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Abstract: Contamination of water with organic dyes is a major environmental concern as it causes
serious life-threatening environmental problems. The present research was designed to evaluate the
potential of three different natural inorganic clays (NICs) i.e., Pakistani bentonite clay (PB), bentonite
purchased from Alfa Aesar (BT), and Turkish red mud (RM) for malachite green (MG) dye removal
from an aqueous solution. Various analytical techniques, namely X-ray fluorescence spectrometry
(XRF), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), field emission
scanning electron microscopy (FESEM), Brunauer–Emmett–Teller surface area measurement (BET),
and thermogravimetric analysis (TGA), were used to investigate the physicochemical properties of the
NICs samples. The effect of adsorption operational parameters such as contact time, aqueous phase
pH, dye concentration, and amount of NICs on the adsorption behavior of MG onto NICs samples
were investigated under the batch adsorption system. The equilibrium and kinetic inspection reflected
the best description of MG adsorption behavior by the Langmuir isotherm model and pseudo-first-
order kinetic model, respectively. The results indicated that the adsorption was favorable at higher
pH. The maximum adsorption capacities calculated by Langmuir isotherm for PB, BT, and RM were
found to be 243.90 mg/g, 188.68 mg/g, and 172.41 mg/g, respectively. It can be concluded that
natural inorganic clays with a higher surface area can be used as an effective adsorbent material to
remove the MG dye from an aqueous solution.

Keywords: clay; dye; adsorption; isotherm; kinetics

1. Introduction

In recent years, planners, environmental scientists, and decision-makers have been
paying attention to sustainable resource development [1]. Within these resources, water is
the most precious renewable natural resource, is the essential enabler, and a major source
of survival of life [2,3]. Groundwater is the most important source of drinking water in the
world [4]. Globally, groundwater accounts for about 43% of total irrigation use and provides
potable water for about 1.5 billion people [5]. However, the rapid development of industri-
alization, manifold increase in the human population growth, and uncontrolled usage of
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freshwater have imposed stress on groundwater resources, resulting in quality deterioration
and quantity depletion [6,7]. It has been reported that more than 1.2 billion people around
the world have no access to potable water, and around 663 million people are being affected
by unsafe water [8,9]. Mainly, surface water and groundwater are contaminated due to
the discharge of partially treated or untreated wastewater from various industries into the
ecosystem. In particular organic dyes from industrial effluents such as textile, solar cells,
leather, plastics, food, and paper cause serious health issues in humans and severe damages
to the environment [10]. Over 1 × 105 types of dyes and more than 7 × 105 tons per year
of pigments and dyestuff are produced and used in many industries, in which 12% is lost
during the manufacturing process, and 20% of dyes enter freshwater resources as industrial
effluents [11]. Due to their complex structures, organic dyes are mainly non-biodegradable
and are resistant to environmental conditions such as heat, oxidizing agents, and light [12,13].
Moreover, most of the dyes are carcinogenic, mutagenic, and harmful to humans and aquatic
biota [14]. In addition their high stability towards environmental conditions and resistance
to the attack of microorganisms, the presence of organic dyes causes aesthetic problems,
impedes penetration of light into receiving water bodies, and depletes dissolved oxygen,
thereby disturbing the ecological aquatic systems [15,16].

Malachite green (MG) dye is an organic compound of triphenylmethane, widely
used as a colorant [17], biocide in the aquacultural industry [18], therapeutic agent, an-
thelminthic, and medical disinfectant [19,20]. Despite its wide application, several reports
describe its carcinogenic and hazardous effects. It acts as a tumor-promoting agent in
mammalian liver cells [21]. Therefore, the detection of MG in foodstuff, fishes, and animal
milk used by humans is of great concern [22].

Several techniques have been applied for the decontamination of wastewater containing
organic dyes such as adsorption [23], photocatalysis [24], biological treatment [25], chemical
oxidation [26], coagulation/flocculation [27], membrane filtration [28], and ozonation [29].
Among different methods, adsorption is a more suitable and prime treatment method, because
of the simplicity of design, inexpensiveness, ease of operation, and high efficiency [30].
Initially, activated carbons were the most commonly used adsorbent [31], but the regeneration
difficulties and high production cost tend to limit its use as a potential adsorbent [32]. These
limitations have encouraged scientists to explore abundant, cheaper, and highly efficient
adsorbents such as bio-sorbents, natural materials, and waste materials [33–35].

