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Abstract: Japan has abundant hot spring resources, which, if used appropriately, could contribute
to CO2 emission reduction and socioeconomic development. Thus, for the appropriate use of hot
spring resources, it is necessary to estimate the detailed discharge mechanism and its surrounding
hydraulic characteristics. In our study, a hot spring monitoring device was developed and installed
in the Futamata hot spring to evaluate its discharge mechanism. Comparison between the measured
values of the monitoring device and the amount of precipitation indicated that this hot spring shows
two types of water quality change trends depending on the intensity of precipitation. However, this
was a short-term variation that could not be detected by conventional methods. To address this
limitation, we created a new discharge mechanism model for the Futamata hot spring based on these
observations, which allowed for the continuous observation of hot spring water using a monitoring
device and was effective in detecting short-term variations. As such observations contribute to
estimating the hydraulic structure around the hot spring, they are important for appropriate use of
hot spring resources.

Keywords: Futamata hot spring; remote monitoring system; time series analysis; Fukushima; Japan

1. Introduction

The Paris Agreement was adopted with the agreement of all participating countries at
the 21st Conference of the Parties to the United Nations Framework Convention on Climate
Change (COP21) held in 2015. The Paris Agreement is an international framework for
reducing greenhouse gas emissions after 2020. In Japan, the aim is advocated of reducing
greenhouse gas emissions by 26.0% by 2030 (compared with those in 2013) and expanding
the use of renewable energy with low CO2 emissions is promoted [1].

Japan is home to 27,283 hot spring resources [2] that should be properly and appro-
priately utilized. Muraoka and Osato (2010) estimated that the potential of the domestic
low-temperature (53–120 ◦C) hydrothermal system resources is 8.33 GW [3]. The power
generation efficiency used for this estimation was 0.0731. The amount of energy per year is
approximately 999,000 GWh from the estimated potential of 8.33 GW, calculated according
to the method of the Ministry of the Environment, 2019a [4]. The amount of CO2 emitted
per year is approximately 250 million tCO2 when the same amount of energy is gener-
ated with an oil-fired boiler (CO2 emission factor is 0.0693; Ministry of the Environment,
2019b [5]). Consequently, the effective utilization of natural hydrothermal resources in
Japan could contribute to a reduction in CO2 emissions.

Hot springs are not only hydrothermal resources but also tourism attractions in Japan.
The Japanese hot spring industry has the largest market in the world [6] and forms the
basis of the domestic tourism industry. The tourism industry influences socioeconomic
development through the creation of businesses and employment opportunities, as well as
the development of social infrastructure. The production economic effect brought about by
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tourism consumption in Japan is 55.4 trillion yen and the added value effect is 28.2 trillion
yen, which is said to have an employment opportunity for 4.41 million people. This is
equivalent to 5.3% of the amount of production of Japan, 5.2% of gross domestic product
(GDP), and 6.4% of the total number of employees [7]. In addition, hot spring resources
often exist in remote areas, such as near volcanoes, and the hot spring industry contributes
to job creation in these non-industrial areas [8].

A detailed evaluation of the hot spring resources is indispensable to proper utilization.
Continued reckless use without evaluating the characteristics causes depletion and water
quality changes in hot springs. Moreover, it could adversely affect the environment.
Continuous monitoring is effective for evaluation of the characteristics of groundwater
resources such as hot springs. Monitoring of hot springs is generally conducted once
every month for several months. However, these survey frequencies cannot capture water
quality changes that occur less than daily, owing to weather conditions [9]. Therefore,
automatic high-frequency continuous observation using a device is desirable to capture
short-term variations; however, it is considered extremely difficult because of the effects of
scale formation [9]. Accordingly, few studies have conducted high-frequency continuous
observations of hot springs.

In addition, estimating the hydraulic structure around the hot spring is important
for evaluating the interference between hot springs. In Beppu City, which has the largest
number of hot springs in Japan, there is concern that hot spring resources will be depleted
because of the rush to hot spring well drilling in the limited area where they are expected to
occur. Accordingly, a protected area, the “Avoid Area”, has been established and develop-
ment control is being implemented [10]. To prevent excessive development, it is important
to estimate the hydraulic structure around a hot spring by continuous monitoring.

