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Abstract: Precipitation is the main source for replenishing groundwater stored in aquifers for a
myriad of beneficial purposes, especially in arid and semi-arid regions. A significant portion of the
municipal and agricultural water demand is satisfied through groundwater withdrawals in Texas.
These withdrawals have to be monitored and regulated to be in balance with the recharge amount
from precipitation in order to ensure water security. The main goal of this study is to understand the
spatio-temporal variability of precipitation in the 21st century using high spatial resolution stage-IV
radar data over the state of Texas and examine some climatic controls behind this variability. The
results will shed light on the trends of precipitation and hence will contribute to improving water
resources management strategies and policies. Pettit’s test and Standard Normal Homogeneity Test
(SNHT), tools for detecting change-point in the monthly precipitation, suggested change-points
have occurred across the state around the years 2013 and 2014. The test for the homogeneity of
the data before and after 2013 revealed that, in over 64% of the state, the precipitation means were
significantly different. The Panhandle region (northern part) is the only part of the state that did not
show a significant difference in the mean precipitation before and after 2013. Theil-Sen’s slope test,
Correlated Seasonal Mann-Kendall Test, and Cox and Stuart Trend Test all indicated that there were
no significant trends in the monthly precipitation after 2013 in over 98% of the area of the state. Texas
precipitation was found to be influenced significantly by the El Niño-Southern Oscillation (ENSO)
and the Pacific Decadal Oscillation (PDO). A significant correlation in more than 82% and 60% of the
state was found with ENSO at two-month and with PDO at four-month lag, respectively.

Keywords: precipitation; NEXt-generation Weather RADar (NEXRAD); Texas; water resources

1. Introduction

Intermittency is one of the main defining characteristics of precipitation making it
difficult for researchers and practitioners to fully capture the spatial and temporal dis-
tribution of precipitation and variability [1]. Numerous studies have demonstrated how
crucial it is to estimate precipitation accurately for simulation and forecasting of hydrome-
teorological processes such as runoff, evapotranspiration, infiltration, and streamflow. The
more the spatio-temporal variability of precipitation is adequately represented, the more
hydrological models became robust and their predictions reliable. The long-term trends
of precipitation are also equally important as the short-term spatio-temporal variability
because of their importance for water resources and flood management policies. For exam-
ple, groundwater aquifers rely on recharge from rainfall, and withdrawal from the aquifers
should be regulated according to the recharge forecasts.

Most of the studies that addressed a long-term temporal evolution of precipitation
were conducted using data from rain gauge networks [2–4]. This was mainly because
remotely sensed precipitation products from radars and satellites covered a relatively short
time frame. However, relying on rain gauges could be problematic as rain gauges are too
sparsely distributed and are mostly located in and around densely populated metropolitan
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areas [5]. The most widely available rainfall data from rain gauges is provided by the
U.S. National Weather Service’s cooperative weather network with an average density
of about one rain gauge per 770 km2 [6]. This highlights the main failure of rain gauges
with their near-point sampling characteristics [7]. Even at this resolution, the quality of
data from a large proportion of the gauges is questionable. For example, it has been
reported that the wind and lack of dynamic calibration can cause significant errors in
rainfall estimation that are further amplified when rain gauge data are used as input to
hydrologic models. In addition to wind effects, it is also well documented that rain gauge
observations are susceptible to losses caused by other factors such as wetting, evaporation,
and out splashing. Moreover, rain gauge performance decreases as the intensity of rainfall
increases, ultimately failing to adequately capture the flood-producing storms on some
occasions [8].

Weather radar-based rainfall products have been available for public use in the United
States (US) for well over two decades [9]. These products are obtained from the NEXRAD
(Next-Generation Radar) network of 160 high-resolution S-band Doppler weather radars
operated by the National Weather Service (NWS), the Federal Aviation Administration
(FAA), and the United States Air Force (USAF). Their main advantage over rain gauge
observations is the larger areal coverage with much higher spatial and temporal resolutions.
This makes these products extremely useful for forcing distributed hydrological and land
surface models to produce much-needed high-resolution hydrometeorological outputs
including aquifer recharge estimates. However, radar rainfall estimates also come with
higher estimation uncertainty because they are based on indirect measurements of the
precipitation [9]. As detailed by Wang [8], the early products of NEXRAD were having
significant measurement problems such as overestimation of light rainfall and smoothing
of high rainfall intensity. However, the most recent products of NEXRAD include signif-
icant improvements. An early (2002–2012) assessment study of the data by Nelson [10]
demonstrated that calibrated radar products performed very well for moderate and heavy
rainfall storms for multiple seasons and locations. Nonetheless, the study observed many
discontinuities at a daily scale because of the operational processing at the radar site and
discontinuities due to merging radar data from different National Weather Service River
Forecast Centers (RFCs). The ability of radar rainfall products to capture the spatiotem-
poral variability of precipitation also makes them suitable as a reference in assessing the
performance of satellite-based rainfall such as those obtained from tropical Rainfall Mea-
suring Mission (TRMM) by Qiao [11] and Global Precipitation Measurement (GPM) by
Omranian [12]. Combining radar and satellite data may help resolve the discontinuity
issues associated with radar products.

Several studies were conducted to assess the performance of the Stage IV product
of the NEXRAD over the United States. Sharif [13] concluded that the stage IV products
showed a significant improvement in capturing the spatial and temporal distribution of
precipitation when compared to rain gauges. Moreover, the RMSE of Stage IV was reported
to decrease as the timescale increases from hourly to monthly [13,14]. Similar studies
also suggested that the stage IV data were reasonably accurate when used to force the
hydrologic model [15,16]. The main limitation of the Stage IV products was their failure to
capture very heavy events. The improvement of the product over time is attributed to the
constant upgrading of the hardware and processing algorithm.