The utilization of clays and clay minerals as an alternative adsorbent has many advan-
tages, such as environmental friendliness, low cost, higher surface area, abundance and ease
in availability, chemical stability, and a high potential for chemical modification [36–38].
Mainly, clays have layered structures and adsorb harmful substances between their layer
spaces [39]. Depending on the target pollutants, clays can be used as an adsorbent both
in natural and/or modified form [40]. Among the various types of clay, bentonite is the
most utilized clay material, mainly composed of at least 50% smectite, and more precisely
montmorillonite. Bentonite represents a 2:1 phyllosilicate, consisting of an octahedral
alumina sheet sandwiched between two tetrahedral silica sheets [41]. The overall negative
charge on the bentonite clay, being caused by the isomorphous substitution of Al+3 for
Si+4 in the tetrahedral layer and Mg+2 for Al+3 in the octahedral layer, is balanced by the
exchangeable cations located in the interlayer spaces, such as Na+, K+, and Ca+2 [42].

The objective of the current research work was to assess the ability of mesoporous
natural inorganic clays (NICs) for the removal of MG dye from an aqueous solution. The
influence of adsorption time, aqueous phase pH, MG concentration, and the amount of
NICs on the decolorization capabilities of NICs were evaluated. The obtained adsorption
results were analyzed by different kinetic and isotherm models.

2. Materials and Methods
2.1. Materials

The NICs adsorbents were obtained: bentonite from Pakistan (PB), bentonite pur-
chased from Alfa Aesar (BT), and red mud from Turkey (RM). The NICs samples were
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ground and washed with boiled distilled water followed by a filtration process to remove
the soluble impurities. After that, NICs samples were then dried in an oven for 24 h at 80 ◦C
and ground. Sodium hydroxide, hydrochloric acid, and malachite green is a water-soluble
cationic dye that belongs to the triphenylmethane category (chemical formula: C23H25ClN2,
color index number = 42,000, molar mass: 364.91 g/mol, abbreviated as MG) were obtained
from Sigma Aldrich, and used without further pre-treatment. The structure of the MG is
shown in Figure 1.
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Figure 1. Chemical structure of MG dye.

2.2. Pretreatment of NICs Samples

All of the NICs samples were pretreated as follows: the NICs samples were suspended
in distilled water for 4 h and cleaned many times with freshly prepared distilled water. The
clean NICs were then oven-dried for 24 h at 105 ◦C. Finally, the dried NICs materials were
stored in sealed jars for further use, without any further physical or chemical treatment.

2.3. Characterization of NICs

To evaluate the mechanism of dye adsorption, it is imperative to examine the char-
acteristics of the adsorbent materials. Therefore, the physicochemical characterizations
of the adsorbent materials were analyzed by using various analytical techniques. The
chemical composition and elemental analysis of NICs were determined by X-ray fluores-
cence spectroscopy (XRF) using Bruker Tiger S8 XRF Spectrometer. The X-ray diffraction
(XRD) patterns using Bruker D-2 Phaser, Cu Kα radiation over a 2θ interval of 4◦–40◦

were performed to investigate the crystallinity and phase composition of the NICs ad-
sorbents. A Fourier transform infrared spectroscopic (FTIR) analysis was performed by
using Bruker-Tensor-27 between 400 to 4000 cm−1 for the examination of surface functional
groups of NICs. A field emission scanning electron microscopic (FESEM) analysis was
performed to determine the NICs adsorbent morphologies using FESEM-EDS (Zeiss Ultra
Plus). The Brunauer–Emmett–Teller (BET) nitrogen physisorption measurements were
performed using a BET Micromeritics ASAP 2020 instrument for the calculations of pore
sizes and specific surface area of the NICs adsorbents. The thermogravimetric analysis
(TGA) measurements were carried out using the TGA Q500 model instrument, a nitrogen
atmosphere (60 mL/min of N2), and the samples were heated at 10 ◦C per minute rise over
the temperature range of 25–800 ◦C.
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2.4. Batch Adsorption Studies

To evaluate the adsorption abilities of NICs adsorbents, batch adsorption experiments
were performed using 250 mL conical flasks containing 100 mL of working solutions. The
influence of operating parameters such as time (10–120 min), NICs amount (0.1–0.5 g), dye
concentration (100–350 mg/L), and pH (3–11) on MG dye remediation was investigated
in batch studies. Typically, 0.1 g of NICs and MG solution (100 mL) with the desired
pH and concentration were added to a 250 mL conical flask and stirred continuously. At
pre-determined intervals, the NICs samples were separated. The remaining concentration
of MG in the filtrate was spectrophotometrically measured by a UV-vis spectrophotometer
(Shimadzu UV1700 Japan).

