

Article

Title A Framework Based on Finite Element Method (FEM) for Modelling and Assessing the Affection of the Local Thermal Weather Factors on the Performance of Anaerobic Lagoons for the Natural Treatment of Swine Wastewater

Saulo Brito-Espino *,+, Alejandro Ramos-Martín +, Sebastian O. Pérez-Báez +, Carlos Mendieta-Pino + and Federico Leon-Zerpa +

- ¹ Department of Process Engineering, Institute for Environmental Studies and Natural Resources (i-UNAT)(ULPGC), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas, Spain. alejandro.ramos@ulpgc.es (A.R.-M.); sebastianovidio.perez@ulpgc.es (S.O.P.-B.); carlos.mendieta@ulpgc.es (C.M-P.); federico.leon@ulpgc.es (F.L.-Z.)
- * Correspondence: saulo.brito101@alu.ulpgc.es
- These authors contributed equally to this work.

Citation: Brito-Espino, S.;

Ramos-Martín, A.; Pérez-Báez, S.O.; Mendieta-Pino, C.; Leon-Zerpa, F. A Framework Based on Finite Element Method (FEM) for Modelling and Assessing the Affection of the Local ThermalWeather Factors on the Performance of Anaerobic Lagoons for the Natural Treatment of Swine Wastewater. *Water* **2021**, *13*, 882. https://doi.org/10.3390/w13070882