The state of Texas has diverse climate regimes ranging from a very arid and dry
climate in the west to very humid and wet conditions in the Gulf Coast. A national study
conducted in 1981 on the seasonality of monthly precipitation examined teleconnections
that might influence precipitation in parts of Texas [17]. The Texas Panhandle region was
the only part that showed a significant influence of decadal large-scale climate anomalies.
Another study that focused on the state of Texas only concluded that the wet (dry) months
in the state are strongly linked to the northward (southward) movement of high-pressure
air masses [18]. However, all parts of Texas have shown some change in the amount and
frequency of precipitation, especially after the major drought of 2011–2012. Usually, such
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change is correlated to the strong change in phase of the climate indices. This was also
evident in the detailed analysis conducted on the frequency of precipitation using radar
rainfall data over the state [19]. Another study in Kansas showed that 12 out of 23 stations
studied showed significant change-points as recent as 1980 [20]. The average slope of the
trend in Kansas was found to be 6.8 mm per decade. In a study conducted in 1998, an
increase in precipitation by about 10% was detected throughout the contiguous US in the
last century. The majority of the increase was attributed to the positive trends in the top
10 percentiles of annual precipitation [21]. El Niño Southern Oscillation (ENSO) and Pacific
Decadal Oscillation (PDO) were found to be the most influential indices on precipitation
in the contiguous US. Even localized changes in meteorological variables could result
from the changes in the major global climate indices through teleconnections. Molnár [22]
reported the trend of precipitation in a river basin in New Mexico was directly correlated
with the Pacific Decadal Oscillation (POD). In general, precipitation and temperature in
the southeastern US were found to have been highly affected by the El Niño Southern
Oscillation with a cycle ranging from two years up to seven years [23,24].

Researchers have conducted numerous studies to understand how major large-scale
climate indices affect precipitation over different regions of the world. For example, statisti-
cal analysis revealed a significant shift in precipitation of the United Arab Emirates around
1999 attributed to the change of phase of the Southern Oscillation Index (SOI) [2]. The
most interesting finding of the study was that the precipitation trend in all of the stations
conducted was increasing before and after the shift of 1999. However, when the precipita-
tion data were considered as homogenous, i.e., ignoring the shift, the precipitation in all
stations showed a significantly decreasing trend. The study also showed that a change in
the Southern Oscillation Index (SOI) was strongly linked to a shift in the precipitation data
in northern Iran in the mid-1970s. This suggests that the precipitation of the Middle East is
strongly affected by the changes in the Southern Oscillation Index (SOI). Identifying such a
linkage for a region will be instrumental in understanding and predicting the precipitation
variability for water resources management purposes. A study conducted using data from
16 downscaled global climate models projected that there will be a significant reduction
in precipitation across the US in the coming century [25]. Cities in the southern US are
projected to experience warmer temperatures, especially inland cities such as Oklahoma
City and El Paso. This will, in turn, cause stress in the local water resource and will have
profound implications [25].

Investigating and identifying precipitation shifts and trends at high spatial resolutions
can provide useful information to be fed into hydrometeorological forecasting systems
and eventually used in developing water resources management policies. The main
objective of this study is to perform trend and shift analysis of precipitation over the state
of Texas using high spatial resolution radar data. The advantage of using radar data is
that they have consistent spatial and temporal resolutions and are less likely to be affected
by spatio-temporal inhomogeneities associated with gauge data. The NEXRAD Multi-
sensor Precipitation Estimate Stage-IV (MPE-IV) hourly product, which is regarded as the
most reliable radar precipitation product in the US, was selected for this study. Statistical
shift and homogeneity tests were employed to identify possible significant change points.
Statistical analysis was also used to quantify the significance of the difference of the
precipitation means between before and after the change points. Trend analysis was
conducted using Theil-Sen’s slope and Seasonal Corrected Mann-Kendall. Finally, the
relationship between the precipitation and major global climate indices was investigated to
identify and quantify possible teleconnections. The outcome from the study can potentially
play a crucial role in understanding the current and future availability and variability
of water resources. Thus, the results can help in adjusting the current water resources
management practices. Moreover, the spatial component of the analysis can inform a
diverse water resource management practice suited to specific regions of the states with its
very diverse climate.
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2. Study Area and Dataset
2.1. Study Area

Texas is the second-largest state in the US with a total land area of 695,621 km2. Its
size and geographical proximity to the Gulf of Mexico determines its diverse climate [26].
The state’s location next to the Gulf of Mexico and its close proximity to the Pacific Ocean
make the state of Texas experience a constant exchange of settled and unstable weather.
However, the most influential geographic feature over the climate of the state is the Gulf
of Mexico, which moderates the temperature on the coast and acts as a main source of
moisture for most of the state [27]. The climatic characteristics of the state amplify the
extremes of the hydrologic spectrum. Texas is among the states most afflicted by floods
and most susceptible to droughts. Extreme precipitation followed by disastrous flooding is
experienced in the state nearly every year. Conversely, the state also experiences short- and
long-term droughts at high frequencies [28].

