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Abstract: Benthic-pelagic coupling processes and the quantity of carbon transferred from the water
column to the benthic suspension feeders need multiple intensive sampling approaches where several
environmental variables and benthos performance are quantified. Here, activity, dietary composition,
and capture rates of three Mediterranean gorgonians (Paramuricea clavata, Eunicella singularis, and
Leptogorgia sarmentosa) were assessed in an intensive cycle considering different variables such as
the seston concentration and quality (e.g., carbon, nitrogen, and zooplankton), the colony branch
patterns, and the energetic input of the single species (i.e., mixotrophic and heterotrophic). The three
species showed clear differences in their impact on the seston concentration. Paramuricea clavata,
the most densely distributed, showed a greater impact on the near bottom water column seston.
The lowest impact of E. singularis on the seston could be explained by its mixotrophy and colony
branching pattern. Leptogorgia sarmentosa had a similar impact as E. singularis, having a much more
complex branching pattern and more than an order of magnitude smaller number of colonies per
meter square than the other two octocorals. The amount of carbon ingested in the peaks of the
capture rates in the three species may cover a non-neglectable proportion of the potential carbon
fluxes.

Keywords: prey capture rates; octocorals; marine animal forest; optimum forage theory; carbon
immobilization; zooplankton; seston

1. Introduction

During the last decades, much attention has been paid to the role of megabenthic
invertebrate structures composed mainly by invertebrates in benthic-pelagic coupling
processes [1]. It is well known that these organisms, mainly active or passive suspension
feeders, have a determinant role in biogeochemical cycles and near bottom seston reg-
ulation [2]. Biogenic structures produced by sponges, cnidarians, bryozoans, etc., also
known as marine animal forests [3,4], may even potentially change, depending on their
structure, patch size, and current regime, the seston concentration [5]. The dependence on
currents and seston concentration has been claimed as an essential point to understand
benthic-pelagic coupling processes [6,7]; nevertheless, there are few studies highlighting
the role of short-time cycles as energy providers in marine animal forests.

It is well known that in a brief time (i.e., few hours), the seston concentration in
near bottom water layers may suddenly change in concentration and quality [8–11]. Such
changes may have an immediate response to the energy fluxes in terms of activity of the
benthic community [12–15]. When the benthic activity or the abundance of meiofauna has
been analyzed in the deep sea, for example, a fast response to the primary productivity
have been found according to different areas of the world, suggesting that the quantity
and quality of the organic material transferred from the pelagic to the benthic domain is a
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crucial step to understand the energetic implications of these transfer processes [16–19].
However, nor in shallow or deep waters has a short time approach been adopted in which
the seston variables, the activity of the suspension feeders, and the capture rates have
been simultaneously quantified to understand the importance of such food pulses in the
benthic-pelagic coupling processes.

Several studies indicated that the quality and quantity of the available food would be
essential in the understanding of processes determining changes in health status of marine
animal forests driven by anthropogenic impacts at local scale in a wider framework of
global climate change stressors [20,21]. However, to develop reliable models describing
changes in energy inputs due to these emerging constrains, it is crucial also to know how
short time cycles influence the capture rates in natural conditions, and how fluctuations
in seston concentration and food availability may affect the global energy budget of these
benthic suspension feeders. Every single community responds differently to the food
pulses [20] and knowing the importance of the short-term variability in the prey capture
and associated carbon entry may be a key point that has been largely neglected so far [22].
There is a baseline of seston concentration that all the benthic suspension feeders take
advantage transversally (i.e., continuously capturing available particles through filtration,
depending on the season), but single pulses have been also detected through the year
in different marine animal forests [23–25], demonstrating that pulse-like feeding may be
essential to understand the overall budget of these invertebrates and its future constraints.
In the optimal forage theory [26], all the organisms tend to optimize the available resources
for their own benefit with different strategies, including the patch structure and density [27].
In benthic suspension feeders, such optimization depends on the feeding strategy [2,28],
being dependent on the seston concentration, quality and the hydrodynamics of the
specific area and time of the year. The comprehension of how, in coincidence with the
major productivity period of the year, each benthic organism responds in a short time
feeding on the available seston will be essential to understand the energetic dynamics of
the whole benthic community.

