM method is currently used for updating the
IDF curves under climate change without consideration of non-stationarity modelling [32].
The methodology proposed in this paper extends EQM by addressing the non-stationary
behavior of rainfall into the generation of IDFs under the climate change. The proposed
methodology is named EQMNS and is schematically shown in Figure 2.

The EQMNS methodology includes:

• Statistical analysis: applied to fit stationary and non-stationary probability distribu-
tions to both historical and future projected data. An information criteria method is
used to identify the best probability distribution model, and a significance test is per-
formed to assess the statistical significance of the non-stationary model in comparison
to the stationary one;

• Updating IDF curves for future conditions (EQMNS): a modified EQM methodology is
applied to generate future sub-daily annual maximum precipitation data, and update
IDF curves for future period under non-stationary conditions.
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Figure 2. Framework for generating non-stationary intensity-duration-frequency (IDF) curves under climate change.
Modified from [11,24].

3.1. Statistical Analysis

The following discussion provides a detailed description of the statistical analysis
implemented in this study.

3.1.1. Theoretical Probability Distribution

Extreme events are usually modelled using peaks-over threshold (POT) and block
maxima [35]. The first fits all events exceeding a specific threshold to a generalized Pareto
distribution (GP) and the occurrence of an exceedance to a Poisson process. Block maxima
consists on fitting a theoretical probability distribution to blocks of annual maximum
precipitation values. Both approaches are widely used in extreme events studies (see [5]);
however, the implementation of the POT approach involves subjective choices regarding
the specification of the threshold, decluttering of threshold exceedances and the treatment
of the annual cycle [36]. Furthermore, the availability of data on extremes is often processed
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into block maxima, which do not allow POT analysis, such as the Environment Canada
data, used in this study.

Let the time series, denoted by {x1,x2, . . . ,xn}, be independent and identically dis-
tributed (i.i.d.) with common cumulative distribution function. The annual maximum
series can be approximate to a theoretical probability of extremes (e.g., GEV, Gumbel,
Fréchet, Weibull). In fact, GEV probability distribution is a family of three distributions
combined into one: Gumbel, Fréchet and Weibull. GEV distribution is applied by many
studies of extreme precipitation [5,6,32,37,38]. The GEV cumulative distribution function
F(x) is given by Equation (1) for ξ 6= 0 [35]:

F(x/µ; σ; ξ) =

 exp
{
−
[
1 + ξ(x−µ)

σ

]−1/ξ
}

, σ > 0.1 + ξ(x−µ)
σ , ξ 6= 0

exp
{
− exp

[
− (x−µ)

σ

]}
, σ > 0, ξ = 0

(1)

where µ is the location parameter, which describes the shift of a distribution, σ is the
scale parameter, describing the spread of the distribution, and ξ is the shape parameter,
which describes the tail behavior and directly estimated values of extreme precipitation [39].
ξ > 0 represents the heavy-tailed Frechét case, and its probability density function decreases
at so slow a rate in the upper tail; ξ = 0 gives the light-tailed Gumbel case, representing
an unbounded tail; and ξ < 0 the short-tailed Weibull case, where the distribution has a
bounded upper tail [40].

Based on the Extreme Value Theory (EVT) advancements, the non-stationary behavior
can be introduced in GEV model by expressing one or more of the parameters as functions
with a covariate. In this study, time is used as a covariate for developing non-stationary
IDF curves. Empirical studies indicate that it is preferable to represent the non-stationarity
in both location and scale parameters [41]. The shape parameter is usually difficult to
estimate accurately-it is unrealistic to try modeling ξ as a smooth function of time [35].
Table 3 presents nine models used in this study (eight non-stationary and one stationary).

Table 3. List of Generalized Extreme Value (GEV) models used in this study and their parameter
combinations. µ, σ, and ξ are the GEV parameters and ‘t’ is the scoring year for which maximum is taken.

GEV Model

ID Specification
I F (µ; σ; ξ)
II F (µ0 + µ1t; σ; ξ)
III F (µ0 + µ1t; σ0 + σ1t; ξ)
IV F (µ0 + µ1t; e(σ0+σ1t); ξ)
V F (µ; σ0 + σ1t; ξ)
VI F (µ; e(σ0+σ1t); ξ)
VII F (µ0 + µ1t + µ2t2; σ; ξ)
VIII F (µ0 + µ1t + µ2t2; σ0 + σ1t; ξ)
IX F (µ0 + µ1t + µ2t2; e(σ0+σ1t); ξ)

Different functions can be considered to represent the parameters’ behavior. Here,
nine GEV models are constructed using one stationary GEV model (I) and eight non-
stationary GEV models (II–IX), based on combinations of trends in both location and/or
scale parameters. GEV-I is expressed as a stationary model, with all parameters kept
constant; GEV-II to GEV-IX models are non-stationary models, with location parameter
conditioned to be a linear or polynomial function of time, and scale parameter assumed
to be linear or exponential function of time, while keeping the shape parameter constant.
These functions are commonly found in hydrological and climate change studies when
investigating trends in distribution model parameters [14,26,42,43], although linear and
log-linear models are usually preferred [42].
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Estimating GEV parameters is not a simple procedure since it may require complex
calculations. The maximum likelihood estimator (MLE) is considered one of the most effi-
cient methods for this estimation [41,44], and can be easily extended to the non-stationary
case [45]. Therefore, in this study, MLE is used to estimate the parameters of the GEV distri-
bution. For the annual maximum series X = {x1,x2, . . . ,xn} with n years, the log-likelihood
derived from Equation (1) is given by Equation (2), for the stationary case.

