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Abstract: A new high-performance numerical model (Frehg) is developed to simulate water flow in
shallow coastal wetlands. Frehg solves the 2D depth-integrated, hydrostatic, Navier–Stokes equations
(i.e., shallow-water equations) in the surface domain and the 3D variably-saturated Richards equation
in the subsurface domain. The two domains are asynchronously coupled to model surface-subsurface
exchange. The Frehg model is applied to evaluate model sensitivity to a variety of simplifications
that are commonly adopted for shallow wetland models, especially the use of the diffusive wave
approximation in place of the traditional Saint-Venant equations for surface flow. The results suggest
that a dynamic model for momentum is preferred over diffusive wave model for shallow coastal
wetlands and marshes because the latter fails to capture flow unsteadiness. Under the combined
effects of evaporation and wetting/drying, using diffusive wave model leads to discrepancies in
modeled surface-subsurface exchange flux in the intertidal zone where strong exchange processes
occur. It indicates shallow wetland models should be built with (i) dynamic surface flow equations
that capture the timing of inundation, (ii) complex topographic features that render accurate spatial
extent of inundation, and (iii) variably-saturated subsurface flow solver that is capable of modeling
moisture change in the subsurface due to evaporation and infiltration.

Keywords: coupled surface-subsurface model; shallow coastal wetland; wetting/drying; diffusive
wave approximation; evaporation

1. Introduction

Numerical modeling simplifications in hydrology, hydraulics and coastal engineering
typically depend on (i) spatial/temporal scales of interest, (ii) relative importance of various
hydrological processes, and (iii) data availability. For example, estuary and wetland models
often consider only surface flow, thereby neglecting dynamics of surface-subsurface ex-
change (e.g., [1–3]). Coastal aquifer models are often built in the two-dimensional (2D) verti-
cal (x-z) plane, neglecting the influence of complex topography in the x-y plane (e.g., [4–7]).
Coupled surface-subsurface models in three dimensions (3D) often apply the diffusive
wave approximation (DW) to surface flow instead of the shallow water equations (SWE)
to reduce computational costs (e.g., [8,9]). The focus of the present work is to develop
our understanding on the effects of using the DW approximation and other relevant
simplifications for coupled surface-subsurface flow modeling in a coastal marsh.

Model simplifications with regard to surface and groundwater coupling are known
to affect the accuracy of salinity predictions for coastal systems. For example, Li and
Hodges [10] simulate surface water salinity transport in the Nueces Delta (TX, USA) with a
hydrodynamic model that neglects groundwater coupling. The salinity is underestimated
in shallow marsh regions, which is at least partially attributable to ignorance of porewater
fluxes and the surface-subsurface exchange. Langevin et al. [11] report increased model-
data agreement when surface-subsurface exchange is included in a model of the Everglades.
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Yu et al. [8] find that 3D topographical features, especially surface depressions, can affect
groundwater salinization after ocean surge events. The challenge for coupled surface-
groundwater models is their additional computational complexity, which has led a number
of researchers to experiment with the DW approximation for surface water flow as a way
to reduce overall computational costs.

In the present study, the Fine Resolution Environmental Hydrodynamic and Ground-
water (Frehg) model is developed to simulate the overland flow, surface-subsurface ex-
change and the transport processes in shallow coastal wetlands. In the surface domain,
Frehg solves the 2D, hydrostatic, depth-integrated Navier–Stokes equations (i.e., the SWE).
For comparison purposes the DW option implemented in Frehg turns off the unsteady and
advective inertia terms. In the subsurface domain, Frehg solves the 3D variably-saturated
Richards equation with a predictor-corrector method, which is more robust than the com-
monly used Newton’s method [12]. The Frehg model is validated against benchmark
problems from the literature. More complex exercises with the model include a synthetic
sloping plane and real-world topography of the Trinity River Delta (Texas, USA). The latter
exercises are used to investigate the sensitivity of model results to a variety of simplifi-
cation techniques from the literature. The overall goals are to (i) provide insight into the
simplifications used on different types of simulation problems, (ii) identify their effects on
the simulation results, and (iii) provide validation of an open-source numerical code that
can be used for hydrological research.

Although this work is motivated by the need to accurately capture salinity fluxes
between surface and subsurface in coastal zones, herein we limit our focus to volume fluxes
(i.e., neglecting forcing due to salinity-driven density gradients). This approach allows us
to focus on the momentum consequences of the DW approximation alone. We argue that
inadequacy of the DW approximation for homogenous density (as demonstrated herein)
cannot be recovered by adding density-driven flow.

The remainder of this manuscript is arranged as follows: Section 2 provides insight
into the meaning of the DW approximation. Section 3 describes the governing equations
and numerical techniques used in the Frehg model. Section 4 introduces the test problems
and the results. Section 5 discusses and summarizes the implications of the test results to
wetland simulation with the coupled surface-subsurface models.

2. Background

To reduce computational complexity, the DW approximation neglects the inertia terms
in conservation of momentum, which is reasonable for flow varying over large spatial
and long time scales [13,14]. However, topography of coastal marshes has variability over
a wide range of spatial scales [15], which makes it difficult to prove that large scales are
dominant. Similarly, tidal frequencies or time scales for rapidly-moving weather fronts
might not be “long enough” for valid DW scaling of system forcing. Interestingly, although
the DW equations are clearly simpler than the SWE and less computationally complex,
it is not necessarily true that they are always more computationally efficient. Cea and
Blade [16] noted that the DW method could be slow at fine grid resolution because of more
restrictive stability criteria. Similar findings are reported in Neal et al. [17].

The DW approximation is commonly used in modeling catchment rainfall runoff,
and was recently compared to the SWE in Caviedes-Voullieme et al. [18]. Although the
two methods produced similar hydrographs, the SWE provided more accurate depth
and velocity predictions. Their results help illustrate the differences between the DW
approximation used in catchment runoff versus a coastal marsh. For the former, the
difference between the spatial gradient of the water surface and the landscape is a secondary
portion of the flow forcing, which is unidirectional and primarily driven by the landscape
slope. In contrast, the spatial gradients of the water surface (without signficant landscape
slope) are the primary flow forcing in a coastal marsh driven by winds and tide.

The surface-water DW approximation in surface-subsurface coupled modeling is
typically used when the focus is on the subsurface domain, which has longer residence
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times and its behavior over time scales of years or decades is of interest (e.g., [9,19]). Indeed,
under such conditions an even simpler approach than DW has been used: representing
the surface domain as a spatially-uniform tidal elevation (e.g., [6]). However, evidence
shows that daily tidal spatial and temporal variation has influence on the timing and
magnitudes of surface-subsurface exchange [4,20,21]. In particular, spatio-temporal surface
water gradients across a marsh lead to oscillatory wetting and drying of the landscape,
which affects both the area over which subsurface exchanges occur and the driving pressure
gradients. Although the spatio-temporal inundation in a marsh is primarily driven by
wind and tide, evaporation and rainfall events also play a role and add more complexity
to the processes. For example, Geng and Boufadel [22] find that when evaporation exists,
the groundwater salinity near the surface of the intertidal zone varies at tidal time scales.
Their results imply that the combined effect of evaporation and frequent wetting/drying
leads to stronger infiltration/exfiltration in pore waters. A further challenge is that surface-
subsurface exchange is inherently 3D. Xin et al. [6] find that fluctuation of tidal creeks
affect marsh salt budget at different time scales depending on the distance to the creeks.
As such, simpler 2D simulations of vertical cross-sections cannot capture the flow and
transport processes.

Validity of the DW approximation can be examined by scaling of conservation of
momentum, presented previously by Ponce et al. [14] and Hunter et al. [13]. The focus in
Hunter et al. [13] is the nonlinear advection terms, which they argue should be conditional
on a Froude number (Fr) and a shallow-water Reynolds number (Rs):

Fr =
U√
gH

< 1, Rs =
H

4
3

gn2L
< 1 (1)

where U is a representative flow velocity, H is a representative depth and L is a characteristic
length scale. Here Rs is the ratio between advective inertia and bottom friction and is
presented above as the inverse of that proposed in Hunter et al. [13].

In contrast, Ponce et al. [14] focused on the validity of neglecting the unsteady term
in momentum. Their approach used a ratio of dimensionless wave period to steady flow
Froude number, with a final recommendation that could be written as

Rt =
30L

T
√

gH
< 1 (2)

where T is the wave period of surface disturbance, the value 30 is an empirical limiter on
wave celerity error, and other terms are as denoted above.