The adsorbed amount of MG (mg/g) was calculated using the following equations:

qe =
(C0 − Ce) × V

M
(1)

where V (L) represents the volume of MG solution, Co (mg/L) is the initial MG concentra-
tion, Ce (mg/L) is the concentration at equilibrium, and M (g) is the amount of NICs.

3. Result and Discussion
3.1. Characterization of NICs

The XRF analysis was carried out to investigate the chemical compositions of the NICs
used adsorbents. Table 1 shows that PB and BT clays are mainly composed of alumina and
silica, while the major components of the RM clay are iron oxide, alumina, and silica, with
other oxides present in trace amount in all of the NICs samples. Figure 2 shows the major
chemical constituents present in NICs samples.

Table 1. Chemical composition of NICs clay.

Parameter
Chemical Composition (%)

PB Clay BT Clay RM Clay

Al2O3 56.3 60.7 18.7
SiO2 18 16.4 15.3

Fe2O3 10.5 5.54 44.34
CaO 4.41 4.68 1.36
K2O 3.51 1.1 0.38
MgO 3.1 3.4 0.47
Na2O 1.6 6.8 12
TiO2 1.21 0.63 6.27
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XRD analysis was employed to examine the mineralogical composition and crystalline
nature of the NICs samples, as shown in Figure 3. The results indicate that PB and BT clay
has the following mineral phases: illite, kaolinite, quartz, and calcite. The dominant diffrac-
tion peaks for the PB and BT clays were found at Bragg’s angle (2θ) = ~9◦, ~12.5◦, ~27◦,
~28◦, and ~29◦ which corresponds to illite, kaolinite, quartz, feldspars, and calcite, respec-
tively [43,44]. According to the XRD data, RM is mainly composed of hematite, with other
minerals such as gibbsite, diaspore, and calcite being present as minor constituents [45].
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The surface functional groups of NICs investigated by the accomplishment of FTIR
analysis are shown in Figure 4. The results indicated the presence of characteristic absorp-
tion bands of NICs at 3696 cm−1 belonging to the O-H stretching vibrations of the inner
surface hydroxyl group and 3612–3616 cm−1 belonging to the O-H stretching vibrations of
the structural hydroxyl [46]. The broadbands 3386–3422 cm−1 were due to the stretching
vibration of H-O-H of hydrogen-bonded inter-layer water molecules [47], while the bands
of OH deformation mode of coordinated water molecules appeared at 1632–1641 cm−1 [48].
The strong bands at 970–998 cm−1 were referred to as the Si-O-Si stretching vibrations [49].
The Si-O bending vibration and Si-O-Mg, Si-O-Si, and Si-O-Al stretching vibrations of the
NICs adsorbents were found in the range of 415–796 cm−1 [50,51].
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The NICs adsorbent morphologies were analyzed by SEM analysis (Figure 5). It was
observed that PB and BT clays have quite a rough porous surface with blunt edges due to
the agglomeration of small particle size, while the RM clay has a smooth surface compared
to the other two clays and a fluffy appearance because of the closely packed flakes.
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The pore size distribution and surface area of the NICs materials were determined by
BET N2 sorption isotherm analysis. Figure 6 shows that the observed sorption isotherms are
of type IV with an H3 type of hysteresis loops. The results confirm the mesoporous nature
of the used NICs adsorbents [52]. Both the adsorption-desorption isotherms completely
overlapped at low relative pressure P/Po < 0.4, but showed a distinct hysteresis loop at
relatively high pressure (P/Po > 0.4), which is the typical characteristics of layered materials.
The calculated pore sizes and surface area derived from BET N2 sorption isotherm of the
NICs are given in Table 2. The thermal behaviors of NICs were studied by TG analysis.

Table 2. Surface and pore characteristics of the NICs adsorbents.