For ξ 6= 0,

logL(X; µ; σ; ξ) = −n log σ

−
(

1 + 1
ξ

) n
∑

i=1
log
[
1 + ξ(xi−µ)

σ

]
−

n
∑

i=1

[
1 + ξ(xi−µ)

σ

]−1/ξ
, 1

+ ξ(xi−µ)
σ > 0

(2)

Instead of a direct maximization method, MLE estimator commonly uses the mini-
mization of the negative log-likelihood, as provided by Equation (2). It is important to
notice that Equation (2) is formulated for GEV family with ξ 6= 0, disregarding the Gum-
bel distribution. For the non-stationary cases, the location and scale parameters in the
Equations (1) and (2) are replaced in accordance with the non-stationary setting presented
in Table 3. Given the requirements of iterative numerical procedures to solve the function,
RStudio extRemes package (version 2.0-10) is used to fit GEV parameters to data based on
MLE estimator for the stationary and non-stationary cases [46]. The MLE method can even
be useful for selecting the best GEV model, which provides an efficient procedure for the
development of rainfall quantiles.

3.1.2. Identification of the Best Model

Akaike’s Information Criteria (AIC) is a common method for selecting the best GEV
model among all candidates [45]. It penalizes the minimized negative log-likelihood
function (−logL) for the number of parameters estimated for each model. However,
depending on the relation between the sample size n and the number of parameters k
presented in practical applications, the Corrected Akaike’s Information Criteria (AICc) is
recommended (n/k > 40) because it helps to avoid overfitting the data. AICc converges to
AIC for large n [47]. From a collection of nested candidate models with k parameters, fitted
to an annual maximum rainfall series with a sample size of n, AIC and AICc are expressed
by Equations (3) and (4), respectively:

AIC(k) = −2logL + 2k (3)

AICc(k) = AIC(k) +
2k(k + 1)
n− k− 1

(4)

where k is the number of parameters of a specific model. AICc values are much more
affected by the sample size of the data series, so the rescaled form of AICc, ∆i is used to
rank the GEV models as given by Equation (5):

∆i = AICc−min(AICc) (5)

where min(AICc) is the smallest AICc among all the models. The model which has ∆i value
zero is the best model and the models having ∆i ≤ 2 as reasonably good choices [47].

When a non-stationary model is identified as the best GEV model, it is necessary to
assess its statistical significance against the stationary GEV model. The best non-stationary
model’s significance can be checked by the likelihood ratio test (LR-test), usually recom-
mended when comparing two candidate models. The test of the null hypothesis of no trend
(stationary model) can be performed by comparing the minimized negative log-likelihood
functions of the stationary and the best non-stationary model [45] (Equation (6)):

−logLs × − logLns (6)



Water 2021, 13, 1008 9 of 22

where −logLs is the negative log-likelihood of the stationary model, and −logLns is the
negative log-likelihood of the best non-stationary model.

Under the null hypothesis of no trend, the likelihood ratio test statistic, based on twice
the difference between −logLs and −logLns, has an approximate Chi squared distribution
(χ2) where the degree of freedom is denoted as the difference between the number of
parameters of the models [46]. The LR statistic is given by Equation (7):

D = 2[−logLs + logLns] ∼ χ2 (7)

The statistical significance of the best non-stationary model, when compared to the
stationary model, can be measured from the p-value of Chi-square distribution [6]. In this
study, if the p-value is lower than the 0.05 (95% confidence level), the best non-stationary
model is statistically significant compared to the stationary model.

3.1.3. Rainfall Depth Estimation

The inverse distribution function is used to estimate the rainfall depth, based on the
conventional T-year return period (1/(1−F)). For stationary GEV model and ξ 6= 0, the
rainfall intensity zp is given by Equation (8):

zp = µ− σ

ξ

[
1−

{
− ln

(
1− 1

T

)−ξ
}]

(8)

However, once the best GEV model is identified as non-stationary, its location and/or
scale parameter value vary over the time. Thus, the time-variant parameters are derived
by computing the 95th percentile of the trending parameter’s value by Equations (9) and
(10), under a low risk approach [37]. The calculated model parameters are then replaced in
Equation (8) and non-stationary rainfall intensity or rainfall depth is estimated.

µ̂95 = Q95(µ̂1, µ̂2, . . . , µ̂n) (9)

σ̂95 = Q95(σ̂1, σ̂2, . . . , σ̂n) (10)

Ultimately, there are several formulations for adjusting IDFs in the form of smoothing
curves [43]. In this paper, the general formulation used is shown in Equation (11):

I = A(d + C)B (11)

where I is the rainfall intensity (mm/h); A, B and C are the coefficients for each return
period (T) in years; and d is the duration of precipitation in hours.

3.2. Non-Stationary IDF Curves under Changing Climate

A modified EQM method generates non-stationary IDF curves under changing climate
conditions (EQMNS). EQM method captures the distribution of changes between the
projected time period and the baseline period (temporal downscaling) in addition to spatial
downscaling of the annual maximum precipitation derived from the GCM data and the
observed sub-daily data [11].

In original EQM, the quantile-mapping function performs the spatial downscaling by
transferring the quantile of the historically observed distribution to the historically modeled
distribution [20]. This method is highly recommended to be used for IDF purposes, since
it allows the application of annual maximum precipitation from climate model simulated
rainfall [14,48] instead of using complete daily precipitation records [29]. Using the principle
of quantile mapping, the cumulative probability distribution of the GCM (Fm,h) and the
sub-daily series (xj,o,h) are equated to establish a statistical relationship between them and to
obtain GCM modeled sub-daily (x̂j,o,h) values as shown in Equation (12):

x̂j,o,h = F−1
j,o,h[Fm,h(xm,h)] (12)
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where x̂ is the annual maximum quantile at the station scale, F is the cumulative distribution
functions and F−1 is its inverse. j,o,h correspond to each sub-daily (‘j’) observed rainfall data
(‘o’) in historical-baseline period (‘h’), while ‘m’ remains the modeled data. The quantiles
extracted from each pair x̂j,o,h and xm,h are equated to establish a functional relationship in
the form of the Equation (13).

x̂j,o,h =
aj + xm,h

bj + cjxm,h
+

dj

xm,h
(13)

where aj, bj, cj and dj are the adjusted coefficients. A Differential Evolution optimization
algorithm [49] is used to fit the coefficients. The Ordinary Least Squares method is used as
the objective function to be optimized (minimized) in order to obtain the optimal set of
coefficients. Unlike the original EQM, in which spatial downscaling is applied assuming no
trend pattern in GEV distribution parameters of historic period, the new EQMNS introduces
the effects of non-stationarity in historic AMPs time series by adopting the 95th percentile
values from the varying parameter(s) (Equations (9) and (10)) in Equation (12). This step
ensures that the non-stationarity presented even in the historic period is accounted for
generating IDFs for future conditions.

