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Abstract: Extreme events resulting in catastrophic damage have more than doubled in the last
five years, costing hundreds of lives and thousands of homes, and heavily undermining regional
economic stability. At present, most of these hydroclimatic extreme events are documented by the
media as individual events; however, in scientific terms, many are better understood as concurrent
events—concurrent extremes of both temperature and precipitation (e.g., drought, floods). This paper
considers concurrent changes in hydroclimate extremes, including heatwaves, drought, flooding,
and low flows, in six historical-to-future (1970–1999, 2070–2099) Earth System Model (ESM) climate
scenarios for the Colorado River basin. Results indicate that temperature-driven Impacts (heatwaves,
drought) have the strongest responses while percipitation-driven Impacts have weaker responses.
All Impacts exhibit an increase in magnitude from synoptic to annual time scales, with heatwaves
increasing in strength about three times at the annual time scale versus the synoptic, while low
flows only increase slightly. Critical watersheds in the Colorado were identified, highlighting the
Blue River basin, Uncompahgre, East Taylor, Salt/Verde watersheds, locations of important water
infrastructures, water resources, and hydrological research. Our results indicate that concurrent
extreme hydroclimate events are projected to increase in the future and intensify within critical
regions of the Colorado River basin. Considering extreme hydroclimate events concurrently is an
important step towards linking economic and social effects of these events and their associated
instabilities on a regional scale.

Keywords: extreme events; hydrology; concurrent; climate change; Colorado River basin; heatwaves;
drought; flooding; low flows

1. Introduction

Extreme events resulting in catastrophic damage (i.e., loss of life and costs exceeding
a billion dollars in response expenses, property damage, and economic disruption) have
more than doubled in the last five years, significantly undermining regional economic
stability [1]. The increase in both the frequency and intensity of these extreme events
has been directly linked to climate change (i.e., 6 events in a 2011 publication, versus
28 events in more recent work just four years later) [2–7]. These extreme events occur
locally, regionally, and globally, with major consequences for every aspect of human society
and economy [3,7].

The growing body of research on this topic reflects the fact that it has become one of the
most urgent issues of the last decade. Studies with the keywords “extreme events” in their
titles doubled between 2010 and 2018 (Google Scholar and Scopus, 26 June 2020, Figure 1),
and, in a recent study on the “Twenty three unsolved problems in hydrology,” “extreme
events” was listed as a major outstanding research topic, with particular emphasis placed on
the causes of flood/drought periods and recently documented changes to these periods [8].
Extreme events were also the focus of a 2012 Intergovernmental Panel on Climate Change
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Special Report [7], an updated 2018 Special Report [3], a “Key Finding” issued by the US
National Climate Assessment (NCA 2014), numerous databases and data sets (e.g., NOAA’s
Billion-Dollar Weather and Climate Disasters https://www.ncdc.noaa.gov/billions/time-
series, accessed on 20 October 2020), and a multitude of recent research papers [9–11]. We
urgently need to understand how extremes events are changing and we need to better
characterize and track such changes in critical regions, such as major watersheds.

Figure 1. Peer reviewed literature documenting extremes events has tracked increases in extremes over the past ~10 years.
Data source: NOAA CEI database, 2019.

In the United States, watersheds play a fundamental role in regulating water resources
for commercial and domestic purposes. For example, the Colorado River basin (CRB)
provides water for over 40 million people [12] and directly facilitates 1.4 trillion dollars in
agricultural and commercial applications (roughly 1/13th of the entire US economy, based
on the 2014 Gross Domestic Product). However, in the Southwest Climate region alone
(UT, CO, AZ, NM), flooding, drought, freezing events, wildfire, severe storms, and winter
storms have cost approximately 40 billion dollars between 1980–2020, with a more than
5-fold increase in extreme events from the 1980s to the 2010s [1].