Academic Editor: Bing-Jie Ni

Received: 1 February 2021 Accepted: 11 March 2021 Published: 24 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Co	m ponent→ i	1	2	3	4	5	6	7	8	9	10	11	12	Rate (p _i kgCODmm ^{−3} ·d ^{−1})
j	Process↓	S _{su}	Saa	Sfa	Sva	Sbu	Spro	Sac	Sh2	S _{ch 4}	s _{ic}	s _{IN}	S ₁	Rate (pj kgCODmm - 'd ')
1	Disintegration												f _{sl,xc}	k _{dis} X _c
2	Hydrolysis of carbohydrates	1												k _{hyd,ch} X _{ch}
3	Hydrolysis of proteins		1											k _{hyd.pr} X _{pr}
4	Hydrolysis of lipids	1 - f _{fa,li}		f _{fa,li}										k _{hyd,li} X _{li}
5	Uptake of sugar	-1				(1 -Y _{su})f _{bu,su}	(1 -Y _{su})f _{pro,su}	(1 -Y _{su})f _{ac,su}	(1 -Y _{su})f _{h2,su}		$-\sum_{\substack{i=1-9,\\11-29}} C_i v_{i,5}$	-(Y _{su})N _{bac}		k _{hyd,li} X _{li} k _{m,su Ks*Ssu} X _{su} l ₁
6	Uptake of amino acids		-1		(1 -Y _{aa})f _{va,aa}	(1 -Y _{aa})f _{bu,aa}	(1 -Y _{aa})f _{pro,aa}	(1 -Y _{aa})f _{ac,aa}	(1 -Y _{aa})f _{h2,aa}		$ \begin{array}{c} - & \sum\limits_{\substack{i = 1 - 9, \\ 11 - 29}} C_i v_{i,5} \\ - & \sum\limits_{\substack{i = 1 - 9, \\ 11 - 29}} C_i v_{i,6} \end{array} $	N aa-(Yaa)N bac		k _{m,aa} <mark>Saa</mark> Xaal ₁
7	Uptake of LCFA			-1				(1-Y _{fa})0.7	(1 - Y _{fa})0.3			-(Y _{fa})N _{bac}		k _{m,fa} S _{fa} X _{fa} I ₂
8	Uptake of valerate				-1		(1-Y _{c4})0.54	(1-Y _{c4})0.31	(1-Y _{c4})0.15			-(Y _{c4})N _{bac}		$k_{m,c4} \frac{s_{va}}{K_s + S_{va}} X_{c4} \frac{1}{1 + S_{bu} / S_{va}} I$
9	Uptake of butyrate					-1		(1-Y _{c4})0.8	(1-Y _{c4})0.2			-(Y _{c4})N _{bac}		k _{m,c4} K _s +S _{bu} X _{c4} 1/(1+S _{va} /S _{ba})
10	Uptake of propionate						-1	(1-Y _{pro})0.57	(1-Y _{pro})0.43		- $\sum_{\substack{i=1-9,\\11-29}} C_i v_{i,10}$	-(Y _{pro})N _{bac}		k _{m,c4} K _s +S _{by} X _{c4} (1/(1+S _{va} /S _{ba})) k _{m,pr} K _s +S _{pro} X _{pro} 1 ₂
11	Uptake of acetate							-1		(1 - Y _{ac})	$-\sum_{\substack{i=1-9,\\11-29}} C_i v_{i,11}$	-(Y _{ac})N _{bac}		k _{m,acKs*Sac} X _{ac} I ₃
12	Uptake of hydrogen								-1	(1 - Y _{h2})	- $\sum_{\substack{i=1-9,\\11-29}} C_i v_{i,12}$	-(Y _{h2})N _{bac}		k _{m,h2} K _{s*} S _{h2} X _{h2} I ₁
13	Decay of X _{su}													k _{dec.X su} X _{su}
14	Decay of X _{aa}													k _{dec,Xaa} X _{aa}
15	Decay of X _{fa}													k _{dec.Xfa} X _{fa}
16	Decay of X _{c4}													k _{dec,Xc4} X _{c4}
17	Decay of X _{pro}													k _{dec,Xpro} X _{pro}
18	Decay of X _{ac}													k _{dec,Xac} X _{ac}
19	Decay of X _{h2}													k _{dec,Xh2} X _{h2}
		M on osacch arides (kgC OD · m ^{- 3})	Amino acids (kgCOD·m ^{- 3})	Long chain fatty acids (kgCOD·m ⁻³)	Total valerate (kgCOD-m ^{– 3})	Total butyrate (kgCOD·m ^{- 3})	Total propionate (kgCOD-m ^{- 3})	Total acctate (kgCOD-m ^{- 3})	Hydrogen gas (kgCOD-m ^{- 3})	M et hane gas (kgCOD · m ^{− 3})	I norganic carbon (kmoleC-m ^{- 3})	l norganic nitrogen (kmoleN.m ^{- 3})	Soluble inerts (kgCOD -m - ³)	Inhibition factors: 1 ₁ = ¹ pH ¹ N,lim 1 ₁ = ¹ pH ¹ N,lim ¹ h2 1 ₁ = ¹ pH ¹ N,lim ¹ NH3,Xac

Table S1 Biochemical rate coefficients (vi,) and kinetic rate equations (p) for soluble components (i=1-12; j=1-19). The matrix comes from the ADM1 Bastone et al. [2]