The second step of EQM algorithm is the temporal downscaling, which finds the
relationship between GCM daily maximum precipitation for the baseline period and the
future GCM-simulated (for all RCPs) daily maximum precipitation [11]. Similar to EQM,
EQMNS uses the quantile delta mapping, since it preserves the relative changes in the
precipitation mean and quantiles obtained from the climate models [24,50]. The cumulative
probability distribution of the GCM generated rainfall in the future period (Fm, f ) and the
GCM generated rainfall in the baseline period (xm,h) are equated to establish a statistical
relationship (Equation (14)). In addition, the relative change between the historical and
future period is given by Equation (15):

x̂m,h = F−1
m,h

[
Fm, f

(
xm, f

)]
(14)

∆m =
xm, f

x̂m,h
(15)

where m,f corresponds to the modeled data (‘m’) in future projection period (‘f’), and ∆m is
the relative change. Projected future maximum sub-daily series (xj, f )) at the station scale is
then generated using Equation (13) by replacing xm,h with x̂m,h and multiplying it by the
relative change ∆m from Equation (15) as given by Equation (16):

xj, f = ∆m ·x̂j,o,h (16)

Future IDF curves are generated by repeating the statistical analysis presented in
Section 3.1 (Equations (1)–(11)), given the future sub-daily time series. The application
of these analysis is necessary since they certify the presence of non-stationarity in future
sub-daily series and estimation of future non-stationary rainfall intensity.

4. Results and Discussions

In order to evaluate the proposed methodology, this study used the precipitation
series of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h and 24 h durations available
for the selected stations. Section 4.1 provides an overview of extreme precipitation for
Moncton and Shearwater stations, pointing towards the best GEV modeling for sub-daily
observed data, while its effect is presented in the form of rainfall intensity in Section 4.2.
Section 4.3 analyzed the new conditions for spatial downscaling to ensure the formulation
of Equation (12) is able to establish a statistical relationship between the quantiles from
observed and GCM series for the historical baseline period. This analysis is presented using
the multimodel ensemble median of the 24 GCMs. Future IDFs are developed for 2-, 5-,
10-, 25-, 50- and 100-year return periods, which are commonly used in water infrastructure
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design and management. We presented the uncertainty introduced by different GCM
model in rainfall depths estimation. Based on the multimodel ensemble median, future
IDF curves are analyzed, which includes: (i) changes in the stationary future rainfall
intensities compared to the observed rainfall intensities (EQM); (ii) changes in the non-
stationary future rainfall intensities compared to the observed rainfall intensities (EQMNS);
and (iii) differences between the future rainfall intensities, obtained using stationary and
non-stationary conditions.

The EQMNS methodology implementation is done using the open-access RStudio
programming environment [51], based on its available packages and functions [52].

4.1. Trends in GEV Model Parameters in Historical Observed Data

Nine GEV models are used to identify and analyze trends in the annual maximum
rainfall distribution parameters for both gauging stations. As presented in Tables S1 and
S2 (Supplementary Material) for Moncton and Shearwater stations, respectively, the results
indicate a presence of non-stationarity for some durations, based on the existence of trends
in GEV parameters.

For Moncton station, results indicate a significant trend pattern in GEV’s location or
scale parameters among rainfall durations. GEV-I is not ranked as best, except for short
rainfall durations (5- and 10-min). On the other hand, GEV-II is the only model that has
substantial support to be a candidate model for all durations with ∆i ≤ 2 [48]. In other
words, there is a trend in the location parameter in extreme precipitation. Further, for
all durations, GEV-VIII and GEV-IX models did not appear as a reasonable choice based
on ∆i value. For 5 and 10 min, the GEV-I is found to be the best GEV model (the GEV
parameters remain constant). For 15 and 30 min, GEV-VI and GEV-V are identified as
the best, respectively, representing a trend in scale parameter (increase indicates a higher
spread of distribution over the years). Otherwise, for durations greater than 1 h a trend in
location parameter is found to be the best choice model, with GEV-II for 1, 6 and 12 h and
GEV-VII for 2 h.

Unlike the Moncton station, most of the durations at Shearwater station can be consid-
ered stationary based on the ∆i value, except for 1440 min in which a linear trend in the
location parameter (GEV-II) is statistically significant. For 360 min, a linear trend in the
scale parameter (GEV-V) is given as the best model. It can be observed in Table S2 that, for
most all the durations GEV-II model is a reasonable choice for Shearwater Station, with
exceptions of 10 and 15 min.

The best GEV model identified by Table S1 supports the estimative of GEV parameters
as presented in Table 4, whereas best GEV model of Table S2 supports the results of Table 5.
Although a single model for all durations is often assumed, these parameters are calculated
based on the best model fitted to each duration data. For all the identified non-stationary
models, there is upward trend in the varying parameters, indicating an underestimation of
values in the stationary GEV model, and further, the rainfall depth estimation. AICc values
for a specific duration do not show great variations. The same is found for ∆i values, which
indicates how sensitive these results can be when the same covariate is considered. In
addition, GEV-VIII and GEV-IX have the highest AICc values for most of all the durations,
indicating that they are not to be used for non-stationary modelling at the selected stations.
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Table 4. Parameters of GEV distribution, in mm, for historical data for the Moncton station.