Unfortunately, despite the vital importance of understanding extreme hydroclimate
events in watersheds such as the CRB, several fundamental steps have been overlooked.
Even the most basic task of comprehensively defining, classifying, and categorizing ex-
treme events has proven to be problematic, complicating comparisons across research
fields, which may have different standards for describing the occurrence, duration, and
severity of such events [13,14]. Additionally, many of the current tools used to consider

https://www.ncdc.noaa.gov/billions/time-series
https://www.ncdc.noaa.gov/billions/time-series
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extreme events use simple algorithms (e.g., NOAA’s Climate Extreme Index, or CEI) based
on simple indicators (minimum temperature changes, precipitation days, etc.), which allow
policy makers and the non-scientific community to understand basic changes in extreme
event trends. However, these resources cannot effectively track, for example, coupled
extreme events (e.g., drought/wildfire, winter storm/flood), and may even overestimate
the occurrences of extremes that impact society and underestimate the impacts of concur-
rent extremes. Consequently, much of the current work on extreme events has focused
largely on the analysis of individual or univariate indicators in documenting changing
extremes [15–18]. However, more complex indicators and statistical approaches are needed
to improve the scientific community’s ability to identify and characterize coupled, joint,
concurrent, or multivariate climate extremes [19–26] and to document the clear effects of
these concurrent events on the economy and society [27,28].

Despite the strong focus on individual indicators, research has emerged that charac-
terizes future changes in extreme events concurrently [22,26,29–38]. Review studies on
concurrent hydroclimate extremes provide an assessment of all studies and methodological
approaches to date of publication [39,40]. A Special Issue on concurrent or compound
extremes was also published [41]. The argument for consideration of concurrent extremes
over univariable extreme event analysis is given by several authors, offering definitions,
frameworks, paradigms shifts, and generally making the case that examining extreme
events in this manner is a means to improve projections of future changes, and that rethink-
ing the traditional univariate approach will allow for physical sciences to be more clearly
linked to socioeconomic impacts of extremes [42–46].

This paper describes modeled scenarios of concurrent extreme events in the CRB. We
present the results for six different Earth System Models (ESMs), and four different Impacts
(heat waves, drought, low flows, and flooding), calculated as coupled, joint, multivariate, or
concurrent indicators for two time periods, historical (1970–1999) and future (2070–2099).
For the purposes of this paper, extreme Impacts are considered as the 95th percentile
exceedance of concurrent indicators (from here on in, joint, coupled, multivariate indicators
are referred to as concurrent). We consider the changes in Impacts across synoptic, monthly,
seasonal, and annual time scales; and we also identify the most critical watersheds within
the CRB where concurrent changes are compounded, based on the accumulated changes in
Impacts between historical and future models. We conclude the paper with a summary of
the work and next steps.

2. Materials and Methods
2.1. Study Site

Our study area is the CRB, covering an area of 640,000 km2 in the semi-arid to arid
Southwestern United States and Northern Mexico. The basin stretches from 30◦ N to
44◦ N and from 106◦ W to 116◦ W, extending from the alpine regions of the Southern
Rocky Mountains to the Gulf of California, and covers elevations from sea level to more
than 4000 m, providing water resources to a vast number of adjacent infrastructures (e.g.,
agricultural, water routing structures, and cities, Figure 2). The large range of spatially and
temporally variable CRB landscapes and ecosystems span multiple climatic zones, with
observed annual average temperatures ranging from 4 ◦C to 24 ◦C (average 11 ◦C) and
annual average precipitation total ranging from 79 mm to 1699 mm (average 363 mm) [47].
Most precipitation in the basin falls as snow at high elevations, so roughly 85% of the CRB
flow originates between its upper headwaters and Lees Ferry at Glen Canyon, Arizona [48].
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Figure 2. The domain of the Colorado River Basin with adjacent areas that receive Colorado River
water. Adapted from USGS (accessed 11th January 2021)

2.2. Climate Simulations

Our hydrological model was forced using downscaled projections of daily tempera-
ture, precipitation, and wind speed from the Multivariate Adaptive Constructed Analogue
(MACA) database [49]. We extracted the following six climate data projections from MACA
based on Earth System Model (ESM) simulations from the Coupled Model Intercomparison
Project, phase 5 (CMIP5) [50] because they represent a range of future climate responses
for the CRB and also include dynamic vegetation components, listed in the brackets be-
low: HadGEM2-ES (TRIFFID) [51,52], MIROC-ESM (SIEB-DGVM) [53,54], MPI-ESM-LR
(JSBACH) [55,56], IPSL-CM5A-LR (ORCHIDEE) [57,58], and GFDL-ESM2M, and GFDL-
ESM2G (LM3V), [59,60]. Each ESM differs by a multitude of factors, including but not
limited to the country where the model was developed, initial conditions, physics rep-
resentations, and tuning mechanisms [61]. For this work, we used the representative
concentration pathway (RCP) 8.5 emissions scenario, which tracks closely with changing
emissions levels over time [62] and anticipates strongly increasing emissions by 2100 [63].