In this study, we attempted to estimate the hydraulic structure around the Futamata
hot spring using a hot spring monitoring device [11]. Verification tests of hot spring
monitoring devices have been conducted at 11 locations in Japan [11], and acquiring data
is relatively easy at the Futamata hot spring because of the small scale formation effect. In
addition, this hot spring is a natural discharge, i.e., water is not pumped using power, and
there is no mix of multiple sources. It was selected as our study area because it was not
necessary to consider human effects and it was relatively easy to verify the data.

The main objective of this study was to estimate the detailed discharge mechanism
of a hot spring in order to appropriately use hot spring resources. Analysis of the data
suggested that high-frequency continuous observations could provide useful information
for understanding short-term variations in this hot spring and for estimating their causes.
We detected short-term variations that could not be detected by conventional methods and
we created a corresponding new discharge mechanism model for this hot spring.

2. Materials and Methods
2.1. Futamata Hot Spring

This natural hot spring is located in the southern part of the Fukushima Prefecture in
northeastern Japan. It discharges from the riverside and riverbed of the Futamata River,
which flows through the eastern foot of Mt. Futamata, a Quaternary stratovolcano. The area
around the source is covered with Tertiary lake sediments, and the western Mt. Futamata
flank is unconformably covered with Quaternary volcanic ejecta [12]. An observation
point of the Automated Meteorological Data Acquisition System (AMeDAS) [13], Yumoto
site is located in the northeast of the Futamata hot spring. There are multiple normal
faults in the vicinity that strike in an E–W direction and are inclined to the north at a high
angle. It has been pointed out that these faults could control the upflow of the Futamata
hot spring [14]. Surveys for geothermal development by New Energy and Industrial
Technology Development Organization (NEDO) have been conducted twice around the
Futamata hot spring [14–16], with water quality analysis conducted accordingly. During
2004 to 2005, two geothermal survey wells were drilled at a point approximately 3 km
north of the Futamata hot spring (Figure 1a). To assess the impact of the well survey on the
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surrounding environment, a hot spring variation survey was conducted. Monitoring of the
Futamata hot spring was conducted by field survey once or twice a month from August
2004 to October 2005. No significant change in the Futamata hot spring was observed
because of the geothermal well survey, but it was suggested that the flow rate could have
changed because of the influence of the water level of the Futamata River.

Figure 1. Location of study areas. (a) Shadow relief map. This map is based on 10-m grid digital elevation models
(DEMs) from the Geospatial Information Authority of Japan. (b) Schematic diagram showing the location of the hot spring
monitoring device.

2.2. Methods

A hot spring monitoring device [11] was installed in the pipeline of the Futamata hot
spring (Figure 1b) and data were acquired at 1-min intervals from 1 August 2018 to 31
December 2019. A photograph of the hot spring monitoring device is shown in Figure 2,
while Table 1 shows its main specifications [11]. This is an IoT device and the data can be
downloaded via the Internet. The flow rate, temperature, and electrical conductivity (EC)
were obtained from the data acquired from the monitoring device. In addition, we used
precipitation data measured at the AMeDAS Yumoto site (Figure 1a) for the same period.
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Figure 2. Photograph of the hot spring monitoring device.

Table 1. Main specifications of the hot spring monitoring device.

Item Specifications

Size About 300 mm(H) × 200 mm(W) × 200 mm(D)
Weight 5 kg or less

Flow rate measurement Range: 10–100 L/min
Temperature measurement Range: 0–100

EC measurement Range: 1–50 mS/cm
Sampling rate 1 sample/min.

Data communication Supports 3G, LTE, LPWA, etc.

A field survey, measuring the flow rate, temperature, and EC was conducted at inter-
vals of approximately three months to check the measurement accuracy of the monitoring
device. The flow rate was measured using a resin container and stopwatch. The measure-
ment was performed multiple times, with the coefficient of variation being ≤4.1%. The
temperature was measured using a portable device (model SK–250WPII–N, Sato Keiryoki
Mfg. Co. Ltd., Tokyo, Japan). EC was measured using a portable device (WM–32EP,
DKK–TOA Co., Tokyo, Japan).