Precipitation in Texas increases from west to east while the temperature increases
from north to south. However, localized unique climates also exist throughout the state
such as the cool summer temperatures on the mountains of west Texas. The east-west
precipitation gradient is mainly driven by the moisture provided by the Gulf of Mexico.
The state is also a host of several major rivers including the Rio Grande, Colorado, Red,
and Brazos rivers. Almost all of the rivers flow from northwest to southeast draining
eventually into the Gulf of Mexico. Texas is also rich in fresh groundwater resources with
nine major aquifers and 21 minor aquifers, which underlay more than 81% of the state.
These aquifers depend primarily on precipitation for their recharge [29]. Groundwater
withdrawals for irrigation and municipal needs have to be monitored and regulated to be in
balance with the recharge amount in order not to deplete the aquifers to an irreversible state.
The recharge rate of aquifers is controlled by two main natural factors: (1) precipitation
that controls the potential recharge amount and (2) temperature that determines losses
due to evapotranspiration. Figure 1 shows the study area with the location of the major
aquifers, the spatial distribution of annual precipitation, and temperature variability across
the states.

Figure 1. The study area including the nine major aquifers, major metropolitan areas of Texas, and the average annual
precipitation from NEXt-generation Weather RADar (NEXRAD) Stage-IV (2002–2019).



Water 2021, 13, 982 5 of 23

2.2. Data

The radar-based precipitation product, Stage IV Quantitative Precipitation Estimates
(QPE) developed by National Center for Environmental Prediction (NCEP) and National
Weather Service (NWS), was used in this study. The stage IV gridded precipitation prod-
uct is generated at NCEP based on NEXRAD Precipitation Processing System (PPS) by
mosaicking Stage III at near-real-time [30,31]. Manual quality control on the Stage III
product is also conducted by the NWS 12 River Forecast Center (RFC). The main goal of
the product is to provide QPEs and forecasts to be used as a driving input in atmospheric
forecast models and other hydrometeorological applications [32]. Currently, the product
is used in many applications and is a highly recommended precipitation product for the
conterminous US, especially for moderate to heavy precipitation events. However, the
product has some discontinuities due to operational processing at the radar site and due
to the mosaicking of data from several RFCs [10]. This problem does not affect this study
significantly since almost all of the state of Texas falls within one River Forecast Center,
the West Gulf RFC. The main advantage of the NEXRAD Stage IV product is that the bias
is adjusted in near-real-time compared to other available products with a lengthy delay
of adjustment.

The NEXRAD Stage IV data have an hourly temporal resolution, integrated from
the 5–6 min native products, and a spatial resolution of 4 km × 4 km covering the entire
conterminous US. For this study, a time frame covering a period of 18 years, from 2002
to 2019, was used. The data were obtained from the National Center for Atmospheric
Research (NCAR) FTP servers as a GRIB (GRIdded Binary or General Regularly-distributed
Information in Binary) format. More detailed information about the NEXRAD stage IV
data can be obtained from their website. (https://www.emc.ncep.noaa.gov/mmb/ylin/
pcpanl/stage4/ [Access date: 20 February 2021]). Discontinuity due to the aforementioned
reasons may have slightly affected the results, especially in the western region. Small areas
in the western part of Texas are not well covered by radar due to topography. The radar
algorithm uses interpolation and/or rain gauge and satellite data to fill the gaps. The
frequencies described are also contingent upon the radar precipitation threshold used and
the NEXRAD products’ accuracy.

3. Methodology

The precipitation analysis was conducted at the pixel scale throughout the state of
Texas. The area includes 40,434 4 km × 4 km pixels. This process is computationally
expensive, especially for some of the complex statistical tests. The significance level of 0.05
was assumed to be the critical value that determines either to reject or fail to reject the null
hypothesis in all the tests used. The entire analysis was conducted using a script written in
the R-Environment. This section will discuss all the statistical tests used in the analysis.

3.1. Pettitt’s Test for Change-Point Detection

Pettit’s change-point detection test is widely used in capturing a single-time change-
point in a continuous series of data. It is one of the non-parametric tests that can be applied
to any kind of distribution. The approach was developed by and is used in this study to
detect change points in the monthly precipitation data over Texas. The null hypothesis
for the test is that the series is homogenous, and the alternative hypothesis will be the
homogeneity of the series breaks at some point in the series. The ranking function in the
test is implemented as given by Verstraeten [33]. The ranks of r1, r2, r3,...., rn of the series
x1, x2, x3,...., xn are used in the static equation below:

Ut,T =
t

∑
i = 1

T

∑
j=t + 1

sgn
(
Xi − Xj

)
(1)

https://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
https://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
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The test statistic is the maximum of the absolute value of the series Uk as follows:

KT = max|Ut,T | (2)

The change-point of the series is located at KT, provided that the statistic is significant.
The approximate probability for a two-sided test is calculated according to

p = 2 × exp

(
−

6K2
T

(T3 + T2)

)
(3)

3.2. Standard Normal Homogeneity Test (SNHT) for Change-Point Detection

The SNHT test is used to detect any change in a series of temporal data. The test was
developed by Alexandersson [34]. The test is applied to a series of ratios that compare
all observations of a measuring station with an average of the station. The ratios are
then standardized. The series of Xi corresponds here to the standardized ratios. The null
hypothesis states that the data are homogenous, and the alternative hypothesis states that
the series has a change-point.

xi =

{
µ + εi , i = 1, . . . . . . , m

µ + ∆ + εi , i = m + 1, . . . . . . , n
(4)

ε ≈ N(0, σ). The null hypothesis states ∆ = 0, and it is tested against the alternative ∆ 6=0.