2.3. Hydrological Simulations

To generate simulations of extreme hydrological indicators, we used the Variable
Infiltration Capacity (VIC) model version 4.2 [64,65] at a 1/16th degree (6 km) spatial reso-
lution. For each grid cell in the simulation domain, VIC simulates vertical energy and water
dynamics at an hourly time step for land cover tiles situated above a 3-layer soil column.
Heterogeneity in VIC infiltration is represented by a sub-grid scale statistical distribution
(the variable infiltration capacity curve). Surface runoff is generated via saturation excess,
while sub-surface runoff is characterized by a non-linear baseflow curve [66].

We ran VIC using publicly available gridded historical climate data (daily precipitation,
minimum and maximum temperature, and wind speed) for the CRB (Livneh et al., 2015) and
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calibrated VIC for 2006–2010 using the United States Geological Survey (USGS) naturalized
gauged monthly streamflow data [67] and an automatic calibration tool [68] to correct
streamflow peaks, volume, and low flow biases. See Bennett, et al. [69] for a complete
description of VIC parameterizations and calibration details.

2.4. Extreme Indicators and Impacts

We calculated two time periods for our analysis: historical (1970–1999) and fu-
ture (2070–2099) for synoptic (5 days, with 73 5-day intervals in each year), monthly
(12-months), four-seasonal (December-January-February, DJF; March-April-May, MAM;
June-June-August, JJA; and September-October-November, SON), and annual intervals.
Leap-year days were removed from the time series, so all modeled years are 365 days.
We calculated extreme climatic and hydrologic indicators (e.g., maximum temperature,
freezing days, minimum streamflow) for each time period and interval, as described in
Table 1. Some indicators were VIC model input (e.g., temperature) while others were
generated from VIC model output (e.g., evapotranspiration). Our defined Impacts were:
heatwaves, drought, flooding, and low flows. For each Impact, we choose two to three
indicators that showed the least correlation with one another, yet remained relevant to the
assigned Impact (Table 2).

Table 1. Extreme indicators, description and units, and abbreviations used in the text.

Indicators Description and Units Abbreviation

Maximum temperature Maximum temperature achieved over the time period (◦C) tx
Maximum precipitation Maximum daily precipitation over the time period (mm) precx
Low precipitation days Number of days when accumulated precipitation is <0.01 mm. (count) dryd
Maximum streamflow Maximum daily streamflow over the time period (mm) qx
Minimum streamflow Minimum daily streamflow over the time period(mm) qn

Maximum soil moisture Maximum daily soil moisture from the third soil moisture layer over
the time period (mm) soilmx

Minimum soil moisture Minimum daily soil moisture from the third soil moisture layer over
the time period (mm) soilmn

Maximum evapotranspiration (ET) Maximum daily evapotranspiration over the time period (mm) evapx

Table 2. Extreme impacts and the relevant indicators used to construct the impact.

Impacts Indicators

Heat Waves Maximum temperature, maximum ET
Drought Maximum temperature, low precipitation days, minimum soil moisture

Low Flows Minimum streamflow, minimum soil moisture, maximum ET
Flooding Maximum precipitation, maximum streamflow, maximum soil moisture

2.4.1. Peaks Over Threshold Extreme Exceedance

We defined the occurrence of extreme indicator values by calculating the historical
95th percentile (or 5th percentile for low extreme indicators) at each grid cell location for
each indicator and using the 95th percentile as the threshold. Following a Peaks Over
Threshold (POT) approach, any instance where an indicator value exceeded the historical
95th percentile threshold for a given grid cell was considered extreme. The exceedance of
the threshold for each indicator at each grid cell and timestep was expressed as a binary
value and is referred to as “exceedance” from here on.