Among the organisms that form the marine animal forests, gorgonians have an im-
portant role in benthic-pelagic processes due to their abundance in several habitats of the
world [29–33]. In this study, we examined high temporal resolution variability in the polyp
expansion and plankton prey captures of three different Mediterranean passive suspension
feeders: Eunicella singularis (Esper, 1791), Paramuricea clavata (Risso, 1826), and Leptogorgia
sarmentosa (Esper, 1791). Eunicella singularis is a mixotrophic species that feeds on particu-
late organic carbon [34] but, in shallow areas, relies also in the photosynthetic activity [35].
Its bathymetric distribution range is wide [36], being the morphology and the heterotrophic
input different when shallow and deeper populations are compared [37,38]. Paramuricea
clavata settles preferentially on steep walls [36], it is exclusively heterotrophic, and has a
wide diet spectrum, being the zooplankton a significant part of its energy input [30,39].
Leptogorgia sarmentosa prefers detrital-gravel horizontal habitats [36], it is also exclusively
heterotrophic, having a diet based in zooplankton, detritus, and picoplankton [40,41].

The goal of the present research is to assess how the food pulses affect the capture
rates (in terms of growth and C uptake and utilization) monitoring the three species in
a short-time cycle, having each species a different patch density and colony branching
pattern. To do that, we studied the (i) seston quantity and quality in the near bottom water
layer, (ii) the polyp activity in the field, and (iii) the prey capture composition and rates
of the three different passive suspension feeders at several temporal scales by using an
high-frequency temporal sampling. Thus, the present study highlights the role of passive
suspension feeders in energy transferring to benthic communities in temperate littoral
ecosystems depending on their distribution and also patch density.

2. Materials and Methods

The field survey was conducted in the Medes Islands, NW Mediterranean (40◦02′55′′ N,
3◦13′30′′ E). Sampling and observations were carried out at 18–20 m depth among a
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coralligenous reef located in a steep wall and boulders. The area was alternately influ-
enced by northerly and southerly currents, which may reach high speeds (from 2 up to
30 cm s−1, [10,15]). The underwater topography is markedly asymmetrical, with prominent
slopes on the northern side and gentle slopes on the southern side. Strong, dry winds
blow from the north-northwest in spring-summer. Water temperature is also highly sea-
sonal, with a strong thermocline between April and October at a depth of 20–30 m (with
differences of 7–10 ◦C) [10]. Salinity is usually around 37.5–38‰, with maximum values in
winter during mixing events produced by heavy storms caused by the north winds [10].

The three species analyzed were octocorals: Paramuricea clavata, Eunicella singularis,
and Leptogorgia sarmentosa. Paramuricea clavata has a mean density of 56 colonies m−2,
whilst E. singularis has a mean density of 41 colonies m−2 in the study area. Leptogorgia
sarmentosa has a mean density of 1.5 colonies m−2.

2.1. Polyp Expansion

Species polyp expansion was monitored at a high frequency (i.e., two sampling times
within the day) during the late spring-early summer. This period was chosen because
pelagic primary production and the frequency of seston pulses is high [10]. Expansion is
defined as the maximum aperture of polyps [15,42]. Polyp activity was observed in ten
groups of five colonies each time by scuba divers in patches distributed along 30–40 meters.
On each sampling time, the percentages of expanded semi-expanded or contracted polyps
was recorded in colonies of E. singularis, L. sarmentosa, and P. clavata.