Duration
(Minutes)

Best
GEV-Type

Stationary GEV Model Best GEV Model (95th Percentile) LR-Test
(p-Value)Location Scale Shape Location Scale Shape

5 I 5.18 2.10 0.07 5.18 2.10 0.07 -
10 I 7.32 2.92 0.07 7.32 2.92 0.07 -
15 VI 8.92 3.35 0.09 9.01 4.27 0.14 0.043
30 V 12.03 4.12 0.08 12.33 5.51 0.06 0.030
60 II 16.22 4.60 0.22 18.06 4.10 0.31 0.011

120 VII 22.22 5.63 0.23 25.46 5.19 0.30 0.047
360 II 35.30 11.07 −0.02 39.97 10.78 −0.03 0.041
720 II 43.59 14.35 0.02 50.68 13.86 0.004 0.016
1440 II 51.44 17.45 0.05 61.62 15.95 0.08 0.002

Table 5. Parameters of GEV distribution, in mm, for historical data for the Shearwater station.

Duration
(Minutes)

Best
GEV-Type

Stationary GEV Model Best GEV Model (95th Percentile) LR Test
(p-Value)Location Scale Shape Location Scale Shape

5 I 4.98 1.46 0.07 4.98 1.46 0.07 -
10 I 7.67 2.16 0.001 7.67 2.16 0.001 -
15 I 9.88 2.80 −0.13 9.88 2.80 −0.13 -
30 I 13.88 3.95 −0.16 13.88 3.95 −0.16 -
60 I 19.17 4.94 −0.06 19.17 4.94 −0.06 -

120 I 26.30 6.95 0.04 26.30 6.95 0.04 -
360 V 44.24 11.94 −0.004 43.93 14.67 0.14 0.044
720 I 54.57 14.34 −0.06 54.57 14.34 −0.06 -
1440 II 60.59 16.05 0.08 66.61 15.05 0.12 0.030

Overall, it is important to verify if the estimates for GEV parameters are reasonable,
especially the shape parameter, since it directly influences the tails of the distribution [25].
The shape parameter value is in the range of −0.16 to +0.31, which is in line with the
findings of [38] for daily time series stationary analysis for the specific study region. In this
way, these results are suitable to be incorporated into the GCM data bias-correction.

4.2. Historic IDF Relationships

Based on the best-fitted GEV models for different durations of the observed data
for Moncton and Shearwater stations, IDF relationships for 2-, 5-, 10-, 25-, 50- and 100-
year return periods are developed using Equation (8) (Figures 3 and 4). In addition,
for comparison purposes, the IDFs for the stationary case (GEV-I) are also developed.
This comparison provides some additional insights about the observed historical period.
Overall, non-stationary IDFs differ for different durations and therefore the observed
differences and relative changes (i.e., the percentual value of rainfall increment provided
by the non-stationary model compared with the stationary model) do not follow a similar
pattern. Therefore, given the different trends over durations, there are some cases in
which rainfall depth for a lower duration appears as superior to the rainfall intensity for
a higher duration (e.g., in Figure 4, the rainfall depth estimated for 360-min and 25-year
is higher than the rainfall depth estimated for 720-min and same return period). These
results are expected since the trend parameters are assessed for each duration, assuming an
independence assumption [43]. In addition, the rainfall depth presented here is estimated
using the inverse of GEV function which parameters’ behavior varies according to its
assessed performance. Further, even being in the same geographic region, the difference in
the observed time period between stations may lead to different trends associated with
data (as the assessed GEV models indicated), and further to the estimated rainfall quantiles.
Also, the type of the covariate used, i.e., time, may lead to different trends, while large-scale
variables may produce more convergent results for the same climatic region [6].
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Figure 3. Stationary and non-stationary rainfall depths for different return periods for Moncton station.

The relative changes vary with the non-stationary GEV model for calculated IDF
relationships among different durations. On one hand, for those durations in which non-
stationary GEV model shows a trend in the location parameter, there is no observable
pattern of relative change among different return periods. The relative change is higher
for low durations and lower for high durations among durations. On the other hand,
when the non-stationary GEV model of a trend in the scale parameter is considered, the
relative change increases with the rainfall duration. For Moncton station, relative changes
for 100-year return period is about 29.9% for 15-min duration (when there is a trend in the
scale parameter) and 6.5% for 1440 min (when there is a trend in the location parameter).
This trend condition results in 40.2% (360-min) values and 6.4% (1440-min), respectively,
for the Shearwater station.

The results provided indicate that, for both minor and major significant water infras-
tructure systems, the difference between stationary and non-stationary rainfall intensities
can be very significant in terms of design and operations. Furthermore, even in flood map-
ping, usually produced with higher return periods, underestimating extreme precipitation
events can lead to underestimated flow values.
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Figure 4. Stationary and non-stationary rainfall depths for different return periods for Shearwater station.

4.3. Performance of the Modified Spatial Downscaling

In this section, the location and/or scale parameters’ 95th percentile is computed
based on the best GEV model and used to find a statistical relationship between observed
and GCM modeled data for historical-baseline period, obtained in the form of a non-linear
regression (Equation (13)). This is the modification adopted in the spatial downscaling to
transfer the effects of non-stationarity in the observed period to future IDFs.

AMP quantiles at the station scale are presented in Figure 5, given the ensemble
median performance. Figure 5 presents a comparison of stationary and non-stationary
values, for those durations where the non-stationary behavior is identified. The results
suggest larger quantile values for non-stationary conditions in comparison with stationary
condition, with exception of low quantiles for short durations (e.g., less than 30-min
duration). A similar quantile’s ascendance is identified between GEV modeling conditions,
and the differences are greater for high rainfall durations. In addition, non-linear regression
curve is presented, ensuring that the format is adequate to represent the relationship
between sub-daily and GCM based historical data. Thus, results confirm that the adoption
of non-stationarity in observed data in spatial downscaling is able to embed the effects of
identified trends.
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Figure 5. Quantile-mapping method for spatial downscaling for different durations. Lines represent the non-linear equation.