In addition, although not included in the measurement items of the hot spring mon-
itoring device, pH measurement and analysis of the dissolved ion concentration were
conducted to evaluate the chemical characteristics of the Futamata hot spring. The pH
was measured using a WM–32EP (DKK–TOA Co. Tokyo, Japan) and PH71 (Yokogawa Co.
Tokyo, Japan). The dissolved ion species analyzed were Na+, K+, Ca2+, Mg2+, Cl–, SO4

2−,
and HCO3

–. Analytical samples (Na+, K+, Ca2+, Mg2+, Cl–, SO4
2−) were filtered in situ with

a 0.2-µm membrane filter, collected in acid-washed 100 mL polyethylene bottles, and taken
back to the laboratory. The analysis was repeated three times using ion chromatography
(ICS–2100, Thermo Fisher Scientific Inc., Waltham, MA, USA). The coefficient of variation
was less than 3%. Analytical samples (HCO3

–) were collected in 100-mL polyethylene
bottles, taken back to the laboratory, and calculated from the alkalinity of pH 4.3 by sulfate
titration. The ion balance [17] was ±1.7% or less.

3. Results: Comparison of the Survey Data and Monitoring Data

We compared the manually measured values of the field survey and the automatically
measured values of the hot spring monitoring device and examined the differences between
the values. The hot spring monitoring device is equipped with a sampling valve for collect-
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ing hot spring water on the downstream side of various sensors. However, as the valve
opens, the amount of hot spring water circulating in the pipeline changes drastically, which
could affect the measurement. Therefore, for comparison with the manually measured
values of the field survey, we used the average value for 10 min when the automatically
measured values by the monitoring device were stable before the start of the field survey.

Table 2 shows the manually measured values of the field survey and the automatically
measured values of the hot spring monitoring device. In addition, to compare the manually
measured values and the automatically measured values, we calculated the difference
between the values using Equation (1).

Di f f erence (%) =
Automatic measured values − Manual measured values

Manual measured values
× 100 (1)

The difference between the manually measured and automatically measured values
was −1.5% to 4.5% for the flow rate, −1.8 to −0.3% for the temperature, and 0.3 to 0.6%
for the EC. NEDO (2018) considered the accuracy of flow rate measurement by a hot
spring monitoring device and indicated that measurements could probably differ by ±3.5%
or less from manually measured values [18]. In our study, the difference between the
automatically and manually measured values was 4.5% maximum, i.e., larger than the
result of the report [18]; however, presumably this could be ascribed to the difference in the
measurement method. NEDO (2018) used a 14.80-L resin container to measure a flow rate
of approximately 40 L/min [18]. In our study, a 2.0-L resin container was used to measure
a flow rate of approximately 32 L/min; therefore, the measurement time was significantly
shorter. This factor is considered one of the causes of the large measurement error with
manually measured values. In addition, the temperature measured by the hot spring
monitoring device tended to be slightly lower than the manually measured values, which
is a feature of the device employed [18]. In the future, by making appropriate corrections,
the measurements will probably not be affected. Table 3 shows the chemical composition
of the Futamata hot spring.

Table 2. Comparison of the automatically measured values of the hot spring monitoring device and the manually measured
values of the field survey.

Flow Rate [L/min] Temperature [◦C] EC [mS/cm]

Date Automatic Manual Difference [%] Automatic Manual Difference [%] Automatic Manual Difference [%]

2018/08/10 n/m 36.1 58.8 59.8 –1.7% 2.78 2.76 0.3%
2018/11/22 32.8 33.3 –1.5% 57.9 58.4 –0.9% 2.57 n/m
2019/03/08 32.6 31.2 4.5% 58.2 59.0 –1.4% 3.02 n/m
2019/06/14 32.6 32.1 1.5% 57.1 58.1 –1.8% 2.49 n/m
2019/09/04 32.5 n/m 57.0 57.6 –1.1% 2.49 2.48 0.6%
2019/12/10 32.4 31.2 3.9% 57.1 57.3 –0.3% 2.57 n/m

n/m: No measurement. Automatic: Automatically measured values of the hot spring monitoring device. Manual: Manually measured values
of the field survey. Difference: Difference between these measured values calculated by using Equation (1).