2.2. Environmental and Biological Parameters of the Water Column

Several environmental and biological variables were concomitantly monitored: (1) ses-
ton concentration and quality, the latter determined by assessment of total particulate
carbon and nitrogen, chlorophyll a and protein concentrations [10], and (2) zooplankton
concentration, determined by analyzing three samples collected by a scuba diver towing a
plankton net (22 cm in diameter with a mesh size of 100 µm) for a distance of 40 m [30,41].

2.3. Analysis of Gut Contents

Feeding on plankton in the three species was assessed by means of gut content
examinations of apical fragments [41]. The colonies were sampled two times each day
during the whole intensive cycle (5 days). Each sample consisted of one apical fragment
collected from five randomly selected colonies. The species collected (P. clavata, E. singularis,
and L. sarmentosa) are not protected species; we have a specific permit to operate and sample
in the area from the local authorities, the Parc Natural de les Illes Medes.

The fragments were immediately placed in 10% formaldehyde solution in seawater to
prevent further digestion. The contents of 50 polyps selected randomly from each sample
(ten from each apical fragment of five colonies in each sampling time per each species)
were isolated by dissection under a binocular microscope, identified to the higher taxon
level and counted. The length of all prey was measured under the microscope with a
micrometer ruler.

2.4. Benthic-Pelagic Coupling Calculations
2.4.1. Prey Capture Rate

The zooplankton capture rate, expressed as the number of prey items captured per
polyp and hour, was calculated using the following equation [30]:

C = N

[
D

∑
t=0

1−
(

t
D

)]−1

(1)

where C is the number of preys captured per polyp per hour, N is the number of prey items
per polyp, t is time (in hours), and D is digestion time (in hours). Digestion time applied
for the three species considered the temperature recorded (19.5 ◦C, [10]) in the study area
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in this time of the year. The applied digestion time is based on the available literature of E.
singularis and L. sarmentosa [34,41]; no data on P. clavata digestion time at this temperature
range has been calculated in previous studies; thus, the previous two species digestion was
also used to make the P. clavata calculations on prey capture rates.

2.4.2. Prey Biomass

Prey biomass was estimated from biovolumes [43], using conversion factors for wet
weight (1.025; [44]), dry weight (13% of wet weight, [45]), and carbon content (45% of dry
weight, [46]), as per Rossi et al. [41].

2.4.3. Potential Impact on Seston

To understand how much seston is needed to satisfy the needs of a single polyp during
the day, a combined approach was applied.

First, the total seston concentration, minimum and maximum total carbon values
across the sampling times were estimated. The obtained values were multiplied by the
coefficient 0.66, as it has been shown that in this area, the inorganic carbon represents
approximately 33% of the seston [47]. Those quantities represent the organic carbon (i.e.,
105.5 and 267.9 µg C L−1, respectively). Then, the obtained values were divided by the
maximum ingesta of a single polyp throughout the entire cycle (values found in the present
study, see below). This number will represent the potential quantity of polyps of each
species that may feed with one litre of near bottom seawater in minimum and maximum
seston concentration across the sampling times.

Second, the minimum and maximum zooplankton concentration values throughout
the sampling times (i.e., 533 and 8437 zooplankters m−3, respectively; values found in the
present study, see below) were estimated. Then, the obtained values were divided by the
maximum ingesta of a single polyp throughout the entire cycle. This number will be the
potential number of polyps of each species that may withstand with one cubic meter of
near bottom water in minimum and maximum zooplankton concentration across sampling
times.

2.5. Statistical Analysis

The variability in seston composition (total particulate carbon and nitrogen, chloro-
phyll a, and protein concentrations) and zooplankton density was assessed at several
temporal scales by multivariate analyses. The design consisted of two factors: Day (D, as a
random factor with 5 levels, each 24 h) and Time (T, as a random factor with 2 levels, nested
in D, twice per day), with n = 3. Multivariate analyses of variance (PERMANOVA, [47])
was performed based on Euclidean distances of previously normalized data, using 9999
random permutations of the appropriate units [48].

