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Abstract: A 2D streamwise velocity model based on the Reynolds Averaged Navier–Stokes (RANS)
is a useful approach to predict the boundary shear stress and the streamwise velocity in a free surface
stream where secondary flows are not relevant. Boundary conditions treatment is a key aspect
implementing these models. A low computational cost and fully predictive numerical model with a
novel treatment of boundary conditions is presented. The main features of the modified model are
the employment of a modified law of the wall valid for any roughness condition, the estimation of the
boundary shear stress is done only focusing on the near-contour region, the use of a full-predictive
physical based model for the eddy viscosity distribution and the incorporation of the free surface
shear stress due to water–air interface. The validation of the proposed changes was performed with
a substantial number of experimental cases available in the literature using different cross-section
shapes (circular, rectangular, trapezoidal and compound section) and roughness condition with quite
good agreement. Preliminary results suggest that the influence of the free surface boundary layer
has a significant impact on the results for both the streamwise velocity and boundary shear stress in
windy conditions. The proposed approach allows its considerations in practical applications.

Keywords: boundary conditions; streamwise velocity; bed shear stress; free surface boundary layer;
numerical modeling; hydraulic engineering

1. Introduction

An accurate knowledge of the boundary shear stress and cross sectional velocity
distributions of a free surface stream is fundamental due to its practical applications in
many fluid dynamic and environmental problems, such as flow discharge estimation,
sediment and other substance transport, erosion and sedimentation process or changes in
riverbed morphology [1]. For these reasons, there has been continuous development in
numerical modeling techniques in the last decades.

Numerical models can be divided, according to their complexity, into: (i) 1D lumped
models based on semi-empirical equations which allow calculating the average velocity
(Manning, Chezy or Darcy–Weisbach) [2]; (ii) quasi-1D lumped models used mainly in
compound channels where lateral momentum transfers normally occur between the fast
flow of the main channel and the slower flow of the floodplain, such as the methods
of Lotter, Ackers or Pavloski [1,3,4]; (iii) quasi-2D models which provide information
on the lateral distributions of depth-averaged velocity and boundary shear stress based
on the lateral distribution, e.g. the Shiono and Knight Method (SKM) [5–9]; (iv) 2D
streamwise velocity models which provide the longitudinal velocity distribution along
the cross section over a one-dominant-direction-flow based on the Reynolds Averaged
Navier–Stokes (RANS) equations applying some turbulence closure model [10,11]; and (v)
3D models, such as Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) or
3D RANS models [12]. All these 3D computational fluid dynamical (CFD) algorithms are
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very precise and complex, requiring high computational cost and additional information
that, in many cases, is not available. An example of this kind of models with application in
sediment transport can be found in Liu and Garcia [13].

Methods based on the SKM (Group iii) have been widely investigated and are a key
approach especially in rectangular and trapezoidal compound channels [14,15]. However,
these models compute the depth-averaged velocity without calculating the vertical velocity
distribution. Even though 2D RANS models (Group iv) neglect the influence of secondary
currents and associated phenomena, they do simulate streamwise velocity along the cross
section. They are a good alternative to 3D CFD approaches due to their simplicity, low
computational load and ease of application on any arbitrary cross-section. The key aspects
of these models are mainly the treatment of the boundary conditions and the closure model
employed for the eddy viscosity. Houjou et al. [16] presented a turbulence closure for
rectangular channels based on the ray–isovel coordinate system since the flow equations
predict the same behavior along the rays as they should do along the vertical direction for a
wide horizontal bed. However, this model required the measure of a single velocity to ade-
quately scale the velocity field. Note that, since the velocity field is scaled by the measured
velocity, the imposed boundary conditions become less important. Kean and Smith [11]
generalized the model by Houjou et al. [16] to be valid for arbitrary cross sections and
included the effect of drag from rigid vegetation and imposed as boundary conditions null
velocity at the roughness height. However, it still required an adjustment parameter when
setting the maximum value of the eddy viscosity at a certain distance to the wall. Later,
Kean et al. [17] validated the previous model against a high-resolution laboratory dataset of
velocity and boundary shear stress measurements for a trapezoidal channel. More recently,
Cassan et al. [18] presented a simplified method based on previously mentioned works
to estimate the streamwise velocity distribution in rectangular and compound channels
with spatially varying roughness, imposing as boundary condition the velocity at a certain
fixed distance to the wall given by the logarithmic law for smooth and rough boundaries.
This method incorporates a fully predictive mixing length model and a sub-division of the
wetted surface to calculate bed shear stress along the perimeter applying the momentum
balance over each portion between adjacent rays, but it neglects the influence of the free
surface boundary layer. The downstream component of the momentum in each portion is
compensated only by the local bed shear stress acting along its corresponding length of the
rigid contour, which heavily depends on the computed streamwise velocity distribution.
Both methods [17,18] require an iterative procedure to alternatively solve the momentum
equation for velocity and the equation for shear stress and eddy viscosity until convergence.
Against this background, the estimation of bed shear stress using this method has three
main issues: (i) small errors in the velocity distribution affect isovelocity curves and could
have a great effect when calculating bed shear stress since the geometry of the rays defines
the control volume; (ii) it requires analyzing velocity distribution over the full section
to compute bed shear stress at any point along the wetted perimeter, where the relation
among velocity and shear stress is mainly local; and (iii) the shear stress along the water–air
interface is not considered in the momentum balance. Additionally, the eddy viscosity in
the model by Cassan et al. [18] increases up to free surface without setting a maximum
value, contrary to what is observed in reality.