4.4. Future IDF Curves

Future rainfall depth estimation using all GCM datasets is presented in Figures 6
and 7, for Moncton and Shearwater stations, respectively, and for the RCP 8.5 projection
scenario. Other scenarios are available in the Supplementary Material (Figures S1 to S4).
The boxplot graph shows how uncertainty on estimated rainfall quantiles is inherent to
the choice of a single GCM. Overall, it is observed that the variation increases with rainfall
duration and return period. These uncertainties are higher for non-stationary behavior
than for the stationary, which is expected since the behavior of future sub-daily time series
depends on the GCM model and is influenced by the identified best fitted GEV model.

Rainfall depth estimated using the multimodel median ensemble of the 24 GCMs
is also presented in Figures 6 and 7. Note that the median ensemble is obtained as the
median value of AMPs outputs for each GCM model, and its rainfall depth as result
does not necessarily represent the median of results from all the GCM models generated
by the boxplot graph. In spite of the observed outliers, results from the ensemble can
represent the rainfall depth for different future projections, being able to supply the several
variables incorporated for different single models. Table S3 shows the GEV parameters
fitted according to the best GEV model statistically defined for each duration and RCP 8.5
scenario for Moncton station, whereas Table S4 presents results for Shearwater station.
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Figure 6. Rainfall depth estimation for different return periods and GCM models for the Moncton
station (Representative Concentration Pathways (RCP) 8.5 emission scenario). Black point represents
the rainfall depth estimated with the multimodel median ensemble. Red x represents the models in
which results produce outliers.

IDF curves generated based on the ensemble of 24 GCMs for the RCP 8.5 scenario
(up to 2100) are presented in Figures 8 and 9 for both gauging stations (see Figures S5
and S6 in the Supplementary Material for other RCPs). The IDF curves for the historical
period are included allowing the comparison of the periods. In general, the curves shift
upward from the historical period to future period. There is an increase in the future
precipitation intensities, for all return periods and durations, and for both the stationary
and non-stationary scenarios, although with different magnitudes. The degree of rainfall
increase varies and depends on duration (on how the time series is modelling). These
findings suggest that future extreme rainfall events will exceed the capacity for which the
current water infrastructure is designed, pointing out the need for updating IDF curves.
Regarding the RCP scenarios, the rainfall increase does not follow the severity of the
scenario, which can be internally related to the nature of data and climate model used in
the analysis.
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Figure 7. Rainfall depth estimation for different return periods and GCM models for the Shearwater
station (RCP 8.5 emission scenario). Black point represents the rainfall depth estimated with the
multimodel median ensemble. Red x represents the models in which results produce outliers.

Figure 8. Rainfall intensities, in mm/h, estimated for the multimodel ensemble for the Moncton station. X-axis is duration
of precipitation in minutes, and Y-axis is the intensity of precipitation in mm/h.
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Figure 9. Rainfall intensities, in mm/h, estimated for the multimodel ensemble for the Shearwater station. X-axis is duration
of precipitation in minutes, and Y-axis is the intensity of precipitation in mm/h.

Completed results can be observed in the Supplementary Material (Tables S5 and S6).
The following observations are made based on the results of the analysis. Considering all
the RCP scenarios, when comparing the observed stationary (S) with future non-stationary
(NS) rainfall intensities, it is found that the increase is higher for those durations that
present increasing trend patterns, even in the present period. For example, higher changes
are observed for 360 min at Shearwater, compared to 60 min at Moncton. The results
suggest that a trend pattern in the scale parameter of time series greatly influences the
rainfall intensities, and this behavior is translated to the future period. For the RCP 4.5
and RCP 8.5 scenarios, the comparison of rainfall intensities from observed S and future S
(from EQM) presents increasing pattern for different return periods. At Moncton station,
the relative change is reduced with the increase of return period, whereas the opposite
behavior is observed at Shearwater station. In spite of a higher increase, when comparing
observed S and future NS rainfall intensities, a similar behavior is found at both stations.
For those durations with observed scale parameter trends in the historical period (e.g., 15
min in Moncton and 360 min in Shearwater), the increase is much more significant than for
other durations. Future NS rainfall intensities are estimated based on the GEV-II model for
most of the durations. For the RCP 8.5, the increase up to 64.4% for 2-year return period
and up to 55.4% for 100-year return period is observed for Moncton. For Shearwater, these
values can reach 59.1% and 65.5%, respectively.

In general, the change imposed by the climate in future is higher for Moncton than for
Shearwater, based on the all RCP scenarios, since the degree of change on precipitation is
higher for Moncton. The results suggest that return period can be extremely reduced in
the future. The magnitude of reduction varies with duration and is much higher under
the non-stationary behavior. For example, the observed 100-year return period event of
1440-min duration is 5.9 mm/h, and it is smaller than 6.0 mm/h of the 10-year return
period future extreme event for RCP 8.5 scenario at Moncton station. A similar reduction is
found for Shearwater station.

5. Summary and Conclusions

This manuscript presents a new methodology that combines non-stationarity and
equidistant quantile matching for the development of future IDF curves under climate
change conditions. Nine GEV models (one stationary and eight non-stationary) were fitted
to the historical data, using time as a covariate in the form of the trend function. Statistical
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analysis was performed to identify the best GEV model. Once the best GEV model is non-
stationary, the trend parameters are used in spatial downscaling for the baseline period.
This process ensures that non-stationarity presented in the historical period is considered
in generating future rainfall quantiles. A similar procedure is used to verify and quantify
future IDF curves. Unlike other methodologies for generating IDF curves under climate
change, the methodology presented in this paper is able to consider the non-stationary
conditions in the present and future time periods. The proposed methodology is carried
out to model the sub-daily precipitation series at the Moncton and Shearwater gauging
stations in Canada for the period of 2020 to 2100.

From the observed data, it is noted that non-stationarity is present for most of the
durations, indicating a real and current underestimation in water infrastructure planning
and design based on the stationary IDF curves. In the future scenario, and compared to
the observed IDFs, there is an increase in estimates of rainfall quantiles, which is even
more expressive under a non-stationary scenario due to a positive trend presented in the
non-stationary modelling. At the same time, the return period reduces with time. This new
framework suggests that using non-stationary frameworks to develop future IDF curves is
a more conservative approach, being useful in directing ways of change. Otherwise, the
magnitude of the change in the future can be highly affected by the model fitted to the
data and need to be used with caution, given the complexity and number of uncertainties
related to climate simulations.