To assess differences in polyp expansion, fed polyp percentages and prey biomass
of fed polyps belonging to the three investigated species, univariate permutational anal-
yses of variance (PERMANOVA, [47]) were performed, based on Euclidean distances of
untransformed data, using 9999 random permutations of the appropriate units [48]. Differ-
ences in prey composition were assessed performing permutational analyses of variance
(PERMANOVA, [47]) based on Bray Curtis dissimilarities. The design adopted consisted
of three factors: Day (D, as a random factor with 5 levels, each 24 h) Time (T, as a random
factor with 2 levels, nested in D, twice per day), and Species (S, as fixed factor with 3 levels)
with n = 5.

Finally, in order to assess differences in gut contents of colonies belonging to the three
gorgonian species, multivariate permutational analyses of variance (PERMANOVA, [47])
were performed based on Bray Curtis similarities of untransformed data adding a dummy
variable, using 9999 random permutations of the appropriate units [48]. The experimental
design consists of four factors: Day (D, as a random factor with 5 levels, each 24 h) Time
(T, as a random factor with 2 levels, nested in D, twice per day), Species (S, as fixed factor
with 3 levels), and Colony (C, as random factor nested in S, with 5 levels), with n = 10.
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When significant differences were encountered (p < 0.05), post-hoc pairwise tests
were carried out in order to ascertain the consistency of the differences across the different
conditions tested. Because of the restricted number of unique permutations in the pairwise
tests, p-values were obtained from Monte Carlo tests. To examine the generality of patterns
in seston and zooplankton densities, and prey composition of fed polyps, Multidimensional
Scaling (MDS) plots were generated. The analyses were performed using PRIMER v. 6
software [49] including the PERMANOVA + add-on package [49,50].

3. Results
3.1. Seston and Zooplankton Density

Zooplankton concentration varied between 533 individuals m−3 and 8437 individuals
m−3 (Table S1). Zooplankton had higher concentrations toward the latter days (Figure 1).
Contrariwise, chlorophyll a had its higher concentration values at the beginning of experi-
ment. Chlorophyll a concentration varied between 0.29 and 0.57 µg L−1, with a mean of
0.40 ± 0.01 SE µg L−1. Protein and total carbon contents exhibited a similar trend. Protein
concentration minimum value was 127 µg L−1, maximum value was 244 µg L−1. The mean
concentration was 182 ± 5 SE µg L−1. The mean concentration of total carbon contents
was 247 ± 13 SE µg L−1, with the maximum value of 406 µg L−1 and the minimum value
of 160 µg L−1. The mean concentration of total nitrogen was 22 ± 1 SE µg L−1, with the
maximum value of 34 µg L−1 and a minimum of 13 µg L−1. The total seston concentration
ranged from 159.9 to 405.9 µg C L−1.
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Figure 1. The seston (total carbon, protein, total nitrogen, and clorophyll a; right axis) and zooplank-
ton variables (left axis) characterizing the several sampling times within the sampling days.

The results of the multivariate PERMANOVA revealed that the seston and zooplank-
ton composition varied significantly among sampling times of days (Table 1).

MSD plot showed a segregation among several sampling times of the first and last
days, which is mostly correlated by the increased contents of protein, zooplankton, total
carbon, and nitrogen contents in the sampling times of latter days. Instead, the sampling
times related to the two first days were correlated to a slight increment of chlorophyll a
(Figures 1 and 2).
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Table 1. Results of multivariate permutational analyses (PERMANOVA) on seston and zooplankton
composition across several temporal scales (Day, Time).

Source Df MS Pseudo-F P (Perm)

D 4 18.68 2.24
T(D) 5 8.36 5.87 ***
Res 20 1.42

Total 29
*** p < 0.001.
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Figure 2. Multidimensional scaling (MDS) plot for seston composition with Euclidean distances
based on normalized data; vectors with Pearson’s correlation coefficients display environmental
variables.