Table 3. Chemical composition of the Futamata hot spring.

Sampling Date pH Na+ [mg/L] K+ [mg/L] Ca2+ [mg/L] Mg2+ [mg/L] Cl– [mg/L] SO4
2– [mg/L] HCO3

– [mg/L]

2018/08/10 8.90 78.7 1.03 326 0.08 2.83 953 n/m
2018/11/22 9.06 79.2 1.04 328 0.08 2.84 949 n/m
2019/03/08 8.75 78.9 1.02 327 0.08 2.80 936 n/m
2019/06/14 8.72 78.5 1.07 324 0.08 2.90 949 14.5
2019/09/04 8.73 78.3 1.12 327 0.09 2.98 949 15.3
2019/12/10 8.67 78.2 1.04 325 0.08 2.98 955 15.3

n/m: No measurement.
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4. Discussion
4.1. Short-Term Variation Owing to Precipitation

Figure 3 shows the automatically measured values of the hot spring monitoring device
from August 2018 to December 2019. This device was designed to record the maximum
or minimum value of the measurement range as an abnormal value when an abnormality
occurred during measurement. The flow rate in early August 2018, the temperature at 0 ◦C,
and the abnormally large EC were abnormal values of which accurate measurements were
not made. In our study, the following processes were performed to remove the abnormal
values from the analysis.

Figure 3. Values measured by the monitoring device.

Generally, the EC is temperature dependent, but the EC measured by the hot spring
monitoring device was not temperature corrected. Therefore, it was difficult to evaluate
whether the change in the measured value was caused by a change in temperature or
another factor. Employing Equation (2), the temperature coefficient was set to 2%/◦C, and
the temperature was uniformly corrected to obtain an EC of 25 ◦C.

K25 =
Kt

1 + α(t − 25)
(2)

where K25 is the EC at 25 ◦C, Kt is the EC at t ◦C, and α is the temperature coefficient. In
addition, because the value of mS/cm was measured by the hot spring monitoring device,
it was converted to mS/m.

Figure 4 shows a graph of the flow rate and temperature measured by the hot spring
monitoring device, temperature-corrected EC, and 24-h precipitation measured by the
AMeDAS Yumoto site (Figure 1a). The 24-h precipitation was the total amount of precipita-
tion recorded 24 h before the measurement time. A filtering method, STL, [19] was used to
create the flow rate, temperature, and EC graphs. This filtering method can decompose
data into three components, namely, trend, seasonal, and remainder. Here, the cycle was set
to 24 h, and the results are shown of the trend component with the seasonal and remainder
components removed. The flow rate values before 10 August 2018 were missing.
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Figure 4. Flow rate, temperature, and EC measured by the monitoring device, and precipitation measured by the AMeDAS
Yumoto site. Flow rate, temperature, and EC show the trend for 24 h, and precipitation shows the total for 24 h before
measurement. EC is converted from Equation (2) to a value of 25 ◦C.
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In view of the results (Figure 4), we focused on October 2019, with particularly large
24-h precipitation confirmed. Figure 5 shows a graph of the flow rate, temperature, and
EC (25 ◦C) measured by the hot spring monitoring device, and precipitation measured
by the AMeDAS Yumoto site from 1 October 2019 to 1 November 2019. We used the EC
values corrected for temperature from Equation (2). Mass precipitation is the total value of
precipitation from the start of rainfall to the time of measurement, which was reset to zero
when the no-precipitation period reached 6 h.

Figure 5. Flow rate, temperature, and EC of the Futamata hot spring measured by the monitoring device. Precipitation
around the study area was measured at the AMeDAS Yumoto site. Flow rate, temperature, and EC show the moving average
for 1 h. Precipitation indicates the total amount of rainfall observed 1 h before the measurement time. Mass precipitation
is the total value of precipitation from the start of rainfall to the time of measurement, which is reset to zero when the
no-precipitation period reaches 6 h. (A–E) indicates major precipitation events observed in October 2019, respectively
(Table 4).
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Table 4. Continuous precipitation and precipitation intensity of major precipitation events observed in October 2019. Items
of precipitation events correspond to Figure 5.