3.3. Wilcoxon Rank Sum Test for Equality of Sample

Wilcoxon Rank Sum Test is a powerful non-parametric test used to test whether two
samples are likely to belong to the same population. The test is conducted based solely on
the order in which the observations from the two samples fall. The first step is to rank the
series in a combined set of a pool of data containing both samples. The test statistic is then
calculated from the rank and size of the samples, and the minimum of the two values is
taken as follows:

U =

{
n1 ∗ n2 +

n1(n1+1)
2 − R1

n1 ∗ n2 +
n2(n2+1)

2 − R2
(5)

3.4. Student’s t-Test for Equality of Means

The student’s t-test is the most commonly used statistical test with a null hypothesis
stating that the means of two samples are the same and are from the same population
versus an alternative hypothesis that the sample means are different and are from a different
population [35]. This test was previously used to test the equality of the means before and
after break-point in monthly precipitation data in UAE by Ouarda [2], in southern Africa
by Nurdin [36], and in the Arabian Peninsula by Wehbe [37].

The test statistic is provided as follows; if xi (i = 1,....., n1) and xj (j = 1,..., n) are the
two samples of length n1 and n2 with means of x1 and x2 and variances s2

1 and s2
2 the test

statistic t is calculated with the following equation:

t =
x1 − x2√

s2
1

n1
+

s2
2

n2

(6)
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The null hypothesis can be rejected at a significance level of p if |t| ≥ t1−p/2,v where
t1−p/2,v can be obtained from a t-table with df′ degrees of freedom. The degree of freedom
is computed using the adjustment by Satterthaite-Welch as follows:

d f ′ =

(
s2

1
n1

+
s2

2
n2

)
2

(
s2
1

n1

)
2

n1−1 +

(
s2
2

n2

)
2

n2−1

(7)

3.5. Theil-Sen’s Slope Test Trend Test

Theil-Sen’s slope test was used to investigate a null hypothesis that the slope
(i.e., the linear rate of change) is not significantly different than zero against the alternative
hypothesis that it is significantly different than zero. This slope estimator is relatively
resistant to outliers because it uses the median slope. The magnitude of the slope was
estimated using a method from Theil [38] and Sen [39]. This trend test was employed to
detect trends in evapotranspiration by Dinpashoh [40], in temperature by Jhajharia [41], in
groundwater by Vousoughi [42] and in precipitation by Ouarda [2].

The Theil-Sen method considers a series of x1, x2, x3,..., xn, and the rate (slope) bi can
be calculated as

bk =
xj − xi

j− i
(8)

For 1 ≤ i < j ≤ n, where bk is the slope, x is the variable, and n is the number of the
series. Then the Sen’s slope is estimated to be the median of the bk series.

3.6. Correlated Seasonal Mann-Kendall Trend Test

The Corrected Seasonal Mann-Kendall Trend test is an extension of the Mann-Kendall
test that was adjusted for the seasonal correlation of the monthly data due to the autocorre-
lation present in the dataset. In this study, the adjustment developed by Hirsch [43] and
Libiseller [44] was employed. The Mann-Kendall scores are first computed for each month
separately as follows:

Si =
ni−1

∑
k=1

ni

∑
j=k+1

sgn
(
xij − xik

)
(9)

where xij and xik are monthly series values for the periods k and j, respectively, and i
represent the month. The variance for each month is given by

Var(Si) =
ni(ni − 1)(2ni + 5)−∑

gi
p = 1 tip

(
tip − 1

)(
2tip + 5

)
18

(10)

where gi is the number of tied groups for the ith month, and tip is the number of observa-
tions in the pth group for the ith month. Then the Mann-Kendall score and variance for the
entire series are computed as follows:

S ′ =
m

∑
i=1

Si (11)

Var
(
S′
)
=

m

∑
i=1

Var(Si) (12)

where Si is Mann-Kendall score of individual months, and m is the number of months in
this study, which is 12 because one period is one year. Similarly, Var

(
S′
)

is the variance
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of an individual month, and m is the number of months. Finally, the Seasonal Adjusted
Mann-Kendall test statistic for the series (ZSK) is given by

ZMK =


S′−1√
VAR(S′)

if S′ > 0

0 if S′ = 0
S′+1√
VAR(S′)

if S′ < 0
(13)

3.7. Cox and Stuart Trend Test

Cox-Stuart trend analysis is a robust tool for detecting the presence of a trend irre-
spective of the distribution of the time-series [45]. The Cox-Stuart test statistic follows a
binomial distribution. The first step is to divide the data into three series, and the first
series is compared to the third series. Then the sign of the pair difference of the two series is
defined by D = X[i] − X[i + c], i = 1,..., floor(n/3). The totals of the positive or negative sign
in D are defined as S+ or S- by removing any zero values if present. The null hypothesis
states that S+ or S- follow a binomial distribution, where the number of experiments is the
number of elements in both S+ and S+ sets after removing zero elements and with a p = 0.5
probability of success. For large sets (n > 30) the z-statistic is normally distributed. The
z-statistic for the test is given by

z =

∣∣S− n
6

∣∣√
n
12

(14)

where S denotes the maximum of the number of signs, i.e., + or −, respectively. The
z-statistic is normally distributed. For n ≤ 30 a continuity correction of −0.5 is included in
the denominator.