Parameter Unit PB Clay BT Clay RM Clay

Surface Area m2/g 115.99 38.306 16.796
Pore Volume cm3/g 0.1527 0.0711 0.0656

Pore Size nm 9.6055 19.168 25.834

It is clear from Figure 7 that a continuous weight loss was observed for all the clay
minerals in the test temperature range. A two-step weight loss of 9.8%, 8.7%, and 7.5%
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was observed for PB, BT, and RM adsorbents, respectively. The first weight loss due to the
dehydration of adsorbed water occurred over the 30 ◦C to 160 ◦C temperature range, while
the second weight loss over the 200 ◦C to 650 ◦C temperature range occurred due to the
loss of hydrated cations on the exchangeable sites and interlayer water dehydration of the
NICs adsorbents.
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3.2. Adsorption Studies of MG Dye

The adsorption behaviors of the NICs were examined to assess their potential appli-
cations in the decontamination of wastewater containing organic dyes. The influence of
adsorption time, aqueous phase pH, MG concentration, and the amount of NICs on the
decolorization capabilities of NICs were evaluated under batch conditions.

The adsorption uptake of MG by the NICs under varied periods of adsorption con-
tact time (10 to 120 min) is shown in Figure 8. During the experiments, the adsorption
capacities increased with the increase in the adsorption contact time. Initially, the rate of
dye uptake was high, and afterward, a gradual decrease was observed until the equilib-
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rium was attained [53]. This trend of variation in the MG uptake rates was related to the
availability of adsorbent surface active sites. In the beginning, the faster adsorption rates
were attributed to the abundant surface-active sites that saturated over time and opposed
further adsorption [54,55].
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The initial solution pH is a foremost significant controlling parameter in the process
of dye adsorption, as it can directly influence the adsorbent surface charges, the solute’s
dissociation, and as the adsorption mechanism [56]. It is also associated with the structural
changes and color intensities of dye molecules and is directly related to the competitive
adsorption process between the MG molecules and hydrogen ions [57]. The influence of
initial pH on the adsorption characteristics of MG by NICs adsorbents was examined in
the pH range of 3–11. According to the results (Figure 9), the adsorption capacities of NICs
adsorbents increased from 45.6 to 130.8 mg/g for RM, 62.4 to 142.8 mg/g for BT, and 82.8 to
170.6 mg/g for PB, with the increase of pH of MG solution from 3 to 11, respectively. In an
alkaline environment, the surface functional groups (Si-OH and Al-OH) of the NICs were
deprotonated by –OH, due to which the surface became negatively charged; as a result,
the electrostatic interaction between anionic NICs surfaced and cationic MG molecules
increased [1], whereas at low solution pH, the H+ ions concentration was very high, thus
competing intensely with the cationic dye to occupy the adsorption site, therefore causing
a reduction in the adsorption of MG dye [58].

It is essential to analyze the effect of the adsorbent amount, to optimize and select the
best-required dose of an adsorbent for scaling-up and designing large-scale equipment [59].
The influence of adsorbent dosage on dye adsorption is presented in Figure 10. The
obtained results show that increasing the NICs dose from 0.1 to 0.5 g resulted in decreases
in the adsorption capacities from 76 to 23.4 mg/g for RM, 92 to 27.4 mg/g for BT, and
134 to 29.6 mg/g for PB. The resulted decrease in adsorption capacities is due to the
increasing NICs dose (0.1 to 0.5 g), while the number of MG molecules remained fixed
(Ce = 100 mg/L). Hence, at a higher NICs dose, some of the surface-active sites of the NICs
remained empty [60].

To determine the influence of the initial MG concentration on the adsorption ca-
pacities, the experiments were performed by changing the concentration in the range of
100–350 mg/L, keeping other conditions constant. The results are shown in Figure 11. It
was determined that the adsorption capacities of MG onto NICs adsorbents increased from
92 to 223 mg/g for PB, 69 to 149 mg/g for BT, and 57 to 125 mg/g for RM as the initial
concentration increased from 100 to 350 mg/L. Moreover, at higher concentrations, the
adsorption uptake rate was also higher due to the higher concentration gradient [61].
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By taking into account the above experimental data and analysis, a mechanism for
the electrostatic interactions between the MG and NICs was proposed, as illustrated in
Figure 12.
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3.3. Adsorption Kinetics

Adsorption kinetics analysis was carried out to describe the rate of adsorbate uptake
and evaluate the adsorption mechanism. The adsorption process occurs mainly in three
steps; (i) the external mass transfer of the adsorbate molecules from the bulk solution
to the external adsorbent surface, (ii) transfer of adsorbed molecules to the adsorption
sites, (iii) and finally, retention via sorption itself [62]. Therefore, the experimental data
were inspected by the two different kinetic models, namely the pseudo-first-order and
pseudo-second-order kinetics model.