Precipitation Events Date Continuous Precipitation [mm] Precipitation Intensity [mm/h]

(A) 10/03 19:00–10/05 02:00 13.5 0.42
(B) 10/11 19:00–10/13 08:00 295.5 7.78
(C) 10/18 19:00–10/20 06:00 29.5 0.82
(D) 10/22 01:00–10/22 23:00 40.5 1.76
(E) 10/25 01:00–10/26 06:00 79.0 2.63

On 12 October 2019 typhoon No. 19 (Hagibis) landed and caused heavy rainfall (Fig-
ure 5B), and on 25 October 2019 typhoon No. 21 (Bualoi) caused an increase in precipitation
(Figure 5E) [20]. In addition, precipitation was recorded on October 4 2019 (Figure 5A),
19 October 2019 (Figure 5C), and 22 October 2019 (Figure 5D). Here, we classified these
as “events with large precipitation intensity” (Figure 5, green, dashed line) caused by
typhoons such as those of 12 and 25 October, and “events with small precipitation intensity”
(Figure 5, blue, dashed line) caused by events such as those occurring on 4, 19, and 22
October. Table 4 shows the continuous precipitation and precipitation intensity of major
precipitation events observed in October 2019.

When “events with large precipitation intensity” occurred, the flow rate increased,
temperature decreased, and the EC of the Futamata hot spring decreased. In addition,
the spike-shaped change in each measured value was at a maximum during the time the
precipitation peaked. The water quality of the Futamata hot spring changed almost at the
same time as the occurrence of the precipitation events. These results suggested that this
hot spring could have been diluted by a large amount of precipitation.

On the other hand, when “events with small precipitation intensity” occurred, the
flow rate increased slightly, temperature increased, and the EC increased in the Futamata
hot spring. In addition, the temperature and EC changed several hours after the peak
of precipitation, indicating a time lag between the occurrence of the precipitation events
and the change in water quality. Because the temperature and EC increased, and because
of the time lag, it is unlikely that the Futamata hot spring was diluted by precipitation.
Consequently, we considered that the water quality could have changed by a completely
different mechanism when “events with large precipitation intensity” occurred.

When “events with small precipitation intensity” occurred, as the temperature and
EC increased, it was unlikely that the water quality changed because of precipitation.
Rather, presumably, the hot water supply rate from the deep part was increasing. We
considered the causes of this tendency in the water quality change based on the Terzaghi
Principle consolidation theory (Figure 6). Most of the sources of the Futamata hot spring are
discharged naturally from the riverbed of the Futamata River and, presumably, multiple,
high-sloping, normal faults contribute to this discharge [14]. If the Futamata hot spring
aquifer existed in the shallow underground of the Futamata River, changes in the level
of the Futamata River could contribute to changes in the hot water supply rate from the
aquifer. Therefore, after the occurrence of “events with small precipitation intensity”, the
downward stress increased as the level of the Futamata River increased and the stress in
the hot spring aquifer also increased. The increased stress in the aquifer could lead to
an increase in pore pressure and increase in the discharge water rate through faults with
relatively high permeability (Figure 6). Consequently, the flow rate, temperature, and EC
of the Futamata hot spring increased. A similar tendency was observed from groundwater
observation data in Tokyo, Japan [21] wherein such changes in groundwater level are a
function of the stress in the aquifer that, in turn, is dependent on the changes in the river
water level. On the other hand, when “events with large precipitation intensity” occurred,
presumably, the hot spring water was diluted by a large amount of precipitation over a
short time, thereby increasing the flow rate significantly, whereas the temperature and EC
tended to decrease.
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Figure 6. Discharge mechanism of the Futamata hot spring when precipitation occurs. (a) The Futamata hot spring
discharges through highly permeable cracks such as faults; (b) when “events with small precipitation intensity” occur, the
downward stress increases as the level of the Futamata River increases, and the stress in the hot spring aquifer also increases.
Increased stress in the hot spring aquifer leads to an increase in pore pressure and the discharge water rate increases; (c)
when “events with large precipitation intensity” occur, the hot spring water is diluted by a large amount of precipitation
over a short time.