An interesting observation is that Equation (1) requires small H/L whereas Equation (2)
favors large H/L, which limits the range over which we can neglect both unsteady mo-
mentum and nonlinear advection. Furthermore, the water depth in a coastal marsh could
vary by orders of magnitudes, ranging from <10−2 m at the wetting/drying front to ∼10 m
at the tidal inlet. The spatial scales of topographical features also exhibit a wide range of
variation [15]. Different types of upstream and downstream boundary conditions intro-
duce additional factors that affect the applicability of the DW approximation [23]. As a
consequence, validity of the DW approximation in real marsh-scale simulations cannot be
determined simply from Equations (1) and (2).

The studies noted above highlight the complex interactions among topography, tide,
wetting/drying, evaporation, variably-saturated subsurface flow, and surface-subsurface
exchange. To the authors’ knowledge, numerical studies comparing these processes have
not been presented in the literature. In particular, unsaturated subsurface flow is often
modeled in 2D with simplified surface flow equations (e.g., [19,22]) while 3D surface-
subsurface models often assume fully saturated groundwater flow (e.g., [11,24,25]). The
reason might be the extensive computational cost and simulating challenges incurred by
solving the variably-saturated Richards Equation [26].
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For the present work, we seeks to understand the consequences of using the DW ap-
proximation in coupled surface-subsurface simulations. Rather than using simple scaling
arguments, the validity of the DW approximation is examined by numerically calculating
and comparing each term in the momentum equations [27]. This approach allows exam-
ination of force balancing at different times and different locations in the marsh. Model
sensitivity to the inclusion/exclusion of evaporation and wind is also investigated. It will
be shown that discrepancies of using DW model could be exacerbated when evaporation
and wind forces are considered.

3. Methods

The Frehg model (described herein) is a descendant of the Fine Resolution Environ-
mental Hydrodynamic model (Frehd) used in Li and Hodges [10], Hodges [28], Hutschen-
reuter et al. [29]. The Frehd model solves the full nonhydrostatic 3D Navier–Stokes equa-
tions with options for model simplifications to the 3D SWE and 2D depth-averaged SWE. In
the present study, a 3D variably-saturated groundwater flow model is coded and coupled
with the 2D hydrostatic, depth-integrated approach of Frehd to form the Frehg model.
Transport of passive scalars is provided by an optional module within Frehg, but is not
used or described herein.

3.1. Surface Flow Module

For the default operation of Frehg, surface flow is modeled with the 2D depth-
integrated SWE for continuity:

∂η

∂t
+

∂huj

∂xj
= 0 (3)

and momentum:

∂uj

∂t
+ uk

∂uj

∂xk
= −|~g| ∂η

∂xj
+

∂

∂xk

(
ν

∂uj

∂xk

)
−
|~g|n2uj|~u|

2h4/3 +
τj

ρh
(4)

where j, k ∈ {1, 2}, u is velocity, η is surface elevation, h is depth, ν is eddy viscosity, τ
is wind stress, ρ is water density, ~g = [0, 0, g]T represents gravity and n is the Manning’s
roughness coefficient. Note that the Einstein summation convention is reduced to implied
sums over {1, 2} for repeating subscripts. From left to right, Equation (4) consists of the
unsteady term, the nonlinear advection term, the hydrostatic pressure term, the horizontal
turbulent diffusion term, the bottom friction term and the wind term. It has been shown
that horizontal turbulent momentum diffusion is relatively insignificant (compared to
bottom friction) for shallow marsh models [10,30] and will be neglected herein, but is
retained above for completeness and because it is an optional term in the Frehg code.

The wind stress vector, ~τ, is estimated as:

~τ = Cwρa(uw − |~u| cos β)2[cos ω, sin ω]T (5)

where, Cw is the wind stress coefficient, ρa is air density, uw is wind speed, ~u is the water
velocity vector in the model x-y coordinate system, β is the angle between wind direction
and water flow direction, ω is the angle between wind direction and the “north” of the
model’s grid system. From Equation (4), the wind term becomes dominant when depth
h is small, which could cause numerical instability. In Frehg, this issue is handled by
applying an exponential decay function to wind stress as h approaches zero [10]. This
approach prevents model instability when a strong wind stress is applied over shallow
depths. Note that wind-driven surface flow is commonly modeled in shallow coastal
marshes (e.g., [31,32]), but wind effects are excluded in the DW approximation.

In Frehd and Frehg, Equations (3) and (4) are solved with a semi-implicit, hybrid finite
difference/finite volume method that is similar to Casulli [33], Casulli and Cattani [34].
In short, Equation (4) is discretized such that time-stepping of velocity uj is a function of
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all other variables and parameters, with |~u| handled explicitly and η in an implicit form.
The uj time-marching relationships are substituted into Equation (3), which creates a linear
implicit system for the surface elevation η. The system is solved to obtain η at the new time
level and back-substituted into the discrete equations for time-marching uj to update the
velocities. The surface flow solution in Frehg uses an Arakawa C grid, with solution of u1
on the x face, u2 on the y face, and η at cell centers. A detailed description of the numerical
schemes can be found in Li and Hodges [10] and citations therein.

3.2. Diffusive Wave Approximation

The diffusive wave approximation to the 2D SWE is made by neglecting the inertia
terms (unsteady and nonlinear advection) and the wind term in Equation (4). Here we also
neglect the insignificant momentum diffusion term so that DW momentum is a balance
relationship between the driving water surface gradient and the bottom friction:

∂η

∂xj
= −

n2uj|~u|
2h4/3 (6)

which implies that spatio-temporal gradients in u are instantaneously compensated by the
free-surface gradients affecting continuity, Equation (3).

To implement the DW approximation within the semi-implicit time-marching schema
of Frehg is straightforward. The uj in Equation (3) is replaced with

uj = −
(

2h4/3

n2|~u|

)
∂η

∂xj
(7)

where η is treated implicitly and the parenthetical factor is treated explicitly in the semi-
implicit time-marching algorithm. The time-linearization implied by treating h as lagged
coefficient (hence removing an implicit nonlinearity with η) is consistent with the original
SWE semi-implicit scheme of Casulli and Cattani [34] that neglects a similar 2nd-order
unsteady nonlinear coupling [35].

For completeness, it is useful to present another simplification used in the literature:
the Kinematic Wave (KW) approximation. The KW adds to the approximations used in
DW by assuming the surface water depth gradient, ∂h/∂x is negligible. By definition,

∂η

∂x
≡ ∂h

∂x
− S0 (8)

where S0 is the bottom slope. So the KW approximation reduces momentum to a simple
relationship between velocity, depth, roughness and bottom slope:

n2uj|~u|
2h4/3 = S0 (9)

Herein, results from prior KW studies in the literature are used in Section 4.2 as part of
model validation.

3.3. Subsurface Flow Module

In Frehg, variably-saturated groundwater flow is modeled with the 3D Richards
equation, which can be written in either the pressure head form:(

Ssθ

φ
+ Sc(ψ)

)
∂ψ

∂t
=

∂qj

∂xj
(10)

or in the mixed form:

Ssθ

φ

∂ψ

∂t
+

∂θ

∂t
=

∂qj

∂xj
(11)
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where j ∈ {1, 2, 3}, ψ is pressure head, θ is water content, φ is porosity, Ss is specific storage,
Sc = ∂ψ/∂θ is specific capacity and qj is the flux between grid cells. Note that qj can be
modeled using Darcy’s law:

qj = K(ψ)

(
∂ψ

∂xj
− gj

)
(12)

where K(ψ) is the hydraulic conductivity and gj is the vector gravity.
Frehg uses the Mualem–van Genuchten model [36,37] to represent the nonlinear

relationship between K and ψ, θ and ψ:

θ = θr + (θs − θr)Sa (13)

K = KsS
1
2
a

[
1−

(
1− S

1
m
a

)m]2

(14)

where Sa =
(
1 + |αψ|n̂

)−m is soil water saturation, m = 1 − 1/n̂, α and n̂ are soil
parameters, θs and θr are saturated and residual water contents, Ks is the saturated
hydraulic conductivity.

The solution of discrete versions of Equations (10)–(12) uses the predictor-corrector-
allocation (PCA) scheme developed in Li et al. [12]. In short, the predictor step dis-
cretizes Equation (10) with a linearized implicit scheme (i.e., ψ is treated implicitly but θ, K
and Sc are all explicit), which results a solution for ψ that is non-conservative in unsaturated
zones due to linearization errors. In the corrector step, ψ obtained from Equation (10) is
substituted into Equation (11) to explicitly update water content, θ. Finally, the solution of
the predictor step is used in the saturated zone and the solution of the corrector step is used
in the unsaturated zone. Excess moisture at the saturated-unsaturated interface (due to mis-
match between the predictor and the corrector solutions) is redistributed to adjacent grid
cells to achieve strict mass conservation. The PCA method is based on predictor-corrector
methods of Kirkland et al. [38], Lai and Ogden [39]. The new method is conservative and
has proven more robust than commonly-used Picard or Newton type iterative schemes.