Given the extended impacts of IDF curves on infrastructure planning and design, we
argue for the need in estimating uncertainties arising from different sources, like choice of
GCM model or choice of the probability distribution. In this study, the new non-stationary
framework is based on the best GEV model. However, the results indicated that the best
GEV model may not be non-stationary, and the same non-stationary GEV model may not be
the best for all durations. Assessing different non-stationary GEV combinations allows for a
broader understanding of the uncertainty in future IDFs introduced through the frequency
analyses. Modeling approach used in this study is limited to: (i) one CDF mapping
function, i.e., GEV; (ii) one probability distribution parameter estimation, i.e., Maximum
Likelihood method; and (iii) the use of one covariate, i.e., time. Other uncertainties are
present in climate modeling, especially when dealing with sub-daily durations. Thus,
further development of the presented methodology should be carried in order to improve
the estimation of future IDFs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13081008/s1, Figure S1: Rainfall depth estimation for different return periods and GCM
models for Moncton station (RCP 2.6 emission scenario). Black point represents the rainfall depth
estimated with the multimodel median ensemble. Red x represents the models in which results
produce outliers, Figure S2: Rainfall depth estimation for different return periods and GCM models
for Shearwater station (RCP 2.6 emission scenario). Black point represents the rainfall depth estimated
with the multimodel median ensemble. Red x represents the models in which results produce outliers,
Figure S3: Rainfall depth estimation for different return periods and GCM models for Moncton
station (RCP 4.5 emission scenario). Black point represents the rainfall depth estimated with the
multimodel median ensemble. Red x represents the models in which results produce outliers,
Figure S4: Rainfall depth estimation for different return periods and GCM models for Shearwater
station (RCP 4.5 emission scenario). Black point represents the rainfall depth estimated with the
multimodel median ensemble. Red x represents the models in which results produce outliers,
Figure S5: Rainfall intensities, in mm/h, estimated for the multimodel ensemble for the Moncton
station, Figure S6: Rainfall intensities, in mm/h, estimated for the multimodel ensemble for the
Shearwater station, Table S1: GEV model’s performance for historical annual maximum rainfall
series of different durations of Moncton Station (the statistically significant GEV models are in bold
(p < 0.05)), Table S2: GEV model’s performance for historical annual maximum rainfall series
of different durations of Shearwater Station (the statistically significant GEV models are in bold
(p < 0.05)), Table S3: 95th percentiles, in mm, of fitted GEV parameters for different RCP climate
projections and multi-model ensemble for Moncton station, Table S4: 95th percentiles, in mm, of fitted
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GEV parameters for different RCP climate projections and multi-model ensemble for Shearwater
station, Table S5: Rainfall intensities, in mm/h, estimated for the multimodel ensemble for the
Moncton station, Table S6: Rainfall intensities, in mm/h, estimated for the multimodel ensemble for
the Shearwater station.

Author Contributions: Conceptualization, D.F.S., S.P.S. and A.S.; methodology, D.F.S.; software,
D.F.S.; validation, D.F.S.; formal analyses, D.F.S. and S.P.S.; investigation, D.F.S.; resources, S.P.S.; data
curation, A.S.; writing—original draft preparation, D.F.S.; writing—review and editing, D.F.S. and
S.P.S.; visualization, D.F.S.; supervision, S.P.S. and J.A.G.; project administration, D.F.S. and S.P.S.;
funding acquisition, S.P.S. and J.A.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), grant numbers 88882.345767/2019-01 and 88887.363277/2019-00, provided to the
first author; and Collaborative Research Grant provided by the Natural Sciences and Engineering
Research Council of Canada and the Institute for Catastrophic Loss Reduction to the second author.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to thank the financial support from the CAPES, specially
by the Programa Institucional de Internacionalização (CAPES-PRINT).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mailhot, A.; Duchesne, S. Design criteria of urban drainage infrastructures under climate change. J. Water Resour. Plan. Manag.

2010, 136, 201–208. [CrossRef]
2. IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the

Intergovernamental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p.
3. Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling,

and impacts. Science 2000, 289, 2068–2074. [CrossRef] [PubMed]
4. Berggren, K. Indicators for Urban Drainage System-Assessment of Climate Change Impacts. In Proceedings of the 11th

International Conference on Urban Drainage, Munich, Germany, 31 August–5 September 2008.
5. Agilan, V.; Umamahesh, N.V. Detection and attribution of non-stationarity in intensity and frequency of daily and 4-hr extreme

rainfall of Hyderabad, India. J. Hydrol. 2015, 530, 677–697. [CrossRef]
6. Agilan, V.; Umamahesh, N.V. What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency

relationship? Adv. Water Resour. 2017, 101, 11–22. [CrossRef]
7. Willems, P.; Vrac, M. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J.

Hydrol. 2011, 402, 193–205. [CrossRef]
8. Nguyen, V.-T.-V.; Nguyen, T.-D.; Cung, A. A statistical approach to downscaling of sub-daily extreme rainfall processes for

climate-related impact studies in urban areas. Water Sci. Technol. 2007, 7, 183–192. [CrossRef]
9. Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. Quantile-based downscaling of precipitation using genetic programming: Applica-

tion to IDF curves in Saskatoon. ASCE J. Hydrol. Eng. 2014, 19, 943–955. [CrossRef]
10. Mailhot, A.; Beauregard, I.; Talbot, G.; Caya, D.; Biner, S. Future changes in intense precipitation over Canada assessed from

multi-model NARCCAP ensemble simulations. Int. J. Climatol. 2012, 32, 1151–1163. [CrossRef]
11. Srivastav, R.K.; Schardong, A.; Simonovic, S.P. Equidistance Quantile Matching Method for Updating IDF Curves under Climate

Change. Water Resour. Manag. 2014, 28, 2539–2562. [CrossRef]
12. Arnbjerg-Nielsen, K.; Willems, P.; Olsson, J.; Beecham, S.; Pathirana, A.; Gregersen, I.B.; Madsen, H.; Nguyen, V.-T.-V. Impacts of

climate change on rainfall extremes and urban drainage system: A review. Water Sci. Technol. 2013, 68, 16–28. [CrossRef]
13. Smid, M.; Costa, A.C. Climate projections and downscaling techniques: A discussion for impact studies in urban systems. Int. J.