In addition, there was a time lag between the occurrence of precipitation and the
change in the water quality of the hot spring, i.e., a delay from the time the precipitation
events occurred to the time the level of the nearby Futamata River increased. The source
of the Futamata River is the hillside of Mt. Ohshiromori, which is located in the southern
part of Mt. Futamata (Figure 1a). The size of the catchment area near the Futamata hot
spring is approximately 11.5 km2. It takes time for precipitation in the catchment area
to flow into the Futamata River and its branches and through the discharge point of the
Futamata hot spring. Afterward, the level of the Futamata River gradually decreases as the
influence of precipitation decreases, and the change in water quality of the Futamata hot
spring recovers within a few hours.

4.2. Estimation of Depth of the Futamata Hot Spring Aquifer

To evaluate the characteristics of the Futamata hot spring aquifer and the discharge
mechanism (shown in Figure 6), we calculated the temperature of the Futamata hot spring
employing a solute geothermometer. Geoindicator by Giggenbach (1988) [22] is effective
in evaluating the maturity suitable for the use of cation geothermometers. The maturity
of the hydrothermal fluid in the Futamata hot spring aquifer was evaluated using the
Na–K–Mg ternary relationships [22] to select the appropriate solute geothermometer to
be used (Figure 7). Cation geothermometers, such as Na–K geothermometers, are not
recommended for application to immature strongly acidic hydrothermal fluids and, in such
cases, a method using anhydrite (CaSO4) should be used [23]. As the Futamata hot spring
was plotted in the partial equilibration area, we judged the use of a cation geothermometer
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as appropriate. We estimated the aquifer temperature employing a Na–K geothermometer
(Equation (3)) following the approach of Giggenbach [22].

TNaK =
1390

1.750 + log(Na/K)
− 273.15 (3)

where the unit of cation concentration is mg/kg. Using Equation (3), the Futamata hot
spring aquifer temperature was estimated at 109 ◦C to 114 ◦C (Table 5). The difference
between the discharge temperature and the temperature measured by geothermometer
was as small as 49.2 ◦C to 56.7 ◦C, suggesting that the Futamata hot spring aquifer probably
exists in the shallow underground.

Figure 7. Na–K–Mg ternary relationships. Red circles indicate samples from Futamata hot spring.

Table 5. Activity index, Na–K temperature, and aquifer depth, estimated from the activity index and
Na–K temperature of Futamata hot spring.

Date Activity Index TNaK [◦C] Depth [m]

2018/08/10 59.8 109 101
2018/11/22 58.4 110 117
2019/03/08 59.0 109 107
2019/06/14 58.1 111 125
2019/09/04 57.6 114 146
2019/12/10 57.3 110 127

We attempted to estimate the depth of the Futamata hot spring aquifer using the
activity index [24]. This activity index can be extrapolated easily from the underground
thermal profile from the point data of the drilling depth and the temperature at that depth.
Because a detailed thermal profile is not required, abundant data could be utilized, and the
subsurface thermal structure in major geothermal fields in Tohoku, Japan, was estimated in
this way and its accuracy evaluated [25,26]. When calculating the activity index of a natural
hot spring, the discharge temperature is used as the value of the activity index [27]. The
red, dotted lines in Figure 8 are the thermal profiles of the Futamata hot spring estimated
using the activity index. The solid black curve and the solid black straight line represent an
activity index of 100 and 0, respectively. The thermal profiles of the Futamata hot spring
were drawn when the activity index was at a maximum and a minimum. Assuming that
the Futamata hot spring aquifer exists at a depth where the temperatures reach 109–114 ◦C
based on the results of the geothermometer, it was identified as existing at the depth of
approximately 101–146 m (Table 5), represented by the blue area in Figure 8.
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Figure 8. Thermal profile estimated from the activity index of the Futamata hot spring. The thermal
profile was estimated from data with the minimum and maximum activity indexes and drawn with a
red, dotted line. The blue area shows the depth at which the presence of the aquifer was estimated
from the activity index and Na–K temperature. The solid, black line shows a curve with an activity
index of 100 and a straight line with 0, respectively.