2.4.2. Distance Number

Distance Number (Dn) is a metric that indicates the distance between data pairs
normalized by the variance of the observed or historical values. By normalizing the
difference by the historical standard deviation, we can obtain a value analogous to a Z-
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score, describing the change that occurs between historical and future data [70–72]. We
define the Distance Number as:

Dnxy =
1
n ∑n

i=1

(
Fi,xy − Hi.xy

)
Sxy

, (1)

where F is the future indicator exceedance, H is the historical indicator exceedance, S is the
temporal standard deviation of the historical exceedance for each cell, i is the timestep, xy
is the spatial cell location, and n is the number of timesteps. We calculated the distance
number using equation (1) and estimate the change in exceedance of extreme Impacts by
averaging Dn for each indicator relevant to a given Impact. For example, the concurrent Dn
value for flooding is the average Dn value of the Dn of maximum precipitation, maximum
streamflow, and maximum soil moisture, respectively. By normalizing the exceedance
values by the historical standard deviation, the concurrent Dn value allows for a comparison
of change across large spatial distances and four different time scales, and also allows
for a comparison between different Impacts and ESMs. Dn values were examined for
individual grid cell responses, and by the Natural Resource Counsel (NRCS), United States
Department of Agriculture (USDA) hydrological unit basins. We used the cataloguing unit
level eight (HUC8) watersheds, of which there are 134 watersheds in the CRB.

We estimated critical Dn values based on the mean of the Dn for each grid cells in all
134 HUC8 watershed in the CRB. The HUC8 watersheds where the mean Dn exceeded the
95th percentile of the mean Dn were identified as critical for all Impacts and ESMs. For all
HUC8s, we summed instances for Impacts and ESMs; watersheds with values above 4 are
identified as notably critical (described as having criticality and compounded concurrent
extremes in Results and Discussion sections).

3. Results

The six ESMs examined in this study exhibit very similar temperature and precip-
itation data across the historical time period. Each ESM exhibits a mean temperature
across the entire CRB of between 11.7 ◦C and 11.9 ◦C, and an average annual precipitation
between 363.5 mm/yr and 369.9 mm/yr (std. dev. = 6.4 mm/yr, Table 3). The ESMs were
chosen to represent the range of changes in precipitation and temperature projected by
the larger CMIP5 model suite (not shown). Among the six ESMs, the projected change in
temperature for the future scenario (2070–2099) differenced from the historical scenario
(1970–1999) ranges from an increase of 4.1 ◦C (GFDL-ESM2M) to 7.0 ◦C (MIROC-ESM),
with a multi-model average of 5.5 ◦C (std. dev. = 1.2 ◦C). Projections of future precipitation
show large variance among ESMs, with ESMs projecting both increases and decreases
in annual precipitation. HadGEM2-ES365 shows the largest decrease in precipitation
(−52.8 mm/yr) while GFDL-ESM2G shows the largest increase (37.2 mm/yr). The mean
of the six ESMs shows a small increase of only 2.1 mm/yr in precipitation and a standard
deviation between ESMs of 32.6 mm/yr.

Table 3. Future and historical average annual temperature and precipitation values from the six GCMs considered. We also
include the multi-model average and standard deviation for each field (bold italics). Temp. = temperature, Prec. = precipitation.

Historical Future Change

Temp. (◦C) Precip. (mm) Temp. (◦C) Precip. (mm) Temp. (◦C) Precip. (mm)

GFDL-ESM2G 11.7 365.9 16.3 403 4.5 37.2
GFDL-ESM2M 11.7 366.5 15.8 377.9 4.1 11.3

HadGEM2-ES365 11.8 366.8 18 360.4 6.2 −6.4
IPSL-CM5A-LR 11.9 351.7 18.2 298.9 6.3 −52.8

MIROC-ESM 11.8 369.9 18.8 400.7 7 30.8
MPI-ESM-LR 11.9 363.5 17 356.3 5.1 −7.3

Average 11.8 364.1 17.3 366.2 5.5 2.1
Standard Deviation 0.1 6.4 1.2 38.3 1.2 32.6
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3.1. Individual Indicators

Figure 3 shows the average across all six ESMs and four time scales for the individual
indicators contributing to each Impact. Maximum temperature shows the largest Dn values
of any indicator, exhibiting an average of 2.07 across each ESM and time scale. Additionally,
maximum temperature (tx) shows little spatial variance (std. dev. = 0.07), which is not sur-
prising given that temperature often exhibits coherent and strong responses under climate
change [73]. Maximum precipitation (precx) shows little spatial variance (std. dev. = 0.09)
with modestly positive Dn values (0.22) across the entire basin, indicating an increase in
maximum precipitation for the CRB as a whole. Dn values are slightly higher in the upper
CRB than in the lower basin for maximum precipitation. Similarly, maximum evaporation
(evapx) and dry days (dryd) show slightly positive values (0.16, and 0.14, respectively)
across nearly the entire CRB with little spatial variability (std. dev. = 0.08 to 0.13). Maximum
evaporation shows slightly more elevated Dn values in the highest elevations regions of the
CRB, as well as in a narrow band in the lower CRB known as the Arizona Transition Zone,
where topography transitions from the high elevation Colorado Plateau to the basin and
range region of the US southwest [74,75]. This region is also characterized as experiencing
the highest average annual rainfall in the state of Arizona [76].