3.2. Polyp Expansion and Fed Polyp Observation of the Three Gorgonians

Overall, 1500 polyps (500 for each species) were analyzed finding 49 fed polyp for
Eunicella, 95 for Leptogorgia, and 157 for Paramuricea). The results of the PERMANOVA
revealed significant differences in the percentage of fed polyps among species and sampling
times (Table 2).

Table 2. Results of permutational analyses (PERMANOVA) on the percentages of fed, open, semi-open, closed polyps in the
species investigated across several temporal scales (Day, Time).

Fed Polyps % Open Polyps % Semi-Open Polyps % Closed Polyps %

Source Df MS Pseudo-
F P (Perm) MS Pseudo-

F P (Perm) MS Pseudo-
F

P
(Perm) MS Pseudo-

F
P

(Perm)

D 4 45.51 2.59 ns 137.8 1.22 8.72 0.69 105.78 1.21
S 2 58.75 9.37 *** 76.51 6.01 26.93 1.74 47.33 1.66

T(D) 5 17.58 10.16 *** 112.86 39.88 12.66 7.42 87.69 25.89
D × S 8 6.27 2.10 ns 12.74 0.41 15.5 1.44 28.59 1.04

T(D) ×
S 10 2.98 1.72 ns 31.28 11.05 *** 10.8 6.33 *** 27.39 8.09 ***

Res 120 1.73 2.83 1.71 3.39
Total 149

*** p < 0.001; ns- not significant.

In particular, pairwise analyses showed significant differences between E. singularis
and P. clavata (Table 3), while did not underline differences between E. singularis and L.
sarmentosa and between L. sarmentosa and P. clavata.
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Table 3. Results of the pairwise tests contrasting the percentages of fed polyps of the three species
across several temporal scales.

Pairwise Tests T P (Perm)

E. singularis vs. L. sarmentosa 2.00 ns
E. singularis vs. P. clavata 5.49 **
L. sarmentosa vs. P. clavata 2.00 ns

** p < 0.01; ns- not significant.

Moreover, the percentages of open, semi-open, closed polyps were assessed in the
species investigated. The analyses on polyp expansion (open, semi-open, and closed status)
of the three species investigated showed the significant T(D) × S term indicating that
the polyp status of the species varied significantly at varying of sampling times of cycles
(Table 2). In particular, pairwise analyses showed significant differences among species
in some sampling times of the days (Table S2, Figure 3), except for D2T2 D3T1 D4T2 and
D5T2 when there were no differences in closed polyp percentage, and D5T2 in semi-open
polyp percentage among all species investigated.
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3.3. Gut Contents of Gorgonian Polyps

Regarding the prey captures, from the analyses of 1500 polyps (500 for each species
collected in all sampling times), 1199 empty polyps and 891 preys were found reaching
301 fed polyps taking together all the investigated species.

The result of the multivariate PERMANOVA on gut composition revealed a significant
T(D) × C (S) term, underlining a great variability among colonies of the three different
species across sampling times (Table 4, Table S3).

Table 4. Results of multivariate permutational analyses (PERMANOVA) on gut contents of polyps of
different colonies of three species investigated across several temporal scales (Day, Time).

Source Df MS Pseudo-F P (Perm)

D 4 3892.50 1.98
S 2 6464.70 3.70

T(D) 5 1728.30 4.15
C(S) 12 564.36 1.25

D × S 8 1307.50 1.55
D × C(S) 48 452.62 1.09 ns
T(D) × S 10 660.15 1.59 **

T(D) × C(S) 60 416.48 1.30 **
Res 1350 321.28

Total 1499
** p < 0.01; ns- not significant.