Although Li et al. [12] only introduce a 1D PCA scheme, it is easily extended into 3
dimensions because computation of the Darcy fluxes Equation (12) is independent in each
direction. The 3D moisture allocation is performed by distributing excess water based on
the pressure gradient in each direction, which is similar to the 1D split distribution method
described in Li et al. [12].

3.4. Surface-Subsurface Coupling

In Frehg, both surface and subsurface domains use rectangular grids of same sizes (i.e.,
uniform ∆x and ∆y throughout the two domains, but ∆x might not equal ∆y). The surface
and subsurface domains are coupled asynchronously, meaning that flow in each domain is
solved independently with surface-subsurface exchange acting as boundary conditions.
This coupling approach maximizes the flexibility of the Frehg model, and allows it to be
reconfigured to model either surface or subsurface flow alone.

For coupled flow, the solution procedure of one complete time step is illustrated
in Figure 1. The superscripts “n”, “n + 1” and “*” represent time level. The surface
flow equations are solved first (with evaporation/rainfall included) to obtain a temporary
solution of surface depth, h∗. The depth (if non-zero) is used as a Dirichlet pressure
head boundary condition of Equation (10) for the subsurface domain. The exchange flux
(positive upward) at the interface of the two domains is modeled as:

qexchange = Ksz

(
ψtop − h∗

0.5∆ ztop
− g
)

(15)
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where Ksz is the saturated hydraulic conductivity in the vertical direction, ψtop is the
pressure head of the topmost grid cell of the subsurface domain, and ∆ztop is the vertical
grid resolution of that cell.

For the surface domain, Frehg uses a simple depth-increment coupling, where the
exchange flux is converted into an equivalent exchange depth and is added to the free
surface elevation:

hexchange = qexchange∆tφAz (16)

where ∆t is the size of the time step, Az is the area of the surface grid cell. We use area
instead of the product of the grid side lengths (e.g., ∆x∆y) because Frehg has the capability
of modeling subgrid-scale topographic effects [40], in which Az 6= ∆x∆y. An alternative ap-
proach (used in the original Frehd for externally-specified high inflows) uses the exchange
flux directly as a boundary condition on the η linear solver of the semi-implicit method.
For Frehg the simpler depth-increment approach is preferred as it is consistent with the ap-
proach to rainfall and evaporation (Section 3.5) and has proven stable in all our tested simu-
lations. With the exchange depth added, the final surface elevation (ηn+1 = η∗ + hexchange)
and depth (hn+1 = h∗ + hexchange) are substituted into Equation (4) or (6) to get the surface
velocities and complete the current time step.

Figure 1. Model coupling between the surface and the subsurface domains from time level n to n + 1.
The red boxes represent the surface domain. The blue box is the subsurface domain. Variables with
superscript “*” are intermediate solutions between time n and n + 1. Only a single loop is conducted,
e.g., hn → h∗ → qn+1 → hn+1.

3.5. Rainfall and Evaporation

In Frehg, rainfall is added to the surface domain by directly increasing the free surface
elevation. If the surface cell is dry, rainfall first leads to surface ponding, then enters the
subsurface domain according to Equation (15). Similarly, evaporation from the wet surface
domain is modeled by directly reducing surface elevation based on the evaporation flux, qe.
For wet surface cells, qe is often computed as functions of net radiation and wind speed [41].
Since time-varying radiation and wind data are not used in the present study, the qe for wet
surface is simply set as a constant. Detailed discussion on surface evaporation models is
beyond the scope of this manuscript. Evaporation from the subsurface domain (i.e., direct
losses from a dry cell) is estimated with the bulk aerodynamic model [42]:
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qe =
ρa[α1qsat − qa]

ρRa
(17)

where ρa is air density, qsat is the saturated specific humidity, which is a function of soil
surface temperature, α1 = min

(
1, 1.8θ

θ+0.3

)
, qa is the air specific humidity, Ra represents the

aerodynamic resistance, which is a function of wind velocity. Note that the expressions
of α1 and Ra described in Geng and Boufadel [42] are based on measurements at specific
field sites reported in Barton [43] and Liu et al. [44], respectively. Since no measured soil
properties, meteorological and thermodynamic conditions are available in the present tests,
we estimate α1, qsat and Ra following the data-fitted equations in Geng and Boufadel [42].
The meteorological and thermodynamic conditions are assumed constant. The only variable
in Equation (17) that affects the dry-surface evaporation rate in our test simulations is θ,
the soil water content. A similar approach was used in Xin et al. [6]. Figure 2 shows the
evaporation flux used in the present study with a surface temperature of 20 deg. C and
a wind speed of 2 m/s. A low-saturation cutoff is applied in Frehg that enforces zero
evaporation when water content reaches the pre-defined residual water content, θr, of the
Mualem-van Genuchten model, Equation (13).

0.1 0.2 0.3 0.4
Water content

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
va

po
ra

tio
n 

flu
x 

[m
/s

]

×10
−7

Figure 2. Evaporation rate (qe) as a function of water content with cutoff at residual content θr = 0.08.

3.6. Thin-Layer Treatment

In surface-water modeling of shallow marshes with wetting/drying, a minimum
allowable depth (hmin) is typically set to avoid numerical instabilities. Such problems can
occur when the hydrostatic pressure gradient (∂η/∂x) applied to an infinitesimal layer
causes unphysically high velocities [10]. The use of a simple cutoff hmin presents few
difficulties when modeling wind and tidally-driven systems as the associated mass loss
is typically smaller than the convergence residual of the linear solver for η. However,
coupling with the subsurface and rainfall can be problematic for simple cutoff algorithms.
For example, if hmin = 10−5 m (as used herein) with a model time step of ∆t = 60 s, then
a rainfall rate below 0.6 mm/h can never develop any ponding depth, no matter what
the rainfall duration. This issue is particularly important when daily cumulative rainfall
data are simply spread evenly over a model day—e.g., with the above example values
a significant rainfall rate of 1.4 cm/day would simply be lost. A similar effect can occur
when seepage from subsurface to surface is at low flux rates.

To address such issues, Frehg introduces “ponding storage” that tracks surface water
volume in nominally dry cells. These are cells that considered dry in the surface water
transport solution until the cumulative ponded volume exceeds hmin. Because the exfiltra-
tion depths of less than 10−5 m have limited importance, for simplicity the small ponding
storage is ignored in the subsurface solution.
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A further mass conservation problem for surface-subsurface exchange occurs when
the predicted qexchange is negative (infiltrating) and the volume qexchange∆t is greater than
the available volume (V) in the surface water. In such a case, Frehg sets qe = −V∆t−1 and
reclassifies the cell as dry.

3.7. Comparing SWE and DW Models

Similar to Arico and Nasello [27], a set of three numerical dimensionless numbers are
defined to evaluate the proximity between the SWE and DW models. These dimensionless
numbers allow us to track the spatial-temporal variation of the relative importance for each
term in the momentum equation. Consider a simple 1D flow and introduce the standard
discrete notational convention that subscripts represent the location in the 1D grid space
with i and i + 1 as cell centers and i + 1/2 as cell faces. Discrete numerical dimensionless
numbers can be defined on the cell faces (where velocity is computed) as:

F̂rn
i+ 1

2
=

∣∣∣∣∣∣
un

i+ 1
2
(un

i+ 1
2
− un

up)

g
(

ηn
i+1 − ηn

i

)
∣∣∣∣∣∣ (18)

R̂tn
i+ 1

2
=

∣∣∣∣∣∣ ∆x
g∆t

(un
i+ 1

2
− un−1

i+ 1
2
)(

ηn
i+1 − ηn

i

)
∣∣∣∣∣∣ (19)

R̂ f
n
i+ 1

2
=

∣∣∣∣∣∣∣
n2∆x(un

i+ 1
2
)2

2(hn
i+ 1

2
)

4
3

(
ηn

i+1 − ηn
i

)
∣∣∣∣∣∣∣ (20)

where F̂r is the square of the discrete Froude number, which is the ratio between the
advective inertia and the hydrostatic pressure gradient, R̂t is the ratio between the unsteady
term and the hydrostatic pressure gradient, R̂ f is the ratio between the friction term and
the hydrostatic pressure. n as the superscript represents time level, which needs to be
distinguished from Manning’s n. Note that un

up represents the upwind face velocity (e.g.,
ui−1/2 for flow in the +x direction), consistent with the 1st-order upwind scheme in Frehg.
To examine the validity of the DW approximation, F̂r, R̂t and R̂ f are calculated using the
results simulated with the SWE. For DW to be an appropriate simplification, we expect
SWE results to provide R̂ f ∼ 1 with F̂r, R̂t � 1; i.e., friction approximately balances the
hydrostatic pressure gradient while the advective inertia and unsteady terms are negligible.