Figure 3. The multi-model and timescale average of Dn results for the individual indicators along
with the relevant impacts.
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Indicators related to minimum (std. dev.= 0.56) or maximum streamflow (std. dev.= 0.32),
or minimum (std. dev.= 0.60) or maximum soil moisture (std. dev.= 0.55) exhibit far more
spatial variance than the other indicators (qn, qx, soilmn, soilmx, respectively). Maximum
soil moisture and maximum streamflow have larger and more positive Dn values in the
upper CRB compared to the lower CRB, while minimum soil moisture and maximum
soil moisture show larger and more positive Dn values in the lower CRB compared to the
upper CRB.

3.2. Impacts

Dn results as difference between the future scenario and historical scenario for each
Impact and time scale are shown in Figures 4–8 and Table 4. Overall, we observe an
increase in each of the four Impacts when averaged over all ESMs and across the entire
CRB (Table 3, Figure 4). Generally, the Dn values increase as the time scale lengthens, with
the largest values occurring on the annual time scale (Figure 4). However, the change
in Dn values depends on the Impact. Temperature-driven Impacts (heatwaves, drought)
exhibit an increase in magnitude from synoptic to annual time scales, with heatwaves
resulting in approximately three times the Dn value at the annual time scale versus the
synoptic (0.60 compared to 2.01, Table 3, Figure 4). On the other hand, precipitation-driven
Impacts (low flows, flooding) exhibit only a slight increase when moving from synoptic to
annual time scales (e.g., 0.21 compared to 0.32 for low flows, Table 3, Figure 4). This may
be because precipitation-driven extremes have a shorter memory in the climate system
than temperature-driven extremes, which often occur over longer periods of time and have
longer memories in terms of both reoccurrence and frequency [77].

Figure 4. The multi-model average Dn value across the CRB for each impact and timescale. The
whiskers represent +/− one standard deviation between the different ESMs.
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Figure 5. The Dn value results across the CRB at an annual timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.

Figure 6. The Dn value results across the CRB at a seasonal timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.
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Figure 7. The Dn value results across the CRB at a monthly timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.

Figure 8. The Dn value results across the CRB at a synoptic timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.
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Table 4. Multi-Model Average Dn values for each impact and timescale. The table includes Dn values
for the entire CRB, Upper CRB, and Lower CRB as well as the standard deviation between GCMs
in parenthesis.

Synoptic Monthly Seasonal Annual

CRB Heatwaves 0.60 (0.09) 0.75 (0.11) 1.10 (0.23) 2.01 (0.12)
Drought 0.50 (0.12) 0.61 (0.14) 0.86 (0.24) 1.42 (0.28)

Low Flows 0.21 (0.14) 0.22 (0.13) 0.26 (0.12) 0.32 (0.08)
Flooding 0.14 (0.15) 0.20 (0.17) 0.29 (0.20) 0.40 (0.25)

Upper CRB Heatwaves 0.60 (0.08) 0.75 (0.10) 1.11 (0.19) 2.02 (0.13)
Drought 0.44 (0.13) 0.55 (0.15) 0.79 (0.25) 1.35 (0.29)

Low Flows 0.14 (0.15) 0.15 (0.15) 0.19 (0.15) 0.27 (0.14)
Flooding 0.27 (0.20) 0.34 (0.22) 0.44 (0.24) 0.60 (0.29)

Lower CRB Heatwaves 0.60 (0.10) 0.75 (0.12) 1.09 (0.27) 2.00 (0.14)
Drought 0.55 (0.12) 0.66 (0.14) 0.92 (0.25) 1.49 (0.28)

Low Flows 0.27 (0.15) 0.28 (0.14) 0.31 (0.13) 0.36 (0.08)
Flooding 0.04 (0.12) 0.09 (0.15) 0.16 (0.18) 0.24 (0.23)

Figures 5–8 show the spatial detail of Dn value results across the CRB for each of the
Impacts, ESMs, and time scales. The Dn values show strong and spatially coherent increases
in both heatwaves and drought across the entire basin for each of the four time scales. As
temperature increases is occurring across the CRB, maximum temperature presumably
drives many of the spatially consistent increases for both drought and heatwaves [73].
MIROC-ESM, the ESM with the warmest projected temperature across the basin, also
showed the largest Impacts and Dn values of the six ESMs (2.18, Figure 5 and repeated in
Figures 6–8).