The pseudo-first-order kinetic model can be represented as follows [55]:

log(qe − qt) = log qe −
k1

2.303
t (2)

where k1 (min−1) is the pseudo-first-order rate constant, qe and qt are the adsorption
capacities (mg/g) at equilibrium and at any time t (min), respectively.

The empirical equation for the pseudo-second-order kinetic model is [63]:

dqt

dt
= k2(qe − qt)

2 (3)

Integrating and rearranging Equation (3), we received

t
qt

=
1

k2qe2 +
1
qe

t (4)

where k2 (g/mg. min) is the pseudo-second-order model rate constant.
The linear fitting kinetic results are presented in Figure 13a,b and the calculated

kinetic parameters are given in Table 3. When the regression coefficients (R2) values of the
used models were compared, it was found that they have almost the same values for R2.
However, the experimental (qexp) values of the pseudo-first-order model were found close
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to the calculated (qe) as compared to the pseudo-second-order model, which confirms that
the adsorption of MG was followed by the pseudo-first-order model.
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Table 3. Kinetic data predicted by pseudo-first-order and pseudo-second-order kinetic models for the adsorption of MG
onto NICs adsorbents.

Adsorbent
Pseudo-First Order Pseudo-Second Order

Dye q(exp) (mg/g) qe (calc) (mg/g) K1 (min−1) R2 qe (calc) (mg/g) K2 (mg/g) R2

PB clay MG 134 105.22 0.01645 0.935 147.06 0.007 0.975
BT clay MG 92 89.74 0.01641 0.928 113.63 0.009 0.953
RM clay MG 76 67.70 0.01460 0.996 95.24 0.010 0.992

3.4. Adsorption Isotherm

The adsorption isotherm studies provide helpful information to understand the na-
ture of the interaction between the adsorbed matter and adsorbent, and to evaluate the
efficiency of the adsorbent material used for adsorption. The experimental data were
evaluated by two commonly used adsorption isotherm models, namely the Freundlich and
Langmuir models. According to the Langmuir model, adsorption of analyte takes place
on the homogenous sites the adsorbent with the monolayer formation [63], and can be
expressed as:

Ce

qe
=

1
KLqm

+
Ce

qm
(5)

where KL (L/mg) represents the adsorption equilibrium constant for the Langmuir model
and is related to the adsorption energy, qe and qm are the equilibrium adsorption amount of
adsorbate and monolayer adsorption capacity of adsorbents in the experiments (mg/g),
respectively, and Ce (mg/L) is equilibrium adsorbate concentration.
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The Freundlich isotherm, applied to non-ideal and reversible adsorption, is valid for
multilayer adsorption of analyte and can be expressed as:

lnqe = lnKF +
1

nF
lnCe (6)

where KF (mg/g) represents the Freundlich constant and 1/n is the heterogeneity factor.
All of the correlation coefficients and constants obtained from the used adsorption

isotherm models were summarized in Table 4. The results show that both of the isotherms
have very high R2; however, experimental maximum adsorption capacities are close to the
qm calculated from the Langmuir isotherm model. The results show that adsorption of MG
onto the surface of NICs adsorbents occurs via monolayer formation.

Table 4. Langmuir and Freundlich parameters for the adsorption of MG onto NICs adsorbents.

Adsorbent
Langmuir Freundlich

Dye q(exp) (mg/g) qm (mg/g) KL (L/mg) R2 RL nF KF (mg/g) R2

PB clay MG 223 243.90 0.064 0.994 0.135 3.373 53.83 0.968
BT clay MG 149 188.68 0.016 0.990 0.382 2.462 17.30 0.998
RM clay MG 125 172.41 0.011 0.993 0.481 2.153 10.15 0.995

A direct comparison of the adsorption capacities obtained in this study and earlier
reported in the literature is difficult due to the varying experimental conditions employed
in those studies. However, from Table 5, it can be concluded that the NICs used in this
study provide better results for MG adsorption than the others reported in the literature.

Table 5. Comparison of the maximum adsorption capacities of some adsorbents used for MG dye.