4. Tests and Results
4.1. Overview

Three test problems are used to validate Frehg and examine performance with both
DW and SWE algorithms. Validation of Frehg is in Section 4.2, which presents a test case
from the literature for rainfall on a sloping plane with uniform hydraulic conductivity.
The behavior of a simplified intertidal zone is examined in Section 4.3 to provide insight
into the difference between the DW and SWE approximations that can be readily quanti-
fied. Frehg is exercised over a coarse-resolution model of the Trinity River Delta (Texas,
USA) in Section 4.4 to examine the combined effects of evaporation, tide-/wind-induced
wetting/drying and surface-subsurface exchange in a large-scale simulation. For ease of
exposition, each of the following sections presents the model setup, results, and focused
discussion of the individual case. Discussion and synthesis across the test cases is provided
in Section 5.

4.2. Rainfall on a Sloping Plane

An idealized system with rainfall on a sloping plane has been used by Sulis et al. [45],
Maxwell et al. [46], Wu et al. [47], and provides validation of the surface-subsurface
coupling approach in Frehg. The system uses a simple sloping plane in the x direction
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with uniform properties in the transverse y direction, which can be modeled as a 2D x-z
vertical section. The setup of the model is provided in Tables 1 and 2. The physical system
is characterized by the plane length (L), slope (S0), and the model parameters discussed
in Section 3, above. The vertical and horizontal saturated hydraulic conductivities are
set to a uniform value (Ks) in each test, with three different values tested (Ks(1), Ks(2),
Ks(3)). The discretization uses uniform values for the horizontal grid (∆x), vertical grid
(∆z), and time step (∆t). The initial conditions are a uniform water table depth (di) and
zero water depth above the sloping plane. Boundary conditions include a rainfall rate
(qrain), rainfall duration (Train), recession duration (Trecession) and a fixed surface elevation
at the downstream boundary. Surface runoff at (x, z) = (400, 0) m is used for model-model
comparison, which is consistent with Sulis et al. [45], Maxwell et al. [46]. Note that to use
the Dirichlet downstream boundary condition for the free surface, the total plane length L is
doubled compared to that in Sulis et al. [45], but the subsurface domain beyond x = 400 m
is deactivated. The fixed free surface elevation at outlet is much lower than z = 0 m, which
guarantees the measured runoff at (x, z) = (400, 0) m is unaffected by the downstream
boundary conditions. The selection of the rainfall rate and the three Ks values implies that
Ks(1) will require the subsurface to saturate before runoff is generated, whereas Ks(2) and
Ks(3) will generate runoff while unsaturated.

Table 1. Common parameters for test of rainfall on a sloping plane.

Parameter Value Units

L 800 m
S0 0.0005 –
n 0.01986 m−1/3 s
φ 0.4 –
θr 0.08 –
α 1.0 m−1

n̂ 2.0 –
∆x 80 m
∆z 0.1 m
∆t 2.0 s

qrain 5.5× 10−6 m s−1

Train 200 min
Trecession 100 min

Table 2. Parameters varied for three test cases of rainfall on sloping plane.

Parameter (1) (2) (3) Units

Ks(i) 1.16× 10−4 1.16× 10−5 1.16× 10−6 m s−1

di(i) 0.5 1.0 1.0 m

Frehg is run separately with the DW and SWE algorithms for each of the Ks val-
ues in Table 2. The results are compared with those simulated by the CATHY and
ParFlow models [45], which use the kinematic wave (KW) approximation of the SWE
(see Section 3.2). The comparitive study by Maxwell et al. [46] reveals negligible difference
between KW and DW models for this test problem. For low slopes and low rainfall rates
inertial terms can be expected to be small, so the results from the SWE should be close
as well.

Figure 3 shows the surface runoff, at (x, z) = (400, 0) m of the sloping plane, which
corresponds to the downstream outlet in Sulis et al. [45]. Figure 3a corresponds to a sat-
urated hydraulic conductivity of 1.16× 10−4 m/s, which is higher than the rainfall rate.
Thus, the unsaturated subsurface domain will be filled first before runoff is generated.
In Figure 3b,c, the hydraulic conductivity is less than the rainfall rate, meaning that infiltra-
tion and runoff generation occur simultaneously. Since a deeper initial water table is used
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in Figure 3b,c, less runoff is generated despite their small conductivity. In all scenarios,
Frehg has good agreements with CATHY and ParFlow in terms of runoff. Compared with
solving the SWE, applying the DW approximation leads to slightly higher surface runoff,
but the difference between SWE and DW does not exceed the difference between CATHY
and ParFlow, indicating both SWE and DW are reasonable methods for this test problem.
For Figure 3a,b, the DW method produces the highest flow rate on the rising limb, which is
likely due to the asynchronous coupling scheme [46].
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Figure 3. Runoff at (x, z) = (400, 0) m for three test cases of rainfall on a sloping plane.

The depth and velocity at the (x, z) = (400, 0) m are shown in Figure 4. Similar
data are not reported in Sulis et al. [45], Maxwell et al. [46], but are recommended as
providing insight by more recent studies [18]. For all test scenarios, the DW approxima-
tion overestimates velocity while underestimating depth. A similar finding is reported
in Cea and Blade [16]. Since flow depth affects inundation area, which affects surface-
subsurface exchange, these results suggest the DW approximation could influence the
surface-subsurface exchange in the intertidal zone that experiences wetting/drying. This
idea is investigated in Sections 4.3 and 4.4.
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Figure 4. Depth and velocity at (x, z) = (400, 0) m for three test cases of rainfall on a sloping plane.

Figure 5 shows the numerical dimensionless numbers (Equations (18)–(20)) as func-
tions of time. It can be seen that R̂ f is close to 1 for all tested conductivity values. Further-
more, F̂r and R̂t are orders of magnitudes smaller than R̂ f . Because these non-dimensional
numbers represent the relative importance of terms in the momentum equations (see
Section 2), these results indicate that the pressure gradient and bottom friction are well-
balanced and the inertia terms are relatively unimportant for this rainfall-runoff case. Thus,
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the use of the DW approximation is justified and the similarity of the SWE and DW results
is expected for this test case.
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Figure 5. The numerical dimensionless numbers at (x, z) = (400, 0) m for three test cases of rainfall
on a sloping plane.

4.3. Inundation of an Intertidal Zone

Of particular interest in modeling a tidally-driven marshland is the behavior of the
surface-subsurface exchange with successive wetting and drying of a sloping landscape.
As an idealized test case, we examine SWE and DW behaviors in the test domain shown
in Figure 6, which has a uniform sloping face with a bed slope of 0.001. The subsurface
domain extends 3 m below the lowermost point of the sloping surface plane. This domain
is 2D and driven by sinusoidal oscillation of surface elevation, which represents idealized
tidal forcing with period Ttide and amplitude atide.

Figure 6. Model domain for the second test problem. Temporal variation of model outputs are
examined at 1/2 and 3/4 of the domain length, which represents intertidal zone and fully inundated
zone, respectively.

Model parameters for a baseline simulation are presented in Table 3. According
to Equation (1) and (2), the DW approximation favors large time scale (T) and bottom
friction (n). As previously discussed, due to strong variation of spatial scales in tidal-
driven marshes, Rs and Rt have limited practical use as criteria to assess the validity of the
DW approximation. However, the basic scaling relations in these equations should still
hold, i.e., the DW model should converge to the SWE model as T and n increase. Thus,
the following three test cases are examined (Table 4): (1) baseline with 24 h tidal period
(Ttide(1)) and Manning’s n of 0.03, (2) reduced tidal period, and (3) reduced Manning’s
n. The initial water table elevation is same as the initial tidal elevation, which is 0.1 m
above the zero-elevation plane in Figure 6. Note that the initial water table is set to a
constant elevation, in contrast to the constant depth below surface used in Section 4.2.



Water 2021, 13, 902 13 of 23

A model spin-up period (Tspin-up) is applied, during which the horizontal conductivity
is increased to 10× the baseline value of Table 3 to rapidly create reasonable head and
moisture fields in the subsurface domain. Data are collected and analyzed from the SWE
and DW simulations over the Ttest testing period at the 1/2 and 3/4 locations shown in
Figure 6. The first corresponds to the tide’s neutral level (the center of the intertidal zone),
and the second is the upper edge of the continuously inundated zone.