The Dn values of drought often exhibit more spatial variability than heatwaves. Of
the six ESMs, IPSL-CM5A-LR is the driest of the ESMs (1.88, Figure 5 but repeated in
Figures 6–8), generally exhibiting the highest Dn values and showing especially severe
drought in the Little Colorado River basin and in areas along the southern half of the CRB
and the Colorado headwaters (e.g., Figure 5, column 3). Of the indicators, minimum soil
moisture generally exhibited the largest Dn values in these areas as well, and was the most
spatially variable indicator contributing to drought (see Figure 3). Both of the GFDL ESMs
exhibited the lowest Dn values for drought, likely due to the more modest temperature
increases exhibited by these ESMs (1.19 and 1.28, Figure 5, Table 3).

In contrast, low flows and flooding exhibited both positive and negative values
throughout the CRB, although the entirety of the CRB, when averaged, exhibited positive
Dn values for both Impacts at all time scales (Figures 5–8). Flooding is the stronger indicator
at annual time scales in the entire CRB, but low flows have higher Dn values at the synoptic
scales, and both indicators have a similar magnitude of response at monthly and seasonal
scales (Table 4). Agreement across ESMs illustrates higher coherency (lower variances) in
low flows at longer time scales, while lower coherency (higher variance) is shown at longer
time scales for flooding. Figures 5–8 show the spatial variations in responses across ESMs,
with the driest ESM having the strongest responses for low flows (0.50, IPSL-CM5A-LR),
and the wettest ESM (0.80, GFDL-ESM-2G) having the strongest responses for flooding.

The high-elevation, snow-dominated upper CRB and the low-elevation, arid lower
CRB respond differently to climate change effects, and this dichotomy carries through the
Dn results for Impacts and time scales for the Upper and Lower CRB (Table 4). Heatwaves
show very little difference between Upper and Lower CRB (0.00 to 0.03) and generally have
very little spatial variance, as discussed above. Both drought (−0.11 to −0.14) and low
flows (−0.10 to −0.13) exhibited lower Dn values in the Upper CRB than in the Lower CRB.
Flooding exhibits the greatest difference between Upper and Lower basins (0.23 to 0.37),
with larger Dn values in the Upper CRB. Overall, the lowest Dn values are flooding in the
Lower CRB at synoptic time scales (0.04), while low flows is lowest in the Upper CRB at
synoptic time scales (0.14).
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To account for the regions of the CRB where cumulative concurrent changes are
occurring, we summed the instances when the Impacts or ESMs for HUC8 watersheds were
greater than the 95th percentile of mean Dn value (Figure 9). The watersheds with the
highest count of these instances are the Blue River basin (10), followed by Little Colorado
River Headwaters (7). After these two HUC8 watersheds, the East-Taylor, Uncompahgre,
San Miguel, and Big Chino-Williamson Valley basins each have six instances of critical
concurrent extreme Impacts. Gunnison, Dolores, Verde, Lower Salt, and all the other
watersheds identified in Figure 9 not already discussed have 4 concurrent extreme Impacts.
The Uncompahgre had the most instances of criticality for low flows (4), followed by
the adjacent San Miguel basin (3). San Miguel also had the greatest number of instances
of drought of any watershed (3). Across the Impacts heatwaves has the most instances
of criticality, with Blue River having the greatest (5), followed by the Little Colorado
River Headwaters, East-Taylor, and the Big Chino-Williamson Valley watersheds (3 for
each HUC8).

Figure 9. Critical basins in the Colorado River basin.