Urban Sci. 2018, 22, 277–307. [CrossRef]
14. Ganguli, P.; Coulibaly, P. Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North

American (NA)-CORDEX models with non-stationary methods. J. Hydrol. Reg. Stud. 2019, 22, 100587. [CrossRef]
15. Tapiador, F.J.; Navarro, A.; Moreno, R.; Sánchez, J.L.; Gárcia-Ortega, E. Regional climate models: 30 years of dynamical

downscaling. Atmos. Res. 2020, 235, 104785. [CrossRef]
16. Cannon, A.J.; Innocenti, S. Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate

models simulations over North America: Implications for future intensity-duration-frequency curves. Nat. Hazards Earth Syst. Sci.
2019, 19, 421–440. [CrossRef]

http://doi.org/10.1061/(ASCE)WR.1943-5452.0000023
http://doi.org/10.1126/science.289.5487.2068
http://www.ncbi.nlm.nih.gov/pubmed/11000103
http://doi.org/10.1016/j.jhydrol.2015.10.028
http://doi.org/10.1016/j.advwatres.2016.12.016
http://doi.org/10.1016/j.jhydrol.2011.02.030
http://doi.org/10.2166/ws.2007.053
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000854
http://doi.org/10.1002/joc.2343
http://doi.org/10.1007/s11269-014-0626-y
http://doi.org/10.2166/wst.2013.251
http://doi.org/10.1080/12265934.2017.1409132
http://doi.org/10.1016/j.ejrh.2018.12.007
http://doi.org/10.1016/j.atmosres.2019.104785
http://doi.org/10.5194/nhess-19-421-2019


Water 2021, 13, 1008 21 of 22

17. Prein, A.F.; Rasmussen, R.; Castro, C.L.; Dai, A.; Minder, J. Special issue: Advances in convection-permitting climate modeling.
Clim. Dyn. 2020, 55, 1–2. [CrossRef]

18. Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies:
Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [CrossRef]

19. Sunyer, M.A.; Madsen, H.; Ang, P.H. A comparison of different regional climate models and statistical downscaling methods for
extreme rainfall estimation under climate change. Atmos. Res. 2012, 103, 119–128. [CrossRef]

20. Maraun, D. Bias correcting climate change simulations—A critical review. Curr. Clim. Change Rep. 2016, 2, 211–220. [CrossRef]
21. Herath, S.M.; Sarukkalige, P.R.; Nguyen, V.-T.-V. A spatial temporal downscaling approach to development of IDF relations for

Perth airport region in the context of climate change. Hydrol. Sci. J. 2015, 61, 2061–2070. [CrossRef]
22. Nguyen, T.-H.; Nguyen, V.-T.-V. Linking climate change to urban storm drainage system design: An innovative approach to

modeling of extreme rainfall processes over different spatial and temporal scales. J. Hydroenviron. Res. 2020, 29, 80–95. [CrossRef]
23. Bi, E.G.; Gachon, P.; Vrac, M.; Monette, F. Which downscaled rainfall data for climate change impact studies in urban areas?

Review of current approaches and trends. Theor. Appl. Climatol. 2017, 127, 685–699. [CrossRef]
24. Schardong, A.; Simonovic, S.P.; Sandink, D. Computerized Tool for the Development of Intensity-Duration-Frequency Curves under

a Changing Climate: User’s Manual v.3; Water Resources Research Report no. 104; Facility for Intelligent Decision Support,
Department of Civil and Environmental Engineering: London, ON, Canada, 2018; 80p, ISBN 978-0-7714-3108. Available online:
https://www.eng.uwo.ca/research/iclr/fids/publications/products/104.pdf (accessed on 8 March 2021).

25. Hassazandeh, E.; Nazemi, A.; Adamowski, J.; Nguyen, T.-H.; Van-Nguyen, V.-T. Quantile-based downscaling of rainfall extremes:
Notes on methodological functionality, associated uncertainty and application in practice. Adv. Water Resour. 2019, 131, 103371.
[CrossRef]

26. Cheng, L.; AghaKouchak, A. Nonstationarity precipitation intensity-duration-frequency curves for infrastructure design in a
changing climate. Sci. Rep. 2014, 4, 7093. [CrossRef] [PubMed]

27. Yilmaz, A.G.; Pereira, B.J.C. Extreme rainfall non-stationarity investigation and intensity-frequency-duration relationship. ASCE
J. Hydrol. Eng. 2014, 19, 1160–1172. [CrossRef]

28. Sugahara, S.; da Rocha, R.P.; Silveira, R. Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int. J.
Climatol. 2009, 29, 1339–1349. [CrossRef]

29. Simonovic, S.P.; Schardong, A.; Sandink, D.; Srivastav, R. A web-based tool for the development of Intensity Duration Frequency
curves under changing climate. Environ. Model. Softw. 2016, 81, 136–153. [CrossRef]

30. Sandink, D.; Simonovic, S.P.; Schardong, A.; Srivastav, R. A decision support system for updating and incorporating climate
change impacts into rainfall intensity-duration-frequency curves: Review of the stakeholder involvement process. Environ. Model.
Softw. 2016, 84, 193–209. [CrossRef]

31. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst.
Sci. 2007, 11, 1633–1644. [CrossRef]

32. Schardong, A.; Simonovic, S.P.; Gaur, A.; Sandink, D. Web-based tool for the development of intensity duration frequency curves
under changing climate at gauged and ungauged locations. Water 2020, 12, 1243. [CrossRef]

33. Maurer, E.P.; Hidalgo, H.G.; Dettinger, M.D.; Cayan, D.R. The utility of daily large-scale climate data in the assessment of climate
change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci. 2010, 14, 1125–1138. [CrossRef]