Adsorbent Isotherm qm (mg/g) References

Kaolin Langmuir 52 [64]
Clayey soil Langmuir 78.57 [65]
Diatomite Langmuir 23.64 [66]

Rattan sawdust Langmuir 62.71 [67]
Wood apple shell Langmuir 34.56 [68]

Walnut shell Langmuir 90.8 [69]
Conch shell powder Langmuir 92.25 [70]

Sea shell powder Langmuir 42.33 [21]
PB clay Langmuir 223 This study
BT clay Langmuir 149 This study
RM clay Langmuir 125 This study

4. Conclusions

In the current study, three different mesoporous natural clays were used as an
environment-friendly, efficient, easily available, and low-cost material for the adsorption of
cationic MG dye from an aqueous environment. The chemical composition, mineralogical
composition, and texture of NICs were determined by using XRF, XRD, FESEM, FTIR,
BET, and TGA analysis. It was observed that PB clay has a quite rough surface with blunt
edges and higher surface area as compared to the BT clay and RM clay. The experimental
results indicated that adsorption removal of MG was highly dependent on the adsorption
contact time, aqueous pH, NICs dose, and MG concentration. The adsorption capacities
of MG onto NICs increased with the increase in the adsorption contact time, pH, and MG
concentration, while it decreased with the increase in NICs dose. Furthermore, the kinetics
data fitted the pseudo-first-order model well. The isotherm data illustrated the suitability
of employing the Langmuir isotherm model. The adsorption capacity of PB clay (223 mg/g)
was found higher than the BT clay (149 mg/g) and RM clay (125 mg/g). The adsorption
of MG dye was more correlated to the BET surface area and available binding sites of the
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adsorbent material. Conclusively, naturally occurring mesoporous clays can be efficiently
applied for the removal of cationic dyes from contaminated environs.
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33. Alkan, M.; Doğan, M.; Turhan, Y.; Demirbaş, Ö.; Turan, P. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite
from aqueous solutions. Chem. Eng. J. 2008, 139, 213–223. [CrossRef]

34. Chakraborty, S.; Chowdhury, S.; Saha, P.D. Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: Central
composite design for optimization of process variables. J. Water Reuse Desalin. 2012, 2, 55–65. [CrossRef]

35. Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. Adsorption of hazardous dye crystal violet from wastewater by waste
materials. J. Colloid Interface Sci. 2010, 343, 463–473. [CrossRef] [PubMed]

36. Chen, H.; Zhao, J.; Zhong, A.; Jin, Y. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene
blue. Chem. Eng. J. 2011, 174, 143–150. [CrossRef]

37. De Queiroga, L.N.F.; Franca, D.B.; Rodrigues, F.; Santos, I.M.; Fonseca, M.G.; Jaber, M. Functionalized bentonites for dye
adsorption: Depollution and production of new pigments. J. Environ. Chem. Eng. 2019, 7, 103333. [CrossRef]

38. Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by
clay materials. Chem. Eng. J. 2009, 148, 354–364. [CrossRef]

39. Olusegun, S.J.; Lima, L.F.d.; Mohallem, N.D.S. Enhancement of adsorption capacity of clay through spray drying and surface
modification process for wastewater treatment. Chem. Eng. J. 2018, 334, 1719–1728. [CrossRef]

40. Munir, M.; Nazar, M.F.; Zafar, M.N.; Zubair, M.; Ashfaq, M.; Hosseini-Bandegharaei, A.; Khan, S.U.-D.; Ahmad, A. Effective
Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS
Omega 2020, 5, 16711–16721. [CrossRef]

41. Brito, D.F.; Filho, E.C.d.; Fonseca, M.G.; Jaber, M. Organophilic bentonites obtained by microwave heating as adsorbents for
anionic dyes. J. Environ. Chem. Eng. 2018, 6, 7080–7090. [CrossRef]

42. Javed, S.H.; Zahir, A.; Khan, A.; Afzal, S.; Mansha, M. Adsorption of Mordant Red 73 dye on acid activated bentonite: Kinetics
and thermodynamic study. J. Mol. Liq. 2018, 254, 398–405. [CrossRef]

43. Elmoubarki, R.; Mahjoubi, F.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; el Albani, A.; Barka, N. Adsorption of
textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resour. Ind. 2015, 9, 16–29.
[CrossRef]

44. Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite
rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [CrossRef]

45. Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.; Markopoulos, C. Titanium leaching from red mud by diluted sulfuric acid
at atmospheric pressure. J. Hazard. Mater. 2008, 157, 579–586. [CrossRef] [PubMed]