Table 3. Common parameters for modeling inundation of an intertidal zone. Parameter values for φ,
θr, α, and n̂ are those listed in Table 1.

Parameter Value Units

∆x 5 m
∆z 0.05 m
S0 0.001 –
∆t 2.0 s
Ks 10−6 m s−1

qe(surface water) 10−7 m s−1

Tspin-up 30 day
Ttest 3 day
atide 0.1 m

Table 4. Parameters varied for three test cases of modeling inundation of an intertidal zone.

Parameter (1) (2) (3) Units

n(i) 0.03 0.03 0.003 m−1/3 s
Ttide(i) 24 12 24 hour

Figure 7 shows evolution of the surface water over two days of simulation. In frames
(a), (b) and (c), the normalized inundation area is defined as the inundation area divided
by the maximum inundation area of the baseline SWE model. Figure 7a indicates the DW
inundation area is similar to the SWE model, but has a slight phase lag. In Figure 7b the
phase lag is increased when Ttide is halved, and in Figure 7c the phase lag is decreased
(and almost eliminated) when Manning’s n is reduced by an order of magnitude. In these
figures we can also see that increased phase lag is associated with a slight damping of the
inundation area. However, as illustrated in Figure 7d–f, the phase lag in different tests does
not significantly affect the depth evolution at the 1/2 and 3/4 sampling locations.

Surface profiles on the rising and falling tides are shown in Figure 8 to illustrate
how the phase lag affects the water distribution. These effects can be interpreted as the
DW introducing an artificial dissipation that scales directly with the bed roughness and
inversely with the time scale.

For insight into the behaviors illustrated above, the discrete dimensionless numbers
F̂r, R̂t and R̂ f of Equations (18)–(20) are plotted in Figure 9 for the SWE simulations. All
three cases clearly meet the DW requirement with F̂r � 1, which is similar to that proposed
by [13]. This result indicates advective inertia (the nonlinear term in SWE, neglected in
DW) is unimportant. However, if we focus on cases with larger n, i.e., Figure 9a–d, we
find conditions where the DW requirements of R̂ f ∼ 1 and R̂t � 1 are violated. In
particular, we see R̂t ∼ 1 during several episodes when R̂ f � 1, indicating that the
unsteady term dominates the friction term, hence the DW approximation is violated. Thus,
the discrepancies between DW and SWE in Figure 7a,b are largely explained by neglect of
the unsteady term that becomes episodically important.

The results with the lower value of Manning’s n, Figure 9e,f are intriguing. These
indicate the approximations of the DW method are never satisfied, i.e., R̂ f � 1 and R̂t ∼ 1,
which indicates that the SWE momentum reduces to a balance between pressure gradient
and unsteadiness throughout the simulation. Furthermore, yet, the phase lag and inunda-
tion area errors for this case in Figure 7c are substantially smaller than those in Figure 7a,b
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where the DW approximation is only violated episodically. The explanation for this be-
havior lies in the numerical discretization approach to using the DW approximation in an
unsteady solver. The DW approximation, Equation (6), is formally a steady-state relation-
ship between ∂η/∂x and friction (driven by u) that is used to close the unsteady equation
for mass conservation, Equation (3). Thus, although the unsteady term is not included in
momentum, unsteadiness will still exist in the coupled equation set. Furthermore, it can be
shown (see Appendix A) that a discrete balance of unsteady momentum and the pressure
gradient is equivalent to the DW approximation for small values of Manning’s n when u is
slowly varying relative to the time step. Note that the collapse of these equations under
limited discrete conditions should not be taken as a reason to use the DW approximation
for flows where R̂ f � 1 and R̂t ∼ 1. Such conditions (with F̂r � 1) should arguably be
modeled with a linearized unsteady momentum equation (e.g., a wave equation).
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Figure 7. Surface water results for inundation of an intertidal zone: (a–c) evolution of normalized
inundation area, (d–f) evolution of surface depth at 1/2 and 3/4 of the domain length, which
corresponds to the intertidal zone and the fully inundated zone from Figure 6.
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Figure 9. F̂r, R̂t and R̂ f for simulations of inundation of an intertidal zone as measured at the 1/2
location (left column) and 3/4 location (right column) noted in Figure 6. The black solid line is at 1
and the black dashed line is at 0.1.

Figure 10 shows the surface-subsurface exchange flux in the intertidal zone and
the fully inundated zone. In the intertidal zone, the exchange flux switches between
infiltration (negative) and exfiltration (positive) in accordance to the tidal cycle. During
falling tide, evaporation and topography-driven exfiltration leave the top layer of the
subsurface unsaturated. During rising tide, a strong infiltration flux is observed that fills
the unsaturated subsurface voids. In the fully inundated zone, the exchange flux is two
orders of magnitude smaller and is monotonically downward during the entire simulation
period. These results highlight the significant role of the intertidal zone in enhancing
surface-subsurface exchange. Neglect of tidal wetting/drying and the variably-saturated
subsurface flow is likely to significantly underestimate the exchange fluxes.

The value of the full SWE, as compared to the DW, can be seen in Figure 10a,c,e. The
surface water phase lag illustrated in Figure 7 reappears here as a change in the timing of
infiltration and exfiltration. The SWE model in Figure 10 predicts higher maximum infiltra-
tion fluxes and longer exfiltration period because of its fast response to the tidal boundary
condition. These results illustrate that model simplifications (i.e., using DW rather than
SWE) affect both timing and magnitude of surface-subsurface exchange, especially in the
intertidal zone.
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Figure 10. Surface-subsurface exchange flux for simulations of inundation of an intertidal zone as
measured at the 1/2 location (left column) and 3/4 location (right column) noted in Figure 6. Negative
flux represents infiltration. The output interval is 20 s. The black dotted line represents zero flux.

4.4. Surface-Subsurface Exchange in the Trinity River Delta

The third test problem uses terrain of a real coastal wetland—the Trinity River Delta
near Houston (Texas, USA). High-resolution lidar data was used to characterize the to-
pography at the Trinity Delta and build the Trinity Delta Hydrodynamic Model (TDHM)
reported in Li et al. [48]. The TDHM used the FrehdC code [40], which was a precursor
of the Frehg code presented herein. Numerical studies with TDHM highlighted the im-
portant roles of boundary conditions, subgrid-scale topography and groundwater flow
on surface hydrodynamics and salinity transport [48]. However, TDHM only models
fully saturated groundwater flow, which provides limited insights regarding the surface-
subsurface exchange process at the intertidal zone. The Frehg model enables simulation
of variably-saturated subsurface flow, which allows for a preliminary investigation of
surface-subsurface exchange on a realistic wetland topography. Unfortunately, obtaining
adequate field data for validation of both models remains an unresolved issue.

Figure 11 shows the bathymetry used in the present study at 150 m resolution, which
is upscaled from available 1 m resolution lidar data. The coarse resolution was selected to
minimize the computational costs while allowing simulation over complex topography.
Admittedly, this coarse resolution would be insufficient for validating the model or conduct-
ing detailed analyses of flow, but it should suffice for the purposes of evaluating differences
between the DW approximation and the SWE over a sufficiently complex system. Further
details on the topographic data and the Trinity River Delta are available in Li et al. [49]. All
of the elevations used herein are given relative to the NAVD88 elevation datum.

Model parameters for the Trinity River Delta simulations are presented in Table 5.
In the surface domain, the river boundary condition on the north side of the domain
is provided by a constant water level, ηriver. The southern boundary is open water in
Galveston Bay, to which we apply a time-varying tidal elevation as an open boundary
condition. The tidal data is extracted from the NOAA record for tide & current station
8770613 (Morgans Point, Barbours Cut, Texas) for year 2018, which is available at 6 min
intervals. The subsurface domain extends down to z = −3.0 m with a uniform vertical
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grid resolution. The bottom and side boundaries are all impermeable. The soil parameters
are same as those in Table 3. As in the simpler study in Section 4.3, above, during Tspin-up
the model is run with increased horizontal conductivity to rapidly build up reasonable
head and moisture profiles in the subsurface domain. Analyses (below) is based on Ttest
period that covers a 14-day spring-neap cycle with a 3-day buffer on either side.

Table 5. Parameters for modeling the Trinity River Delta. Parameter values for φ, θr, α, and n̂ are as
listed in Table 1. Parameter values for n, Ks and qe(surface water) are as listed in Table 3.