4. Results and Discussion
4.1. Spatio-Temporal Variability of Annual Precipitation

An initial investigation was conducted on the precipitation data to check if there
was a significant trend in precipitation by comparing the first-third (2002–2007) and final-
third (2014–2019) of the annual series. Figure 2A,B show the spatial distribution of the
average precipitation of the first-third and the final-third. The difference between the
two averages was more than 20%, indicating a significant increase over the study period.
This increase was more pronounced in the wetter part of the state. The area receiving
annual precipitation higher than 1500mm increased from 7000 km2 to about 51,000 km2, an
increase by more than seven-fold. However, the general spatial pattern remained the same,
with the northern coast of the Gulf being the wettest for the entire study period. Similarly,
the western region received the lowest annual precipitation with the gradient moving in
the west to east direction. The majority of the state (~60%) showed an increase of 25%
in its annual precipitation in the final-third compared to the first-third of the time series
(Figure 2C). The western region experienced the highest percentage increase reaching as
high as 300% for some locations. When considering the amount of the precipitation increase,
the state’s precipitation increased at an average of ~200 mm. The spatial distribution
showed that the entire eastern region (bordering Louisiana) underwent an increase by
more than 300 mm.
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Figure 2. Spatial distribution of the average annual precipitation in the (A) first-third (2002–2007), (B) last-third of the
study period (2014–2019), (C) percentage change (100 × (Final − First)/First), and (D) the amount of change in annual
precipitation (Final–First).

Further analysis was conducted to assess the trend of the annual precipitation in four
of the major metropolitan areas of Texas: Dallas-Fort Worth, Houston, San Antonio, and
El Paso, which are ranked first, second, third, and sixth in the state, respectively. More
than 60% of the population of the state lives in these areas, and their locations (Figure 1)
represent all regions of Texas. All of the metropolitan areas showed a steep trend with a rate
ranging from 46 mm to 301 mm increase per decade (Figure 3). The Houston metropolitan
area in coastal Texas had the highest rate of increase (Figure 3B), while San Antonio, which
is located in the south-central region, had the lowest rate of increase (Figure 3C). Despite
the steep increasing trend, all metropolitan areas showed a dip in their time-series around
the period from 2011 to 2013.
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Figure 3. Annual precipitation time series and their trends for (A) Dallas-Fort Worth, (B) Houston, (C) San Antonio, and (D)
El Paso metropolitan areas. The blue shade represents the 95% confidence interval of the trend line.

When the time series is split in 2013, the trends of the split series were quite different
compared to the trend of the entire time series, as shown in Figure 4. For all metropolitan
areas, the first period (2002–2013) had a declining trend in annual precipitation. Houston,
San Antonio, and El Paso showed decreasing trends at rates of 476, 448, and 99 mm per
decade, respectively. Dallas-Fort Worth metropolitan area showed fairly mild declining
trends with a drop of 49 mm per decade. However, the second period showed conflicting
trends among the metropolitan areas. Dallas-Fort Worth and Houston showed steep
increasing trends at 739 and 270 mm per decade, respectively. On the contrary, El Paso
experienced a steep decline in annual precipitation at about the same rate as before 2013.
This highlights the fact that the annual precipitation in El Paso, which is located in the
western tip of the state, only experienced an upward shift in the year 2012–2013. As for San
Antonio, the trend line was almost flat with a slightly increasing trend. Another interesting
observation is that as the distance from the Gulf of Mexico increased, the steepness of
the trend line decreased and eventually became negative near El Paso. This agrees with
previous studies that observed the strong influence of the Gulf of Mexico on precipitation
magnitude and variability in Texas [28,46].
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Figure 4. Annual precipitation time series of the major metropolitan areas of Texas and their trend for (A) Dallas-Fort
Worth, (B) Houston, (C) San Antonio, and (D) El Paso. The blue and red shades represent the 95% confidence interval of the
trend line.

4.2. Seasonal Shifts

The average monthly accumulations for the first-third (2002–2007) and the last-third
(2014–2019) of the study period were compared, as shown in Figure 5, through polar plots
for the four metropolitan areas. This comparison helps identify shifts in the precipitation
seasonality across the state. The last column (Figure 5III) shows the average monthly
cumulative precipitation for the entire study period. For all four metropolitan areas, the
average monthly cumulative precipitation showed a significant increase from the first-third
to the last-third of the study period. In Dallas-Fort Worth, only one month (June) recorded
an average of more than 100 mm in the first-third. However, four months recorded more
than 100 mm with the highest about 170 mm (May) in the last-third. Moreover, the rainy
season started one month earlier in the last third (Figure 5A). Similar to Dallas-Fort Worth,
Houston also experienced a dramatic change in the monthly average with only two months
(July and October) recording more than 150 mm in the first-third increasing to four in the
last-third with as high as 250 mm in August. Monthly precipitation in Houston, the wettest
metropolitan area, had two peaks as shown in Figure 5B. Precipitation appeared to peak
earlier in the last-third of the study period. Another metropolitan area that showed a shift
in the rainy season was San Antonio. The wettest month in the first-third was July with an
average of around 175 mm, which became one of the driest months in the final-third with
around 40 mm only. May, one of the driest months in the first-third, replaced July as the
wettest month in the last-third with more than 150 mm. El Paso, the driest metropolitan
area, showed an increase in the monthly precipitation for all months reaching as high as
85 mm in August in the last-third of the study period (Figure 5D). Overall, there was a shift
in the rainy season, coming one month early in Dallas-Fort Worth and San Antonio, and an
increase in the amount of rainfall experienced in all the metropolitan areas.
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Figure 5. Average monthly cumulative precipitation for the first and last third of the study period in the metropolitan areas
of (A) Dallas-Fort Worth, (B) Houston, (C) San Antonio, and (D) El Paso. First-third (2002–2012) in column I, the last-third
(2013–2019) in column II, and the entire period in column III.
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The seasonal change in precipitation in the metropolitan areas was also examined by
computing the number of rainy days in a month before and after 2013. Overall, across the
entire state, most of the months experienced an increase in the number of wet days after
2013 as shown in Figure 6. In Dallas-Fort Worth, the number of rainy days increased in all
the months except July (Figure 6A). Similarly, in Houston and San Antonio, the month of
July was the only month with fewer rainy days after 2013 than before 2013 (Figure 6B,C).
The largest decrease in the number of rainy days for July was observed in San Antonio by
about four days on average. This suggests that July became drier in the central and eastern
parts of the state. El Paso showed the opposite effect in July. The rainy days increased by
four days in July and August to 14 days for each month (Figure 6D). This was the highest
number of rainy days in a month in all the metropolitan areas. This can be due to the
different climatic controls that influence precipitation variabilities; El Paso is more affected
by the activities in the Pacific Ocean, while other metropolitan areas are mostly affected by
activities in the Gulf of Mexico.