46. Makhoukhi, B.; Djab, M.; Didi, M.A. Adsorption of Telon dyes onto bis-imidazolium modified bentonite in aqueous solutions. J.
Environ. Chem. Eng. 2015, 3, 1384–1392. [CrossRef]

47. Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [CrossRef]

http://doi.org/10.1002/clen.200900234
http://doi.org/10.1016/j.aquatox.2003.09.008
http://www.ncbi.nlm.nih.gov/pubmed/15129773
http://doi.org/10.1016/j.cej.2010.08.050
http://doi.org/10.1016/j.jhazmat.2010.05.008
http://www.ncbi.nlm.nih.gov/pubmed/20537793
http://doi.org/10.1016/j.jcis.2019.03.073
http://doi.org/10.1016/j.jcis.2018.10.102
http://doi.org/10.1039/C8TA00671G
http://doi.org/10.1002/aenm.201701503
http://doi.org/10.1016/j.jhazmat.2009.10.058
http://www.ncbi.nlm.nih.gov/pubmed/19944532
http://doi.org/10.1016/j.jhazmat.2014.10.031
http://doi.org/10.1016/j.apcatb.2014.10.010
http://doi.org/10.1039/C5RA19925E
http://doi.org/10.1016/j.jece.2017.11.003
http://doi.org/10.1016/j.jece.2019.103107
http://doi.org/10.1016/j.cej.2007.07.080
http://doi.org/10.2166/wrd.2012.008
http://doi.org/10.1016/j.jcis.2009.11.060
http://www.ncbi.nlm.nih.gov/pubmed/20045526
http://doi.org/10.1016/j.cej.2011.08.062
http://doi.org/10.1016/j.jece.2019.103333
http://doi.org/10.1016/j.cej.2008.09.009
http://doi.org/10.1016/j.cej.2017.11.084
http://doi.org/10.1021/acsomega.0c01613
http://doi.org/10.1016/j.jece.2018.11.006
http://doi.org/10.1016/j.molliq.2018.01.100
http://doi.org/10.1016/j.wri.2014.11.001
http://doi.org/10.1016/j.molstruc.2018.11.039
http://doi.org/10.1016/j.jhazmat.2008.01.054
http://www.ncbi.nlm.nih.gov/pubmed/18295399
http://doi.org/10.1016/j.jece.2014.12.012
http://doi.org/10.1016/S0924-2031(02)00065-6


Water 2021, 13, 965 15 of 15

48. Toor, M.; Jin, B.; Dai, S.; Vimonses, V. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in
wastewater. J. Ind. Eng. Chem. 2015, 21, 653–661. [CrossRef]

49. Jawad, A.H.; Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption
kinetic, isotherm and mechanism study. Surf. Interfaces 2020, 18, 100422. [CrossRef]

50. Hassanien, M.M.; Abou-El-Sherbini, K.S.; Al-Muaikel, N.S. Immobilization of methylene blue onto bentonite and its application
in the extraction of mercury (II). J. Hazard. Mater. 2010, 178, 94–100. [CrossRef]

51. Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Tamjidi, S. The role of bentonite clay and bentonite clay@ MnFe2O4 composite and their
physico-chemical properties on the removal of Cr (III) and Cr (VI) from aqueous media. Environ. Sci. Pollut. Res. 2020, 27, 1–14.
[CrossRef]

52. el Ouardi, M.; Laabd, M.; Oualid, H.A.; Brahmi, Y.; Abaamrane, A.; Elouahli, A.; Addi, A.A.; Laknifli, A. Efficient removal
of p-nitrophenol from water using montmorillonite clay: Insights into the adsorption mechanism, process optimization, and
regeneration. Environ. Sci. Pollut. Res. 2019, 26, 19615–19631. [CrossRef] [PubMed]

53. Marrakchi, F.; Khanday, W.; Asif, M.; Hameed, B. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue
and reactive orange 16. Int. J. Biol. Macromol. 2016, 93, 1231–1239. [CrossRef]

54. Bentahar, S.; Dbik, A.; el Khomri, M.; el Messaoudi, N.; Lacherai, A. Removal of a cationic dye from aqueous solution by natural
clay. Groundw. Sustain. Dev. 2018, 6, 255–262. [CrossRef]

55. Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption Kinetics of Malachite green and Methylene blue from
aqueous solutions using surfactant-modified Organoclays. Acta Chim. Slov. 2017, 64, 449–460. [CrossRef] [PubMed]
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