34. Gudmundsson, L.; Bremnes, J.; Haugen, J.; Engen-Skaugen, T. Technical note: Downscaling RCM precipitation to the station scale
using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [CrossRef]

35. Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001.
36. Alaya, M.A.B.; Zwiers, F.; Zhang, X. An evaluation of block-maximum based estimation of very long return period precipitation

extremes with a large ensemble climate simulation. J. Clim. 2020, 33, 6957–6970. [CrossRef]
37. Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Change

2014, 127, 353–369. [CrossRef]
38. Tan, X.; Gan, T.Y. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to

large-scale climate patterns. Clim. Dyn. 2016, 48, 2983–3001. [CrossRef]
39. Rangulina, G.; Reitan, T. Generalized extreme value shape parameter and its nature for extreme precipitation using long term

series and the Bayesian approach. Hydrol. Sci. J. 2017, 62, 863–879. [CrossRef]
40. Katz, R.W. Statistics of extremes in hidrology. Adv. Water Resour. 2002, 25, 1287–1304. [CrossRef]
41. El Adlouni, S.; Ouarda, T.B.M.J.; Zhang, X.; Roy, R.; Bobée, B. Generalized maximum likelihood estimators for the non-stationary

generalized extreme value method. Water Resour. Res. 2007, 43, W03410. [CrossRef]
42. Beguería, S.; Angulo-Martinez, M.; Vincente-Serrano, S.M.; López-Moreno, J.I.; El-Kenawy, A. Assessing trends in extreme

precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast
Spain from 1930 to 2006. Int. J. Climatol. 2011, 31, 2101–2114. [CrossRef]

43. Ouarda, T.B.M.J.; Yousef, L.A.; Charron, C. Non-stationary intensity-duration-frequency curves integrating information concern-
ing teleconnections and climate change. Int. J. Climatol. 2018, 1–18. [CrossRef]

44. Naghettini, M.; Pinto, E.J.A. Hidrologia Estatística; CPRM Serviço Geológico do Brasil: Belo Horizonte, Brasil, 2007.
45. Katz, R.W. Statistical methods for non-stationary extremes. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty;

AghaKouchak, A., Easterling, D., Schubert, K.H.S., Sorooshian, S., Eds.; Springer: London, UK, 2013; pp. 15–37.

http://doi.org/10.1007/s00382-020-05240-3
http://doi.org/10.1016/j.jhydrol.2012.05.052
http://doi.org/10.1016/j.atmosres.2011.06.011
http://doi.org/10.1007/s40641-016-0050-x
http://doi.org/10.1080/02626667.2015.1083103
http://doi.org/10.1016/j.jher.2020.01.006
http://doi.org/10.1007/s00704-015-1656-y
https://www.eng.uwo.ca/research/iclr/fids/publications/products/104.pdf
http://doi.org/10.1016/j.advwatres.2019.07.001
http://doi.org/10.1038/srep07093
http://www.ncbi.nlm.nih.gov/pubmed/25403227
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000878
http://doi.org/10.1002/joc.1760
http://doi.org/10.1016/j.envsoft.2016.03.016
http://doi.org/10.1016/j.envsoft.2016.06.012
http://doi.org/10.5194/hess-11-1633-2007
http://doi.org/10.3390/w12051243
http://doi.org/10.5194/hess-14-1125-2010
http://doi.org/10.5194/hess-16-3383-2012
http://doi.org/10.1175/JCLI-D-19-0011.1
http://doi.org/10.1007/s10584-014-1254-5
http://doi.org/10.1007/s00382-016-3246-9
http://doi.org/10.1080/02626667.2016.1260134
http://doi.org/10.1016/S0309-1708(02)00056-8
http://doi.org/10.1029/2005WR004545
http://doi.org/10.1002/joc.2218
http://doi.org/10.1002/joc.5953


Water 2021, 13, 1008 22 of 22

46. Gilleland, E. Extreme Value Analysis Version 2.0-10. 2019. Available online: http://www.ral.ucar.edu/staff/ericg/extRemes
(accessed on 8 March 2021).

47. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004,
33, 261–304. [CrossRef]

48. Li, J.; Evans, J.; Johnson, F.; Sharma, A. A comparison of methods for estimating climate change impact of design rainfall using
high-resolution RCM. J. Hydrol. 2017, 547, 413–427. [CrossRef]

49. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

50. Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods
preserve changes in quantiles and extremes? J. Clim. 2015. [CrossRef]

51. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2011; Available online: http://www.R-project.org (accessed on 1 April 2021).

52. Silva, D.F.; Simonovic, S.P. Development of Non-Stationary Rainfall Intensity Duration Frequency Curves for Future Climate Conditions;
Water Resources Research Report no. 106; Facility for Intelligent Decision Support, Department of Civil and Environmental
Engineering: London, ON, Canada, 2020; 49p, ISBN 978-0-7714-3138-8. Available online: https://www.eng.uwo.ca/research/
iclr/fids/publications/products/106.pdf (accessed on 8 March 2021).

http://www.ral.ucar.edu/staff/ericg/extRemes
http://doi.org/10.1177/0049124104268644
http://doi.org/10.1016/j.jhydrol.2017.02.019
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1175/JCLI-D-14-00754.1
http://www.R-project.org
https://www.eng.uwo.ca/research/iclr/fids/publications/products/106.pdf
https://www.eng.uwo.ca/research/iclr/fids/publications/products/106.pdf

	Introduction 
	Study Area and Data Used 
	Methodology 
	Statistical Analysis 
	Theoretical Probability Distribution 
	Identification of the Best Model 
	Rainfall Depth Estimation 

	Non-Stationary IDF Curves under Changing Climate 

	Results and Discussions 
	Trends in GEV Model Parameters in Historical Observed Data 
	Historic IDF Relationships 
	Performance of the Modified Spatial Downscaling 
	Future IDF Curves 

	Summary and Conclusions 
	References