4. Discussion

The projected changes in temperature in the CRB over the historical to future time peri-
ods are drastic, but not unexpected. The average increase in temperature reflects estimates
of regional change over the same period [78]. While there is some uncertainty between
the ESMs in the magnitude of temperature increase, it is relatively small compared to the
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uncertainty in the ESM’s estimates of future precipitation, a result that is also found across
many studies of climate change [79]. Unlike estimated changes in temperature, estimated
changes in precipitation vary greatly between the ESMs, and there is no agreement on the
direction of change, with an almost equal average annual precipitation decrease modeled by
IPSL-CM5A-LR and an annual precipitation increase modeled by GFDL-ESM2G. However,
it should be noted that a wet ESM projection for precipitation may not lead to a less arid
environment in the CRB, as potential increases in evaporation due to air temperature
increases could skew the region towards greater aridity despite precipitation increases [80].

Despite the wide range of climate projections from a range of ESMs, the Dn values
show (with a few minor exceptions) a remarkably similar spatial pattern for the extremes
that include temperature indicators, such as heatwaves and drought. These Impacts also
have the strongest signal of extremes across the CRB [81]. Therefore, heatwaves and
drought will likely affect the CRB on a uniform basis and most strongly, with some pockets
of higher and lower responses related to antecedent moisture conditions owing to drier or
wetter soils in the case of droughts [82].

On the other hand, the spatial pattern for low flows and flooding is more variable
across the CRB, owing to their spatially varying drivers and indicators such as precipitation,
streamflow, and soil moisture. For both Impacts, soil moisture (minimums or maximums
for low flows or flooding, respectively) had the strongest response among the indicators,
illustrating the importance of soil moisture on these extremes. The effect of antecedent
soil moisture on flooding is well documented in studies of historical events, forecast-
ing, and climate change [83–85]. Although studies on low flows appear less common,
Castillo, et al. [86] suggest that antecedent soil moisture is an important control on runoff,
particularly during medium- and low-intensity storms, which are common in semi-arid
locations such as the Lower CRB. These Impacts were thus dependent upon the intensity
of those indicators in time within particular regions of the CRB, with notable differences
between the Upper and the Lower CRB, indicating the need to examine these Impacts
within specific regions or watersheds.

In general, the time scale of responses for concurrent extreme events was strongest
for Dn values at the annual time scale. Impacts such as heatwaves and drought more than
doubled from synoptic to annual time scales. This may be because temperature-driven
extremes, which often occur over longer periods of time have longer memories in climate
systems in terms of both reoccurrence and frequency [77]. Consequently, researchers
looking to examine these temperature-driven extremes, the annual time scale is perhaps
the most appropriate scale at which to examine these Impacts. Although results for low
flows and flooding were also strongest at the annual time scale, these Impacts had much
less change in their response across time scales across the CRB, suggesting that the time
scale of analysis for these may be aligned with research drivers and/or science questions
at hand. For example, a forecasting research method should examine flooding Impacts at
a synoptic time scale, since forecasting is most concerned with synoptic scale changes in
extremes. Additionally, important was the fact that flooding and low flows, also had the
greatest disagreement across ESMs at annual time scales.

The Upper CRB and Lower CRB responded differently to concurrent extreme events
for both spatial patterns and time scales. Within the Upper CRB, the coherency of low
flows did not shift much across time scales, while, for the Lower CRB, coherency decreased
(spatial variability increased). Flooding response was higher and low flows was lower in
the Upper CRB, a pattern that was reversed for the Lower CRB, indicating the importance
of changing floods for the Upper basin, while low flows are a larger issue for the Lower
CRB. This result is not unexpected owing to the moisture deficits regimes of the Lower
CRB, and the moisture excess regime of the Upper Colorado [48].

Our findings concur with the previous, limited research on extreme concurrent events,
although to our knowledge, studies have not been undertaken specifically for the CRB.
For example, univariate conditions for temperature and droughts showed no change,
but concurrent droughts and heatwaves were shown to be occurring across the US [22];
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a similar study showed that wind speeds were not increasing univariately across the
Midwest, hot, dry, and windy events were increasing [87]. Analysis of concurrent extreme
events was undertaken in a study by Hao, AghaKouchak and Phillips [26] where they used
13 CMIP5 models to examine concurrent extremes as scenarios, showing that concurrent
warm/dry and warm/wet global extreme events have increased gradually since the ~1960s
and substantially since the ~1990s, with warm/wet extreme events increasing in high
latitudes and tropical regions, and warm/dry extremes increasing in many areas, including
central Africa, eastern Australia, northern China, parts of Russia, and the Middle East [26].
Recent extremes in California were examined by Diffenbaugh, Swain and Touma [42], who
highlights the role of record high annual mean temperatures in combination with record
low annual mean precipitation in 2013, which led to increased evapotranspiration, more
intense drought, and intensifying wildfire occurrences. Likewise, studies that consider
changes such as forest disturbances under a warming climate are also looking at concurrent
extreme events [88], although studies may not necessarily self-identify as examples of
concurrent extreme event analysis.