Figure 6. Polar plots showing the number of rainy days of the months before (green triangle) and
after 2013 (red diamond) in (A) Dallas-Fort Worth, (B) Houston, (C) San Antonio, and (D) El Paso.

4.3. Spatial Distribution of Shifts in Precipitation

An investigation was conducted to determine the exact change point in the time series
of the precipitation data, if any, with the statistical tests presented in Sections 3.1 and 3.2.
The decomposed monthly time series (without seasonal cycle) was used with a sample
size of 216 months. The analysis was carried on all the 40,434 pixels across the state. The
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most common change point years were found to be between 2011 and 2015 with Pettitt’s
test and Standard Normal Homogeneity Test (SNHT). When using the non-parametric test
(Pettitt’s test), 60% of the state showed a significant change point that fell between 2011
and 2015 (Figure 7A). The most common change point years identified by Pettitt’s test
were 2013 and 2014, collectively covering 50% of the state’s area, i.e., more than 80% of the
area that showed a significant change point. Similarly, the SNHT test showed an area of
more than 50% to have a significant change point for the years from 2013 to 2015. Around
80% of the area that showed a significant change point indicated that the change point
occurred between 2013 and 2014 (Figure 7B). The results of this analysis are consistent with
the results of the annual trend analysis carried in Section 4.1 based on the comparison of
the first and last thirds of the precipitation time series.

Figure 7. Areas showing significant change-points and their change-point years using (A) Pettitt’s test and (B) the Standard
Normal Homogeneity Test (SNHT).

4.4. Homogeneity of Precipitation

The tests described in Sections 3.3 and 3.4 were used to statistically confirm whether
the mean annual precipitation significantly changed over the study period. As described in
Section 4.3, the time series was split at the beginning of the year 2013. Wilcoxon rank-sum
test was used to find out whether the means of the two periods came from the same
population. Using Student’s t-test, 65% of the state indicated that the means of the monthly
precipitation data before and after 2013 were significantly different (Figure 8A). This result
was also supported by the result of the non-parametric Wilcoxon rank test. More than
three-quarters of the state of Texas showed that the monthly precipitation data before
2013 and after did not come from the same population at the significance level of 5%
according to the Wilcoxon method (Figure 8B). Interestingly, 64% of the state indicated
precipitation means before and after 2013 were significantly different by both tests. Most of
the dry northern part of the state (Panhandle region) did not show a change in the mean
precipitation according to both tests. The Panhandle region of Texas differed from the
rest of the state in terms of precipitation variability and trends in a study conducted by
Walsh [17]. This difference between the results of the two tests was mostly clustered over
the central and the southern parts of the state.
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Figure 8. Areas with and without significantly different means and similar means before and after 2013 using (A) Student’s
t-test and (B) Wilcoxon Rank Sum test.

4.5. Precipitation Trends

The three statistical tests described in Sections 3.5–3.7 were used to investigate the
presence of a significant trend in precipitation before and after the change-point at the
radar pixel scale. Theil-Sen’s slope test showed that around 30% of the state experienced a
significant trend (positive or negative) before the year 2013. The majority of the areas with
significant trends were located in the southeastern part near the Gulf of Mexico and the
Panhandle region (Figure 9A). However, after 2013, only 2% of the area of the state showed
a significant trend in precipitation (Figure 9B), mostly in the dryer parts of the state. When
the trend test was applied to the entire time series (2002–2019), 30% of the state showed a
significant trend (Figure 9C). However, the spatial pattern in Figure 9C is quite different
from that of Figure 9A, showing areas with significant trends concentrated in the western
part of the state and areas bordering the state of Louisiana (Figure 9C).

Figure 9. The spatial distribution of the precipitation trends based on Theil-Sen’s slope test for the period (A) before 2013
(2002–2012) and (B) after (2013–2019), and (C) for the entire study period.

Another test that was used to assess the trend was the Seasonal Adjusted Mann-
Kendall test, which is suitable for seasonally correlated data. The test detected a barely
significant trend in the time series before and after 2013, as shown in small scattered green
areas in Figure 10A,B. Before 2013 only 2%, and after 2013 less than 1%, of the total area
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showed a significant trend. However, when the entire time-series was tested, it showed a
significant trend in more than 11% of the state. Almost all the areas that showed significant
trends were located in the western region. This agrees with the results discussed in
Section 4.1 (Figure 3D) when the change point is ignored.