4.3. Discharge Mechanism of Futamata Hot Spring

We created a discharge mechanism model of the Futamata hot spring based on the
results of the current study, as well as existing studies [14–16] (Figure 9). Figure 9a shows
a static model representing this phenomenon. The stable isotope ratio (δ18O/δD) of the
Futamata hot spring is approximately 0.156 to 0.159‰, and it should be plotted near the
local meteoric water line in the Fukushima Prefecture (δD = 5.4δ18O − 9.3 [28]). Therefore,
we considered meteoric water that fell on the hillside of Mt. Futamata as the main origin
of this hot spring [14]. The tritium concentration was approximately 0.37–0.39 TU [14].
Compared with the tritium concentration of groundwater recharge according to Saito and
coworkers [29], it was presumed to have been recharged before nuclear testing in the 1950s
to 1960s. As the tritium concentration by NEDO (2005) [14] was extremely low despite
the hot spring discharging near the river, the degree of contamination of surface water
was considered not significant (NEDO, 2005) [14]. This suggested that the interaction
between water and rock continues in the Futamata hot spring aquifer, and the seal layer
could be formed by self-sealing. This finding was consistent with the results plotted by the
Na–K–Mg ternary relationships (Figure 7). As δ34S was approximately +14.0 to +14.4‰, the
Futamata hot spring aquifer was considered heated conductively from a heat source [14].
According to Yasukawa and Noda (2017) [30], as Futamata is classified as a hot spring of
the heat conduction type, presumably, the impact of geothermal development is relatively
small. The Futamata hot spring aquifer temperature estimated by geothermometer (Na–K
geothermometer [22]) was 109–114 ◦C, and the aquifer depth estimated in combination
with the activity index was 101–146 m. These results suggested that the hot spring aquifer
could exist in shallow, underground areas.
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Figure 9. Discharge mechanism of the Futamata hot spring. (a) Static model. Meteoric water on the hillside of Mt. Futamata
penetrates underground and emerges as Futamata hot spring after a residence time of approximately over 65 years.
(b) Dynamic model. The underground stress field changes because of the increase in the flow rate of the Futamata River
with the occurrence of precipitation, and hot water is pushed out from the aquifer that exists in the shallow part of the
Futamata River.

Figure 9b shows a dynamic model of the Futamata hot spring discharge mechanism.
The Futamata hot spring discharges from the riverside and riverbed of the Futamata River.
As there are multiple normal faults in the vicinity, it has been pointed out that these faults
can control the upflow of the Futamata hot spring [14]. When the precipitation events
occur, the downward stress increases as the level of the Futamata River increases, and
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the stress in the hot spring aquifer also increases. Consequently, the amount of hot water
supplied from the hot spring aquifer temporarily increases.

5. Conclusions

A hot spring monitoring device was installed in the pipeline of the Futamata hot
spring, and data were acquired over one year and five months. The difference between
the automatically measured values of the hot spring monitoring device and the manually
measured values of the field survey was a maximum of 4.5%. The water quality of the
Futamata hot spring was suggested to change with the occurrence of rainfall, and two
types of change trends occurred, depending on the intensity of precipitation. Further, the
aquifer of the Futamata hot spring was suggested to exist in the shallow underground of
the Futamata River. The results of this survey and existing surveys suggested the water
quality of the Futamata hot spring changed when changes occurred in the level of the
Futamata River after rainfall.

In this study, we showed that continuous observation with a monitoring device could
successfully capture short-term variations not detectable with conventional methods. We
created a new dynamic discharge mechanism model and, based on the observations,
provided more detailed estimation of the hydraulic structure around the Futamata hot
spring. Our results suggested that continuous observation of hot springs by a monitoring
device provides important information for the appropriate use of hot spring resources.
In the future, we intend to apply such continuous observations to hot spring resources in
other areas to derive a versatile discharge mechanism estimation method, which will lead
to the appropriate use of hot spring resources nationwide.
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