3.4. Prey Composition and Biomass

Regardless of the sampling times, the species with the highest prey capture rate is P.
clavata, followed by L. sarmentosa and E. singularis. Total prey captures are 891 preys for P.
clavata (5.68 ± 2.16 SE prey/fed polyp), 130 preys for L. sarmentosa (1.37 ± 0.08 SE prey/fed
polyp), and 57 for E. singularis (1.16 ± 0.07 SE prey/fed polyp) (Figure 4).
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The results of the PERMANOVA revealed a significant D × S term, indicating dif-
ferences among the three species at varying of the sampling days (Table 5), as showed in
detail by pairwise analyses (Table 6).
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Table 5. Results of permutational analyses (PERMANOVA) on prey composition, and prey biomass
of polyps of the three species investigated across several temporal scales (Day, Time).

Prey Composition Total Prey Biomass

Source Df MS Pseudo-F P (Perm) MS Pseudo-F P (Perm)

D 4 3447.20 0.81 0.26 0.51 ns
S 2 22,981.00 4.09 4.86 3.97 ns

T(D) 5 4394.50 1.23 0.25 0.13 ns
D × S 8 6458.60 1.69 * 0.95 1.11 ns

T(D) × S 10 3860.60 1.08 ns 0.71 0.37 ns
Res 271 3583.10 1.89

Total 300
* p < 0.05; ns- not significant.

Table 6. Results of the pairwise tests contrasting the prey compositions of polyps of the three species
across sampling days. S1: Eunicella singularis, S2: Leptogorgia sarmentosa, S3: Paramuricea clavata.

Groups T P(MC) T P(MC) T P(MC) T P(MC) T P(MC)

D1 D2 D3 D4 D5

S1 vs.
S2 1.29 ns 0.77 ns 2.79 ns 4.10 ** 2.43 *

S1 vs.
S3 1.05 ns 0.91 ns 4.78 ** 2.20 ns 3.14 *

S2 vs.
S3 1.73 ns 1.15 ns 1.35 ns 2.00 ns 1.43 ns

* p < 0.05; ** p < 0.01; ns- not significant.

Differences among species were represented by multidimensional scaling ordinations
(MDS) (Figure 5), considering sampling time centroids (the mean cover values of each
species in each sampling time of the day).
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Total prey biomass accounted for a total of 136.43 µg C. The main species able to
store carbon is P. clavata (tot 105.01 µg C; 0.67± 0.15 SE µg C /fed polyp), followed by E.
singularis (tot 13.00 µg C; 0.27 ± 0.05 SE µg C /fed polyp), and L. sarmentosa (tot, 18.42 µg
C; 0.19 ± 0.02 SE µg C /fed polyp) (Figure 6). Nevertheless, because of the large variability,
the results of the PERMANOVA on prey biomass revealed no significant differences across
investigated factors (Table 6, Figure 6).
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3.5. Benthic-Pelagic Coupling Calculations: Potential Impact on Seston

Tables 7 and 8 summarize the potential number of polyps of the three studied species
feeding on the seston and zooplankton, respectively, contained in a specific volume measure
(i.e., one liter or one cubic meter of seawater).

Table 7. Impact on the organic carbon (water near bottom seston) of the three studied species. The number of polyps
feeding on seston is the ratio between the organic C (minimum and maximum) found in one liter (L−1) of sea water and the
maximum organic matter found in the polyps of each species (calculations made per day).

Species Max Food Pulse
(µg C polyp−1)

Min Organic C
(µg C L−1)

Max Organic C
(µg C L−1)

Max Number of Polyps
Feeding on the Seston

Paramuricea clavata 10.42 105.5 267.9 10/25
Leptogorgia sarmentosa 2.27 105.5 267.9 46/118

Eunicella singularis 2.15 105.5 269.9 49/124

Table 8. Impact on the zooplankton (water near bottom seston) of the three studied species. The number of polyps feeding
on zooplankton is the ratio between the zooplankters in the short time cycle (minimum and maximum) found in one cubic
meter (m3) of sea water and the maximum prey found in the polyps of each species (calculations made per day).