Figure 10. The spatial distribution of the precipitation trends based on the Correlated Seasonal Mann-Kendall test for the
period (A) before 2013 (2002–2012) and (B) after 2013 (2013–2019), and (C) for the entire study period.

The last statistical test used was the non-parametric Cox and Stuart trend analysis
test. The test showed a spatial pattern similar to the results of Theil-Sen’s slope test. In the
period before 2013, around 23% of the state, mainly closer to the Gulf of Mexico, showed
a significant trend (Figure 11A). However, after the change point, only 1.5% of the state
showed a significant trend. Again, when the entire time series was considered, more than
36% of the state showed a significant trend in precipitation (Figure 11C). The majority of
the areas that showed a significant trend in precipitation were located in the western and
southern parts of the state.

Figure 11. The spatial distribution of the precipitation trends based on Cox and Stuart test for the period (A) before 2013
(2002–2012) and (B) after 2013 (2013–2019), and (C) for the entire study period.

The results of the three tests suggest the areas that experienced a significant trend in
the period after 2013 (2013–2019) accounted for less than 2% of the state of Texas and were
scattered within the state. The three tests also agreed that, when the entire time series was
considered, a notable portion (~11%) of the state located in the western region showed
a significant trend (Figures 9C, 10C and 11C). Furthermore, the same areas also showed
a significant change-point in their precipitation time series around the years of 2013 and
2014 (Figure 7A,B).



Water 2021, 13, 982 17 of 23

4.6. Teleconnections with Climate Indices

The analysis described in the previous sections (Sections 4.3 and 4.4) indicates that the
precipitation experienced an upward shift in the year around 2013 across most of Texas.
The trend analysis (Section 4.5) revealed that some areas did show a significant trend in
precipitation before and after 2013. The next step was to try to find out whether this shift in
the time series was related to major climate indices. The most common method is to check
if there is a change in phase in a time series is by applying a cumulative sum of the index.

Four climatic indices showed a change in their phase around 2013 when a sig-
nificant change-point was detected in the precipitation time-series for most of Texas
(Figure 12). Previous studies have shown that the Pacific Decadal Oscillation (PDO)
and the El Niño-Southern Oscillation (ENSO) indices had a significant influence on the
variability of precipitation in the southern region of the US [22–24,47]. Both indices showed
a clear change of phase in 2014 (Figure 12A,B), a year that showed a change-point in large
areas of Texas (Figure 7A,B). The North Atlantic Oscillation index also showed a phase
change in 2013 (Figure 12B), and lastly, the Pacific North American Index showed a change
in phase shortly after 2014 (Figure 12D).

Figure 12. Cumulative sum of the major climate indices that show a change in phase around 2013: (A) Pacific Decadal
Oscillation (PDO), (B) North Atlantic Oscillation (NAO), (C) El Niño-Southern Oscillation (ENSO) precipitation index, and
(D) Pacific North American (PNA).

The spatial distribution of the correlation coefficient between the monthly precipitation
data and the four climate indices at zero lag time is displayed in Figure 13. The climate
index with the highest correlation coefficients was the ENSO index (Figure 13B). ENSO
showed a correlation coefficient of more than 0.25 over around 46% of the state, especially
in the Panhandle area and near the Gulf of Mexico. The Pacific Decadal Oscillation (PDO)
also showed a slightly higher correlation coefficient in the area closer to the Gulf of Mexico
(Figure 13A). In the case of PDO, only 5% of the state showed a correlation coefficient of
more than 0.25. The other two climate indices (NAO and PNA) showed a small correlation
coefficient across the state with a very small spatial variability. This suggests that the
most influential climatic index in the state of Texas was the ENSO precipitation index.
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Nevertheless, PDO also has showed strong correlations with the precipitation across large
areas of the state.

Figure 13. Spatial distributions of the correlation coefficient without any lag between the monthly precipitation and the
(A) Pacific Decadal Oscillation (PDO), (B) North Atlantic Oscillation (NAO), (C) El Niño-Southern Oscillation (ENSO)
precipitation index, and (D) Pacific North American (PNA) indices.

The correlation of the two main climatic indices with precipitation was analyzed
further to identify the value of the lag with the highest correlation. The highest correlation
between the PDO and precipitation was found to be at a value of 4-month lag, i.e., PDO
leading the monthly precipitation. Around 60% of the state showed the highest correlation
with PDO at a 4-month lag, as shown in Figure 14A. However, the highest correlation with
the ENSO was found at lag values of 0 and 2 months leading (Figure 14B). The area closer
to the Gulf of Mexico (around 30% of the area of the state) showed a higher correlation
with ENSO at 2 months leading lag (Figure 14B). The POD correlation coefficient was
higher at a 4-month lag throughout the state, especially in the Panhandle area (Figure 14C).
The 2-month leading correlation showed a higher correlation in the eastern areas near the
Gulf of Mexico (Figure 14 D). The spatial distribution of the significant correlation with
ENSO was higher for the eastern part of the state at a 2-month lag (Figure 14D). About
82% of the state showed a statistically significant correlation with the ENSO at a 2-month
lag. However, the other two climate indices (NAO and PNA) only showed a significant
correlation in less than a quarter of the state for all lags.
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Figure 14. Spatial distributions of the value of the lag with the highest correlation in the (A) Pacific Decadal Oscillation
(PDO), and (B) El Niño-Southern Oscillation (ENSO) climatic indices and the spatial distribution of the significant correlation
of precipitation and (C) PDO and (D) ENSO indices.