Parameter Value Units

∆x 150 m
∆y 150 m
∆z 0.25 m
∆t 10.0 s

Tspin-up 30 day
Ttest 20 day
ηriver 0.3 m
uw 2.0 m/s

A total of 4 test scenarios (Table 6) are established to examine sensitivity to model
simplifications and environmental processes. When evaporation is included, a constant
evaporation flux of 1× 10−7 m/s is applied to wet regions. Equation (17) is used for dry
regions. When wind stress is included, a constant wind speed of uw =2 m/s pointing
towards the north direction is enforced. Note that all tests in Table 6 are performed with
the same ∆t as listed in Table 5 for consistency, but a much larger value of ∆t can be used
when surface flow is modeled with SWE.

Table 6. List of the four test cases for the Trinity Delta test problem.

Name SWE SWE + Evap SWE + Evap + Wind DW + Evap

Surface flow solver SWE SWE SWE DW
Evaporation No Yes Yes Yes

Wind No No Yes No

Figure 12 shows the numerical dimensionless numbers at locations L1 and L2 defined
in Figure 11. L1 is located in a permanently-wet lagoon distant from the open boundary
with surface fluxes in both x and y directions. In contrast, L2 is located in the intertidal
zone close to the open boundary and has surface fluxes only in the x direction. It can be
seen that at L1, R̂t is around 1 in both directions, indicating unsteadiness is important at
this location, which is consistent with results for the simpler study of inundation in the
intertidal zone, in Section 4.3. Similarly, F̂r is typically less than 1. We see flow direction
becoming important with R̂ f , which is less than 1 in the x direction, but close to 1 in y
direction. At L2, R̂ f is close to 1, while R̂t and F̂r are mostly much less than 1. However, a
few higher values of R̂t are also observed. Detailed examination (not shown) reveals that
these high R̂t values at L2 occur during high tide.

Overall, the above observations imply that due to unsteadiness, the DW approxima-
tion is generally invalid in the Trinity Delta unless the depth is small. This result seems
contradictory to the simple scaling argument of Equation (2) that states increasing impor-
tance of unsteadiness at small depth. The reason might be the thin-layer drag model used
in Frehg [10], which increases bottom friction at small depth and stabilizes the flow field
(this drag model is deactivated in Section 4.2 for a consistent comparison to the benchmark
results). It should be noted that the coarse grids used in this test problem prevents investi-
gation on the effects of small-scale topographical features. At finer grid resolution with
more complex topographical features, advective inertia could become important, which
brings further question to the validity of the simplified DW equations [50].
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Figure 11. Model bathymetry used for the Trinity Delta test problem (at 150 m grid resolution).
L1 and L2 are the location where model outputs are extracted and analyzed. North direction is
pointing upward.
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Figure 12. Time-varying numerical dimensionless number at monitoring locations L1 and L2. To
keep the figure succinct, the output interval is set to 9 h.

Figure 13 shows the modeled depth, exchange flux and water content at L1 and L2.
Figure 13a indicates that, although L1 is relatively far from the tidal boundary, the depth
(hence water surface elevation) still oscillates at tidal frequency. The reason is that we use a
relatively coarse grid resolution (∆x = 150 m), which neglects small-scale water-blocking
structures and enhances surface connectivity [10]. At L1, the 3 scenarios with SWE produce
negligible differences, but the DW model overestimates amplitude of depth oscillations.
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Figure 13. Time-varying depth, surface-subsurface exchange flux (positive upward) and water
content of the topmost subsurface cell at monitoring locations L1 and L2.

Figure 13b shows that during spring tide, the intertidal zone experiences wetting/drying
transitions. During neap tide, the intertidal zone experiences continuous dry period. The
effect of evaporation in removing thin layers of water during falling tide is evident. With-
out evaporation, L2 never becomes completely dry during spring tide. Compared to
SWE+evap, additional inundation events are found on day 1 and day 3 when wind effect
is modeled. Additional inundation events are found on day 1, 3, 12, 17 and 20 when SWE
is replaced by DW.

These differences in modeled inundation patterns have influence on surface-subsurface
exchange. Figure 13c–f display the exchange flux and the water content of the top-most sub-
surface cell at L1 and L2. As long as evaporation is modeled, the peak infiltration flux at L2
is two orders of magnitudes larger than that at L1, which highlights the critical role of the in-
tertidal zone in promoting surface-subsurface exchange. By comparing Figure 13b,d,f, the
occurrence of these extreme infiltration fluxes is caused by evaporation and wetting/drying:
during low tide or neap tide, evaporation leads to reduced water content in the subsurface
domain (hence large negative pressure head). When the intertidal zone is flooded again,
since increased head gradient is formed and plenty of void space becomes available, large
infiltration flux is observed. Factors affecting the wetting/drying status of the intertidal
zone, such as wind and use of the DW approximation, alters timing and magnitude of
the exchange flux because they have influence on the evolution of the inundation area,
which affects subsurface water content (Figure 13f). These findings and mechanisms are
similar to those revealed in Figure 10, but they further illustrate the role of spring-neap
cycle in depleting the subsurface domain. In permanently-wet regions such as L1, the sub-
surface domain is unaffected by evaporation and is always fully saturated (Figure 13e), so
switching between SWE and DW has minimal influence on the exchange flux (Figure 13c).
Thus, the key point for simulating surface-subsurface exchange is to accurately capture
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the wetting/drying status in the intertidal zone. This relies on the use of the SWE (rather
than the DW), the inclusion of the variably-saturated subsurface flow and important envi-
ronmental processes such as wind and evaporation. Arguably, accurately predicting the
evolution of inundation area also depends on topography and grid resolution, which will
be investigated in future studies.

To quantitatively illustrate the importance of the intertidal zone, we can compare the
area of the intertidal zone (defined as the area that experiences wetting/drying transition
at least once during the simulation period) and the exchange flux through this zone to the
total area and total exchange flux. Our analysis indicates that for SWE+evap, the intertidal
zone is only 3.34% of the total wet area in the Trinity Delta but provides 11.2% of the
surface-subsurface exchange flux; hence the intertidal zone is of outsized importance in
the exchange.

5. Discussion and Conclusions

In the present study, a coupled surface-subsurface flow model (Frehg) is developed to
understand the effects of various model simplifications that are often adopted in shallow
marsh simulations. The surface flow module in Frehg has been previously tested in existing
shallow marsh studies. The subsurface flow module is implemented based on the predictor-
corrector-allocation scheme by Li et al. [12]. The coupled model is (i) validated using a
rainfall-runoff test problem in the literature, (ii) applied to simulate tidal-driven flow on a
synthetic sloping plane, and (iii) demonstrated on a coarse-grid simulation of real marsh
topography in Texas, USA.

Our study in Section 4.2 supports the prior literature that the DW approximation is
appropriate and falls within the expected non-dimensional scales for rainfall runoff on a
slope. Compared to the SWE, the DW approximation tends to underestimate flow depth
and overestimates velocity but the errors are typically within acceptable limits.

However, for intertidal flows on a slope in Section 4.3, we found the DW approxima-
tion is not supported by non-dimensional analyses of simulation results. Formally, the
unsteady term that is neglected in DW becomes important in the intertidal zone. The effect
of neglecting the unsteady term in the setup for a time-marching solution (as presented in
Section 3.2) is that the scheme develops increased dissipation, which shows up as phase
lags in tidal motions. Interestingly, by decreasing Manning’s n, which is in the denominator
for u in Equation (7), the effect of the dissipation might be tuned – allowing the “right
answer for the wrong reason.” Such an outcome might account for successful use of the
DW approximation in conditions where the strict scaling analyses might not hold.

The study of the Trinity River Delta in Section 4.4 indicates that unsteady tidal motions
across the wetting/drying intertidal zone have an outsized impact on surface-subsurface
exchange, with roughly 3% of the area contributing 11% of the exchange flux. Thus, models
that poorly represent the intertidal zone will have their error amplified in exchange flux
predictions. As our work shows that the DW approximation is not well-founded for
predicting the extent, timing and duration of inundation, it follows that the SWE should be
preferred in coupled surface-subsurface simulations of tidal marshes.

The present work is limited in that we have not tested effects caused by the neglect of
the advective inertia in the DW approximation. Within our test cases, advective inertia is
relatively unimportant with F̂r < 1 throughout. However, one can imagine that small-scale
topography (neglected in our coarse-grid model) could enhance non-linearity of the surface
flow and increase the importance of the advective term, even while F̂r remains small. This
topic deserves further investigation in the future.