Species Max Food Pulse
(Prey Polyp−1)

Min Zooplankton
(Ind m−3)

Max Zooplankton
(Ind m−3)

Max Number of Polyps Feeding
on the Zooplankton

Paramuricea clavata 139.2 533 8437 4/60
Leptogorgia sarmentosa 8.40 533 8437 63/1004

Eunicella singularis 6.57 533 8437 81/1284
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The calculation took into account changes in the sampling times, in term of minimum
and maximum values recorded during the present intensive cycle. As reported in table, the
minimum seston organic carbon content can satisfy 10 P. clavata polyps when they are in
their maximum feeding (10.42 µg C polyp−1), whilst the maximum seston organic carbon
content will satisfy 25 polyps having the same capture rates (10.42 µg C polyp−1) (Table 8).
A similar procedure is applied for the zooplankton, considering the individuals in one
cubic meter. The estimations of other two investigated species are reported in Table 8
as well.

4. Discussion

In the present paper, for the first time, seston variables and prey capture rates are
contrasted in different species of passive suspension feeders with different colony densities,
analyzing the potential relations throughout a short time cycle. It has been reported that,
to make energetic balances, short time cycles may be essential although neglected [51].

Seston variables found in the present study (including zooplankton) are in line with
the variability found in previous Mediterranean studies in which coastal or near bottom
water column parameters were analyzed [30,41,52–54]. Wide variations in a short time,
especially in zooplankton, have been however seldom analyzed in near bottom seston in
warm temperate seas and have been considered as an obstacle to understand the potential
mechanisms in benthic-pelagic coupling processes [10,55].

The present work is also in line with previous findings on the diet and capture rates
(maximum and minimum) observed in annual cycles in the three studied species [30,34,41],
however several peaks of ingesta have been recorded that in seasonal sampling are difficult
to detect. These peaks demonstrate that, in only few hours, the energy input may be even
more than an order of magnitude higher in species like P. clavata, but also noteworthy in E.
singularis and L. sarmentosa.

The present high-frequency monitoring does not show a clear coupling between the
activity and the seston concentration. It represents, however, a first insight into the complex
mechanisms among the seston variables (concentration), the polyp activity and the species
diet. The seston concentration (or quality, see the protein concentration) was not clearly
related to the gut contents even taking both variables contextually (seston and polyps)
through a high-frequency sampling. Rossi et al. [15] showed that the polyp opening in
another octocoral, Corallium rubrum, due to the presence of a nutritional stimulus (chemical
signals or zooplankton) in controlled experiments, may be 1–3 minutes. The activity
(opening polyps) of the three gorgonians studied though a field experiment seems not
to be affected to the seston concentration or quality since the elapsed time between the
high signals (i.e., high zooplankter concentration for example) and the polyp opening may
happen quickly and non-detectable even with such an intensive cycle. At this temperature
(19.5 ◦C), the three species seem to follow similar patterns to those found in previous studies
of these or other octocorals [15,56]. However, the present observations highlight that the
fed polyps are often in coincidence with high concentration of seston and zooplankton
density. Benthic macrofaunal response to pelagic production can cover different time
ranges according to physiology and ecology of the considered species, as also underlined
by observations and model simulation [57].

Digestion time, being relatively slow at 19.5 ◦C (the temperature found in the water
column in the area during the sampling [10]), may be essential to understand the underlin-
ing trophic dynamics. The prey abundance in gut contents could reflect the preys caught
nine hours before. In fact, sudden changes of the seston concentration in only few hours
are well-known [10,11], representing the opportunity to retain the particles limited in time
for benthic suspension feeders [51].