5. Summary and Conclusions

Detailed statistical analysis was conducted on the monthly and annual precipitation
over the state of Texas using Stage-IV radar data with a 4km × 4km spatial resolution
and over the time frame that spans from 2002 to 2019. The average precipitation in
the state of Texas showed a dramatic increase by more than 20% between the first-third
(2002–2007) and the last-third (2014–2019) of the study period. This increase was more pro-
nounced in the wetter parts of the state. The area receiving annual precipitation higher than
1500 mm increased from 7000 km2 to about 51,000 km2, an increase by more than seven-fold.
The annual precipitation indicated an increasing trend in all four major metropolitan areas
with as high as 301 mm per decade in Houston and as low as 46 mm per decade in the case
of San Antonio. However, when the time series data were split in 2013, all metropolitan
areas exhibited a decreasing trend before 2013.

The monthly precipitation was found to be significantly higher in the last-third of
the study period in all four metropolitan areas. For example, in Dallas-Fort Worth, there
was only one month (June) that recorded more than 100 mm in the first-third of the study
period. However, four months recorded more than 100 mm with the highest about 170 mm
(May) in the last-third of the study period. Similar to Dallas-Fort Worth, Houston had also
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experienced a dramatic change in the monthly average with only two months (July and
October) recording more than 150 mm in the first-third increasing to four the last-third
with as high as 250 mm/month in August.

The most common change-point years identified by Pettitt’s test were 2013 and 2014,
collectively detected in 50% of the state’s area, i.e., more than 80% of the area that showed
significant change point. Similarly, the SNHT test showed an area of more than 50% to
have had a significant change point for the years from 2013 to 2015. Test of homogeneity of
the data before and after the change-point (2013) was carried to investigate whether the
samples (before and after 2013) belonged to the same population. More than three-quarters
of the state of Texas showed that the monthly precipitation data before and after 2013
did not come from the same population at the significance level of 5% according to the
Wilcoxon method. Using Student’s t-test, 65% of the state indicated that the means of the
monthly precipitation data before and after 2013 were significantly different. Furthermore,
64% of the state indicated precipitation means before and after 2013 were significantly
different by both tests. The spatial distribution revealed that the Panhandle region (dry
northern part) of the state did not show a change in the mean precipitation according to
both tests. The Panhandle region of Texas also differed from the rest of the state in terms of
precipitation variability and trends in a study conducted by Walsh [17].

The spatial pattern of the trend analysis was found to be similar in three statistical
significance tests. The tests suggest that the state did not experience a significant trend in
precipitation after 2013 according to the three tests (only less than 2% of the state indicated
a significant trend). However, when the entire time series was tested for trends, the western
region of the state exhibited a positive increasing trend for all three tests. Furthermore,
these areas also showed a significant change-point in their precipitation time series around
the years 2013 and 2014.

Lastly, the time-series was investigated for possible correlation with the major climatic
indices to establish the presence of teleconnections. Pacific Decadal Oscillation (PDO),
North Atlantic Oscillation, El Niño-Southern Oscillation (ENSO) precipitation index, and
Pacific North American Index were considered for the correlation analysis because they
showed a change in their phase around 2013 when a significant change-point was detected
in the precipitation time-series for most of Texas. ENSO had the highest correlation
coefficient with the precipitation of Texas at a 2-month lag. The monthly precipitation
and ENSO showed a statistically significant correlation in 82% of the state with a 2-month
lag. Precipitation also exhibited a significant correlation with POD at a 4-month lag in
over 60% of the state. The other two climate indices (NAO and PNA) showed a weak
correlation coefficient across the entire state with a very small spatial variability for all
lags. The results suggest that the most influential climate index in the state of Texas
was the ENSO precipitation index. Nevertheless, PDO also showed strong correlations
with the precipitation across large areas of the state. In summary, the precipitation of
Texas was strongly affected by the ENSO and PDO at a lag of 2 months and 4 months,
respectively. There was a significant upward shift in the precipitation of the state that
was overwhelmingly experienced in 2013. A shift like this in a time-series can lead to the
detection of an apparent increasing trend if not treated separately.

The study results suggest that the monthly precipitation did not show a significant
trend across the entire state after the shift in 2013. However, the water withdrawal from
groundwater for irrigation purposes soared by around 18% from 2015 to 2018, which is
an increase of 11.1 billion cubic meters according to a report from the state’s water board.
This shows the extent of the divergence of the withdrawal and the recharge trends. The
outcome from this study will shed light on the status of the precipitation’s spatiotemporal
variability across the state and guide adjustment of the current water resources management
practices accordingly. Moreover, the spatial component of the analysis results can inform
a diverse water resource management practice suited to the state’s very diverse climate.
The results of such an analysis can also be used to enhance both the spatial and temporal
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resolutions of low spatial, low temporal, historical, and projected precipitation time series
(i.e., downscaling and interpolation).

The relatively short length of the dataset has to be mentioned because, for climatic
analysis, a time series of at least 30 years is typically recommended. In this case, only
18 years (2002–2019) of data were used in the analysis. The discontinuity in the data
due to the operational processing at the radar site may have slightly affected the results,
especially in the western region. The frequencies described are contingent upon the
radar precipitation threshold used and the NEXRAD products’ accuracy. Nonetheless, the
information gleaned from this analysis will be useful for many applications, including
natural hazard mitigation, flood resilience studies, water security assessment, and water
resources planning and management.
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