Although the fully-inundated area of a marsh is typically the largest area, our work
shows that the smaller intertidal area plays an outsized role due to evaporation. The
exposure of the bare surface during low tide leads to decreased water content (i.e., increased
gradient of pressure head) in the subsurface domain, which promotes infiltration upon
flooding. It follows that the succession from neap to spring tides that change the inundation
patterns and extents will play a vital role. Thus, the key to model surface-subsurface
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exchange in shallow wetlands is to accurately capture the range and the inundation of the
intertidal zone. To achieve this, the model should be equipped with solvers for the full
dynamic surface flow equations (i.e., the SWE) and variably-saturated subsurface flow
equations. The critical environmental processes of evaporation and rainfall cannot be
neglected. Simplified simulations that adopt DW approximations or neglect processes
are unlikely to provide high-fidelity results, although they may be tuned to correctly
represent observations.

On a more speculative note, the perceived importance of the intertidal zone in simula-
tion of surface-subsurface exchanges may be closely tied to the model grid scale, which we
have not investigated herein. Topography of a marsh has fractal features, with increasing
complexity and extent of the wetting/drying front becoming visible at different scales. As
the grid scale is refined we expect to see greater variability across the wetting/drying front,
which will likely further increase its importance in the overall exchange budget. How-
ever, it remains to be seen as to what scale is necessary to accurately define the temporal
dynamics of the intertidal areas and understand their impact on the exchange fluxes.

The present study only reports preliminary development and application of the
Frehg model with a goal of understanding whether or not a DW approximation could
be substituted for the SWE for a simpler model. To that end, we have determined that
the SWE is necessary. The main limitations of the present study are rooted in the lack of
field data to provide more robust validation and insight. In the future, the model can be
improved by including high-resolution topography, density-driven salinity transport, and
time-varying meteorological inputs.
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Appendix A

Below is the derivation that shows the balance of unsteady momentum and pressure
gradient in SWE is equivalent to the DW approximation for small values of Manning’s n
when u is slowly varying relative to ∆t. If we neglect the advection and friction terms in
the SWE (Equation (4)), the velocity can be estimated from the pressure-unsteady balance
using simple 1D first-order discretization (ignore spatial index):

un+1 = un − g∆t
∂η

∂x
(A1)

Subtract Equation (7) from Equation (A1) , the difference in velocity (∆u) is:

∆un+1 = un +

(
2h4/3

n2|un| − g∆t

)
∂η

∂x
(A2)

As n→ 0, g∆t is relatively insignificant, Equation (A2) reduces to:

https://github.com/zLi90/frehg
https://github.com/zLi90/frehg
https://doi.org/10.18738/T8/CHBGJN
https://doi.org/10.18738/T8/CHBGJN


Water 2021, 13, 902 22 of 23

∆un+1 = un +
2h4/3

n2|un|
∂η

∂x
(A3)

If ∆t is small such that un+1 ≈ un, Equation (A3) is same as the DW equa-
tion (Equation (6)), which means ∆un+1 ≈ 0. The above derivation explains the proximity
between SWE and DW when Manning’s n is small and flow is unsteady (Figure 7c). This
conclusion, however, does not mean the DW approximation can be used for such occasions
because the DW model does not capture the correct flow physics and force balancing.

References
1. Inoue, M.; Park, D.; Justic, D.; Wiseman, W.J., Jr. A high-resolution integrated hydrology-hydrodynamic model of the Barataria

Basin system. Environ. Model. Softw. 2008, 23, 1122–1132. [CrossRef]
2. Matte, P.; Secretan, Y.; Morin, J. Hydrodynamic Modeling of the St. Lawrence Fluvial Estuary. I: Model Setup, Calibration, and

Validation. J. Waterw. Port Coastal Ocean. Eng. 2017, 143. [CrossRef]
3. Rayson, M.D.; Gross, E.S.; Fringer, O.B. Modeling the tidal and sub-tidal hydrodynamics in a shallow, micro-tidal estuary. Ocean.

Model. 2015, 89, 29–44. [CrossRef]
4. Abarca, E.; Karam, H.; Hemond, H.F.; Harvey, C.F. Transient groundwater dynamics in a coastal aquifer: The effects of tides, the

lunar cycle, and the beach profile. Water Resour. Res. 2013, 49, 2473–2488. [CrossRef]
5. Shen, C.; Jin, G.; Xin, P.; Kong, J.; Li, L. Effects of salinity variations on pore water flow in salt marshes. Water Resour. Res. 2015,

51, 4301–4319. [CrossRef]
6. Xin, P.; Zhou, T.; Lu, C.; Shen, C.; Zhang, C.; D’Alpaos, A.; Li, L. Combined effects of tides, evaporation and rainfall on the soil

conditions in an intertidal creek-marsh system. Adv. Water Resour. 2017, 103, 1–15. [CrossRef]
7. Yang, J.; Graf, T.; Herold, M.; Ptak, T. Modelling the effects of tides and storm surges on coastal aquifers using a coupled

surface-subsurface approach. J. Contam. Hydrol. 2013, 149, 61–75. [CrossRef] [PubMed]
8. Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O’Neal, M.A.; Michael, H.A. Impact of topography on groundwater salinization due to

ocean surge inundation. Water Resour. Res. 2016, 52, 5794–5812. [CrossRef]
9. Zhang, Y.; Li, W.; Sun, G.; Miao, G.; Noormets, A.; Emanuel, R.; King, J.S. Understanding coastal wetland hydrology with a new

regional-scale process-based hydrological model. Hydrol. Process. 2018, 32, 3158–3173. [CrossRef]
10. Li, Z.; Hodges, B.R. Model instability and channel connectivity for 2D coastal marsh simulations. Environ. Fluid Mech. 2019,

19, 1309–1338. [CrossRef]
11. Langevin, C.; Swain, E.; Melinda, W. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland

and adjacent estuary. J. Hydrol. 2005, 314, 212–234. [CrossRef]
12. Li, Z.; Ozgen, I.; Maina, F.Z. A mass-conservative predictor-corrector solution to the 1D Richards equation with adaptive time

control. J. Hydrol. 2020, 592. [CrossRef]
13. Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A

review. Geomorphology 2007, 90, 208–225. [CrossRef]
14. Ponce, V.M.; Li, R.M.; Simons, D.B. Applicability of kinematic and diffusion models. J. Hydraul. Div. ASCE 1978, 104,

353–360. [CrossRef]
15. Li, Z.; Hodges, B.R. On modeling subgrid-scale macro-structures in narrow twisted channels. Adv. Water Resour. 2020,

135. [CrossRef]
16. Cea, L.; Blade, E. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland

flow applications. Water Resour. Res. 2015, 51, 5464–5486. [CrossRef]
17. Neal, J.; Villanueva, I.; Wright, N.; Willis, T.; Fewtrell, T.; Bates, P. How much physical complexity is needed to model flood

inundation? Hydrol. Process. 2011, 26, 2264–2282. [CrossRef]
18. Caviedes-Voullieme, D.; Fernandez-Pato, J.; Hinz, C. Performance assessment of 2D Zero-Inertia and Shallow Water models for

simulating rainfall-runoff processes. J. Hydrol. 2020, 584. [CrossRef]
19. Yang, J.; Zhang, H.; Yu, X.; Graf, T.; Michael, H.A. Impact of hydrogeological factors on groundwater salinization due to

ocean-surge inundation. Adv. Water Resour. 2018, 111, 423–434. [CrossRef]
20. Kuan, W.K.; Xin, P.; Jin, G.; Robinson, C.E.; Gibbes, B.; Li, L. Combined effect of tides and varying inland groundwater input on

flow and salinity distribution in unconfined coastal aquifers. Water Resour. Res. 2019, 55, 8864–8880. [CrossRef]
21. Xiao, K.; Li, H.; Xia, Y.; Yang, J.; Wilson, A.M.; Michael, H.A.; Geng, X.; Smith, E.; Boufadel, M.C.; Yuan, P.; et al. Effects of tidally

varying salinity on groundwater flow and solute transport: insights from modelling an idealized creek marsh aquifer. Water
Resour. Res. 2019, 55, 9656–9672. [CrossRef]

22. Geng, X.; Boufadel, M.C. Impacts of evaporation on subsurface flow and salt accumulation in a tidally influenced beach. Water
Resour. Res. 2015, 51, 5547–5565. [CrossRef]