Our findings report a clear difference among the investigated species in the food pulse
behavior in term of capture rates (and in different times of the cycle). Paramuricea clavata
has the highest prey abundance in gut contents that, transformed in captured organic
carbon, indicates the highest energy input among the three species. In the study area, P.
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clavata lives on vertical rocky walls, as reported in other studies [36], on a large boulder [58],
forming crowded patches (around 56 colonies m−2, [30]). The density of colony patches
of E. singularis was lower than P. clavata in the study area (41 colonies m−2, [59]), and
sparse colonies were found in the case of L. sarmantosa (1.5 colonies m−2, [41]). Nelson
and Bramanti [27] suggested that the density and population structure/ramification of
the gorgonian forests can be crucial to understand the efficient capture rates, since the
high-density patches are able to retain the particles for longer times potentially [5]. Coma
et al [60] found that, in the rocky coasts of Menorca, after a mass mortality event, high-
density patches of E. singularis were affected by lower mortality rates when compared with
patches hosting low-density colonies. This species relies on the autotrophic input to be
successful in shallow waters [35,38]), with low number of longer primary branches in the
colonies respect those found in deeper waters [38].

The capture rates of E. singularis are comparable with those of L. sarmentosa: a poor
branching pattern possibly structured for light harvesting [61] and a non-effective cnidocilia
density in the polyps [34] may be essential to understand why the numbers of incoming
carbon by heterotrophy are not similar to those of P. clavata. Rossi et al. [25] also suggested
that the patch density in mixotrophic species may be one of the keys to understanding
colony efficiency in the energy inputs. The species studied (Pterogorgia anceps, Caribbean
Sea) had similar capture rates to E. singularis. Leptogorgia sarmentosa, being in the study
area the least dense among the three species investigated (1.5 colonies m−2 [41]) is highly
branched [62]. Thus, its capture rates are quite high if we compare with the crowded
colonies of P. clavata. It suggests that indeed the colony density can be essential to be largely
efficient capturing particles in gorgonians, together with the exposition of the colonies [58].
Further investigations applying high-frequency temporal approaches at large spatial scales
will compare different ranges of the density of L. sarmentosa to assess the capture efficiency
of this sand-gravel suspension feeder. The observations on P. clavata were made in a vertical
wall exposed to the currents, a preferential settlement of the species [36]. This position can
enhance the prey capture rates, making this species particularly efficient in seston retention.
We suggest that, beyond the exposition of the patch (vertical instead of horizontal [58]),
and polyp size and morphology [63], the density of the colonies [27] represent key factors
to understand the optimization of the prey capture rates. Even if the final target of the
present experimental design was not to demonstrate the effect of the patch density in the
beginning, our results shed a first light on the relationship between the colony density and
branching pattern and the capture rates in the intensive cycle. Campanyà-Llovet et al. [20]
stressed that food quantity and quality will be essential to understand the future of mega-
benthic communities in different areas of the world. Indeed, the synergy of currents
and seston concentration may be the key to understanding prey capture rates in passive
suspension feeders [15]. However, as also suggested by Nelson and Bramanti [27], other
relevant factors as patch density, position, colony branching pattern, and the mixotrophic
or heterotrophic nature of the gorgonians can affect the efficiency in these capture rates
with associated consequences on carbon cycling and immobilization [64,65]. Rossi et al. [21]
also highlighted this issue, stressing the importance of studies on the effects of primary
and secondary productivity changes driven by climate change, which will shape the future
seascape.

5. Conclusions

The availability of food quantity and quality and environmental conditions pose
important constrains to mega-benthic communities in different areas of the world. Our
results point out the coexistence of potential factors such as patch density, position, colony
branching pattern, and the mixotrophic or heterotrophic nature, playing a key role in
efficiency optimization of capture rates. Here, we discussed the potential role of mature
and dense gorgonian populations as the key to understanding high impacts on seston.
Food pulses (a significant change in seston availability in a short time) could be essential to
understand carbon cycling and immobilization. To understand the role of marine animal
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forests as carbon immobilizers, future efforts should be focused on the real energy inputs,
stimulating research studies addressed to detect the real benthic-pelagic coupling processes
through intensive cycles. Future research should be addressed on the effects of primary
and secondary productivity changes driven by climate change, which will shape the future
seascape.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13070997/s1, Table S1: Zooplankton density, Table S2: Pairwise tests contrasting the
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