Cor	n ponent→ i	13	14	15	16	17	18	19	20	21	22	23	24	36	37	38	39	Rate (p _i kgCODmm ⁻³ ·d ⁻¹)
j	Process↓	X _c	X _{ch}	X pr	x _{1i}	X _{su}	X aa	X _{fa}	X _{c4}	X pro	X ac	X _{h2}	x,	S _{lac}	X _{lac,f}	X lac,o	Sca	(ato (p) (go o b m m a)
1	Disintegration	-1	f _{ch,xc}	fpr,xc	f _{li,xc}								f _{xI,xc}					k _{dis} X _c
2	Hydrolysis of carbohydrates		-1															k _{hyd,ch} X _{ch}
3	Hydrolysis of proteins			-1														k _{hyd,pr} X _{pr}
4	Hydrolysis of lipids				-1													k _{hyd,li} X _{li}
5	Uptake of sugar					Y _{su}												k _{m,su} s _{su} X _{su} X _{su} K ₁
6	Uptake of amino acids						Yaa											k _{m,aa} s _{aa} X _{aa} I₁
7	Uptake of LCFA							Y _{fa}										$\frac{k_{m,aa}\frac{s_{aa}}{K_{s}^{*}s_{aa}}\chi_{aa}I_{1}}{k_{m,fa}\frac{s_{fa}}{K_{s}^{*}s_{fa}}\chi_{fa}I_{2}}$
8	Uptake of valerate								Y _{c4}									$\frac{k_{m,c4} \frac{s_{va}}{k_{s} + s_{va}} \chi_{c4} \frac{1}{1 + s_{va} / s_{va}} I}{k_{m,c4} \frac{s_{bu}}{k_{s} + s_{bu}} \chi_{c4} \frac{1}{1 + s_{va} / s_{ba}} I}$
9	Uptake of butyrate								Y _{c4}									$k_{m,c4} \frac{s_{bu}}{K_s + s_{bu}} X_{c4} \frac{1}{1 + s_{va}/s_{ba}} I$
10	Uptake of propionate									Ypro								k _{m,pr} K _s +S _{pro} X _{pro} I ₂
11	Uptake of acetate										Yac							k _{m,ac} $\frac{s_{ac}}{K_{s}^{+}S_{ac}}$ X _{ac} l ₃
12	Uptake of hydrogen											Y _{h2}						$k_{m,h2} \frac{s_{h2}}{K_s + S_{h2}} X_{h2} I_1$
13	Decay of X _{su}	1				-1												k _{dec,X su} X _{su}
14	Decay of X _{aa}	1					-1											k _{dec,Xaa} X _{aa}
15	Decay of X _{fa}	1						-1										k _{dec,Xfa} X _{fa}
16	Decay of X _{c4}	1							-1									k _{dec,Xc4} X _{c4}
17	Decay of X _{pro}	1								-1								k _{dec,Xpro} X _{pro}
18	Decay of X _{ac}	1									-1							k _{dec,Xac} X _{ac}
19	Decay of X _{h2}	1										-1						k _{dec,Xh2} X _{h2}
		Composites (kgCOD·m ^{- 3})	Carbohydrates (kgCOD·m ^{- 3})	Proteins (kgCOD·m ⁻³)	Lipids (kgCOD·m ⁻³)	Sugar degraders (kgCOD·m ^{- 3})	A mino acid degraders (kgCOD·m ⁻³)	LCFA degraders (kgCOD·m ^{- 3})	Valerate and butyrate degraders (kgCOD·m ^{- 3})	Propionate degraders (kgCOD·m ^{- 3})	A cet at e degraders (kgC 0D ·m ^{- 3})	Hydrogen degraders (kgCOD·m ^{− 3})	Particulate inerts (kgCOD·m ⁻³)	T otal lactate (kgC oD ·m ^{− 3})	Lactate (fermentation) degraders (kgCOD·m - 3)	Lactate (oxidation) degraders (kgCOD·m - 3)	T ot al calcium (kmole·m ^{- 3})	Inhibition factors: I ₁ = I _{pH} I _{N,lim} I ₁ = I _{pH} I _{N,lim} I _{h2} I ₁ = I _{pH} I _{IN,lim} I _{NH3,Xac}

Table S2 Biochemical rate coefficients (vu) and kinetic rate equations (p) for particulate components (i=13-24; j=1-19). The matrix comes from the ADM1 Bastone et al. [2]

Name	Description	Name	Description
X _c	composite	S _{bu}	total butyrate
X_{ch}	carbohydrates	S_{pro}	total propionate
X_{pr}	proteins	S_{ac}	total acetate
X _u	lipids	S_{h2}	hydrogen
X ₁	particulate inerts	S _{ch4}	methane
S_1	soluble inerts	S _{ic}	inorganíc carbon
S _{su}	monosacharides	S_{IN}	inorganic nitrogen
S _{aa}	amino acids	X_{su-h2}	biomass
S _{ta}	total LCFA	S _{cat}	cations
S _{va}	total valerate	S _{an}	anions

Table S3. Dynamic state variables included in the stoichiometry matrix (Tables A1 and A2).