23. Tsai, C.W. Applicability of kinematic, noninertia, and quasi-steady dynamic wave models to unsteady flow routing. J. Hydraul.
Eng. 2003, 129, 613–627. [CrossRef]

http://doi.org/10.1016/j.envsoft.2008.02.011
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000397
http://dx.doi.org/10.1016/j.ocemod.2015.02.002
http://dx.doi.org/10.1002/wrcr.20075
http://dx.doi.org/10.1002/2015WR016911
http://dx.doi.org/10.1016/j.advwatres.2017.02.014
http://dx.doi.org/10.1016/j.jconhyd.2013.03.002
http://www.ncbi.nlm.nih.gov/pubmed/23603354
http://dx.doi.org/10.1002/2016WR018814
http://dx.doi.org/10.1002/hyp.13247
http://dx.doi.org/10.1007/s10652-018-9623-7
http://dx.doi.org/10.1016/j.jhydrol.2005.04.015
http://dx.doi.org/10.1016/j.jhydrol.2020.125809
http://dx.doi.org/10.1016/j.geomorph.2006.10.021
http://dx.doi.org/10.1061/JYCEAJ.0004958
http://dx.doi.org/10.1016/j.advwatres.2019.103465
http://dx.doi.org/10.1002/2014WR016547
http://dx.doi.org/10.1002/hyp.8339
http://dx.doi.org/10.1016/j.jhydrol.2020.124663
http://dx.doi.org/10.1016/j.advwatres.2017.11.017
http://dx.doi.org/10.1029/2018WR024492
http://dx.doi.org/10.1029/2018WR024671
http://dx.doi.org/10.1002/2015WR016886
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:8(613)


Water 2021, 13, 902 23 of 23

24. Fu, Y.; Dong, Y.; Xie, Y.; Xu, Z.; Wang, L. Impacts of Regional Groundwater Flow and River Fluctuation on Floodplain Wetlands
in the Middle Reach of the Yellow River. Water 2020, 12, 1922 [CrossRef]

25. Sparks, T.D.; Bockelmann-Evans, B.N.; Falconer, R.A. Development and analytical verification of an integrated 2-D surface
water—Groundwater model. Water Resour. Manag. 2013, 27, 2989–3004. [CrossRef]

26. Farthing, M.W.; Ogden, F.L. Numerical solution of Richards’ equation: A review of advances and challenges. Soil Sci. Soc. Am. J.
2017, 81, 1257–1269. [CrossRef]

27. Arico, C.; Nasello, C. Comparative analyses between the zero-inertia and fully dynamic models of the shallow water equations
for unsteady overland flow propagation. Water 2018, 10, 44 [CrossRef]

28. Hodges, B.R. A new approach to the local time stepping problem for scalar transport. Ocean. Model. 2014, 77, 1–19. [CrossRef]
29. Hutschenreuter, K.L.; Hodges, B.R.; Socolofsky, S.A. Simulation of laboratory experiments for vortex dynamics at shallow tidal

inlets using the fine resolution environmental hydrodynamics (Frehd) model. Environ. Fluid Mech. 2019, 19, 1185–1216. [CrossRef]
30. Gross, E.S.; Koseff, J.R.; Monismith, S.G. Evaluation of advective schemes for estuarine salinity simulations. J. Hydraul. Eng. 1999,

125, 32–46. [CrossRef]
31. Pareja-Roman, L.F.; Chant, R.J.; Ralston, D.K. Effects of locally generated wind waves on the momentum budget and subtidal

exchange in a coastal plain estuary. J. Geophys. Res. Ocean. 2019, 124, 1005–1028. [CrossRef]
32. Zheng, L.; Weisberg, R.H. Tide, buoyancy, and wind-driven circulation of the Charlotte Harbor estuary: A model study. J.

Geophys. Res. 2004, 109. [CrossRef]
33. Casulli, V. Semi-implicit finite-difference methods for the 2-dimensional shallow-water equations. J. Comput. Phys. 1990, 86,

56–74. [CrossRef]
34. Casulli, V.; Cattani, E. Stability, accuracy and efficiency of a semi-implicit method for three- dimensional shallow water flow. J.

Comput. Phys. 1994, 27, 99–112. [CrossRef]
35. Hodges, B.R. Accuracy order of Crank-Nicolson discretization for hydrostatic free-surface flow. J. Eng. Mech. ASCE 2004,

130, 904–910. [CrossRef]
36. Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976,

12, 513–522. [CrossRef]
37. van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.

1980, 44, 892–898. [CrossRef]
38. Kirkland, M.R.; Hills, R.G.; Wierenga, P.J. Algorithms for solving Richards’ equation for variably saturated soils. Water Resour.

Res. 1992, 28, 2049–2058. [CrossRef]
39. Lai, W.; Ogden, F.L. A mass-conservative finite volume predictor-corrector solution of the 1D Richards’ equation. J. Hydrol. 2015,

523, 119–127. [CrossRef]
40. Li, Z.; Hodges, B.R. Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport. Adv.

Water Resour. 2019, 129, 1–15. [CrossRef]
41. McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan

evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [CrossRef]
42. Geng, X.; Boufadel, M.C. Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation. J.

Hydrol. 2015, 524, 427–438. [CrossRef]
43. Barton, I. A parameterization of the evaporation from nonsaturated surfaces. J. Appl. Meteorol. 1979, 18, 43–47. [CrossRef]
44. Liu, S.; Mao, D.; Lu, L. Measurement and estimation of the aerodynamic resistance. Hydrol. Earth Syst. Sci. Discuss. 2006,

3, 681–705.
45. Sulis, M.; Meyerhoff, S.B.; Paniconi, C.; Maxwell, R.M.; Putti, M.; Kollet, S.J. A comparison of two physics-based numerical

models for simulating surface water–groundwater interactions. Adv. Water Resour. 2010, 33, 456–467. [CrossRef]
46. Maxwell, R.M.; Putti, M.; Meyerhoff, S.; Delfs, J.; Ferguson, I.M.; Ivanov, V.; Kim, J.; Kolditz, O.; Kollet, S.J.; Kumar, M.; et al.

Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks.
Water Resour. Res. 2014, 50, 1531–1549. [CrossRef]

47. Wu, R.; Chen, X.; Hammond, G.; Bisht, G.; Song, X.; Huang, M.; Niu, G.; Ferre, T. Coupling surface flow with high-performance
subsurface reactive flow and transport code PFLOTRAN. Environ. Model. Softw. 2021, 137, 104959. [CrossRef]

48. Li, Z.; Hodges, B.R.; Passalacqua, P. Building the Trinity River Delta Hydrodynamic Model; Technical Report Submitted to TWDB
Under Contract No. 1800012195; Texas Water Development Board: Austin, TX, USA, 2020. [CrossRef]

49. Li, Z.; Hodges, B.R.; Passalacqua, P. Hydrodynamic Model Development for the Trinity River Delta; Technical Report Submitted to
TWDB Under Contract No. 1600011928; Texas Water Development Board: Austin, TX, USA, 2017.

50. Kim, J.; Warnock, A.; Ivanov, V.Y.; Katopodes, N.D. Coupled modeling of hydrologic and hydrodynamic processes including
overland and channel flow. Adv. Water Resour. 2012, 37, 104–126. [CrossRef]

http://dx.doi.org/10.3390/w12071922
http://dx.doi.org/10.1007/s11269-013-0327-y
http://dx.doi.org/10.2136/sssaj2017.02.0058
http://dx.doi.org/10.3390/w10010044
http://dx.doi.org/10.1016/j.ocemod.2014.02.007
http://dx.doi.org/10.1007/s10652-019-09668-y
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:1(32)
http://dx.doi.org/10.1029/2018JC014585
http://dx.doi.org/10.1029/2003JC001996
http://dx.doi.org/10.1016/0021-9991(90)90091-E
http://dx.doi.org/10.1016/0898-1221(94)90059-0
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:8(904)
http://dx.doi.org/10.1029/WR012i003p00513
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.1029/92WR00802
http://dx.doi.org/10.1016/j.jhydrol.2015.01.053
http://dx.doi.org/10.1016/j.advwatres.2019.05.004
http://dx.doi.org/10.5194/hess-17-1331-2013
http://dx.doi.org/10.1016/j.jhydrol.2015.02.046
http://dx.doi.org/10.1175/1520-0450(1979)018<0043:APOTEF>2.0.CO;2
http://dx.doi.org/10.1016/j.advwatres.2010.01.010
http://dx.doi.org/10.1002/2013WR013725
http://dx.doi.org/10.1016/j.envsoft.2021.104959
http://dx.doi.org/10.18738/T8/BWOOPM
http://dx.doi.org/10.1016/j.advwatres.2011.11.009

	Introduction
	Background
	Methods
	Surface Flow Module
	Diffusive Wave Approximation
	Subsurface Flow Module
	Surface-Subsurface Coupling
	Rainfall and Evaporation
	Thin-Layer Treatment
	Comparing SWE and DW Models

	Tests and Results
	Overview
	Rainfall on a Sloping Plane
	Inundation of an Intertidal Zone
	Surface-Subsurface Exchange in the Trinity River Delta

	Discussion and Conclusions
	
	References