Identifying critical regions within the CRB is important to determine the vulnerability
of specific watersheds to concurrent extreme events. The watersheds identified in this work
had instances of multiple ESMs and/or multiple Impacts projected to occur under the annual
interval, a time scale most noted for its implications for water management of the system
χ. Examining the entire CRB and being able to rank the most critical watersheds allows
us to focus more closely on those systems in terms of resources and research. The critical
basins identified in this work are indeed systems that have been well studied and/or
have important water resources located within them. For example, Livneh, et al. [89]
examined the Uncompahgre River basin in his investigation of forest disturbance and dust-
on-snow implications, a study on concurrent events, although not specifically identified
as such. The East-Taylor basin was selected as a ‘representative community watershed’
for intensive study by The Watershed Function project, funded by the USDOE Biological
and Environmental Research Subsurface Biogeochemistry Program [90]. Additionally,
the Salt/Verde complex has experienced damaging extreme events leading to effects on
humans and economy [91–93]. The Blue River watershed is an important system as it
includes the largest reservoir in the Upper CRB, and has been identified as threatened by
climate change such as increasing temperatures [94].

This paper examines future changes in concurrent extreme events for different time
scales in the CRB, focusing largely on a basic statistical metric to combine extremes. Our
study is limited in that is leaves out important work to understand which extreme indicators
to combine together to represent Impacts, and also more advanced statistics metrics, is
fundamental to testing the applications and results illustrated herein. The next phase of
this work includes a more advanced statistical method using copulas to characterize and
describe changing concurrent extremes across the CRB. Under the same project, we have
developed an economic model to consider the effects of modeled flooding in the CRB on
the US economy under future climate change.

5. Conclusions

We analyzed extreme concurrent Impacts of heatwaves, drought, low flows, and flood-
ing for the CRB under multiple future (2070–2099) climate change scenarios. Temperature
and precipitation are projected to change dramatically in the CRB: all ESMs predict tem-
perature increases, but different ESMs predict either significant increases or significant
decreases in precipitation. Despite this range in response, extreme concurrent events are
projected to increase across the CRB in all time scales and for all Impacts.

Temperature-driven concurrent extremes (heatwaves and drought) are strongest and
most spatially coherent across the CRB, while precipitation-driven concurrent extremes
(flooding and low flows) are less strong and more spatially variable across the CRB. Annual
time scales for analysis of concurrent extremes show the strongest responses for all variables.
Temperature-driven concurrent extreme Impacts shift the most across the time scales of
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analysis, with a more than doubling of response from synoptic to annual time scales.
Precipitation-driven concurrent extremes do not show as much of a change across time
scales, with a slight increase in response moving from synoptic, monthly, seasonal, to
annual time scales. However, there is generally greater agreement moving from the annual
to synoptic time scales; with the exception of low flows that has greater ESM coherence at
annual time scales.

The Upper and Lower CRB act similarly temperature-driven concurrent extremes,
again, but different in their response to changes in precipitation-driven concurrent extremes;
with flooding having the strongest response in the Upper CRB, and low flows having a
stronger response in the Lower CRB. We identified critical watersheds in the CRB that are
projected to experience compounded concurrent extreme events, watersheds that include
important water management structures in the Upper CRB, such as the Blue River basin,
and where vital water research resources are located, such as the Uncompahgre and the
East-Taylor basins. In the Lower CRB, the Salt/Verde basin provide important sources of
in-basin surface water flow in an otherwise arid environment, and water for agriculture and
hydropower at the Roosevelt Dam [95]. Our work verifies that concurrent extreme events
are likely to increase in frequency and magnitude under future climate change [7,96,97].

As the science of extreme events evolves, examining concurrent events will likely
be an important step in understanding the changing nature of extremes, capturing and
analyzing the largest and most damaging of these events, tying instances of extremes
in climate and land surface model simulations to observations, and linking the physical
responses to other indicators of instability, such as economy and society.
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