This paper proposes using an alternative methodology to improve the treatment of
boundary conditions, both at the rigid and not movable contours and at the free surface. It
can correctly calculate the boundary shear stress from the velocity distribution according
to previously mentioned limitations and a full-predictive physical based model for the
eddy viscosity distribution. Instead of applying the momentum balance over each sub-area
delimited by adjacent rays, which requires considering the velocity distribution over the
whole cross-section, the proposed technique estimates the boundary shear stress only
focusing on the near-contour region. The velocity profile obtained from the numerical
procedure should be consistent with the analytical velocity profile along each individual ray.
A modified law of the wall [19] valid for any roughness condition (smooth, transitional and
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rough) is employed to obtain the analytical velocity profile. The full new modified approach
is validated against a wide variety of experimental results available in the literature. The
effect of a free surface boundary layer due to wind velocity (not considered in previous
works) is included, and its effects are analyzed in a qualitative manner in the absence of
laboratory measurements.

The rest of this paper is set out as follows: First, the governing equations to be solved
with the ray–isovel approach and the new features concerning the new methodology to
calculate the boundary shear stress and the boundary conditions are described. Then, the
computational method is fully explained. Subsequently, the model is validated making a
more extensive validation against empirical data with respect to previous work for both
streamwise velocity and boundary shear stress distributions. The results are compared
against some experiments available in the literature with different cross-section shapes
(circular, rectangular, trapezoidal and compound section) and roughness condition. The
influence of the free surface boundary layer on velocity and shear stress distributions is
analyzed and highlighted. Finally, relevant conclusions are duly drawn.

2. Governing Equations

Assuming a Cartesian coordinate (x, y, z) system, the momentum equation for steady
flow in the streamwise direction, i.e., x-direction, is given by

ρ

[
∂(uv)

∂y
+

∂(uw)

∂z

]
= ρg

∂η

∂x
+

∂

∂y

(
ρν

∂u
∂y

+ τyx

)
+

∂

∂z

(
ρν

∂u
∂z

+ τzx

)
, (1)

with u = (u, v, w) the velocity vector; ρ ≡ fluid density; g ≡ acceleration of gravity;
ν ≡ kinematic viscosity of the fluid; η ≡ the free surface level; and τyx and τzx ≡ shear
stress components of the deviatoric stress tensor in the plane normal to the downstream
component (x) in the cross-stream (y) and vertical (z) directions respectively. In Equation
(1), the left-side terms represents the secondary currents (responsible for dip-phenomenon
among others), while the right-side terms represent the sum of gravitational action and the
shear stresses (both lateral and vertical). In a general form, the shear stress component in
the i-direction can be computed as

τix = ρνt
∂u
∂i

, (2)

where νt ≡ is the scalar eddy viscosity introduced by Boussinesq in 1877. According to
this definition, the shear stress between fluid layers is proportional to the velocity gradient
in the perpendicular direction to those layers. In these cases, νt is the proportionality
constant that quantifies the transfer of momentum in the transverse direction. Substituting
Equation (2) into Equation (1) gives

∂(uv)
∂y

+
∂(uw)

∂z
= g

∂η

∂x
+

∂

∂y

(
(ν + νt)

∂u
∂y

)
+

∂

∂z

(
(ν + νt)

∂u
∂z

)
, (3)

and, assuming that the transversal and vertical velocities are negligible (v, w� u), Equation (3)
is written as follows:

∂

∂y

(
(ν + νt)

∂u
∂y

)
+

∂

∂z

(
(ν + νt)

∂u
∂z

)
= −g

∂η

∂x
, (4)

which is a partial differential equation (PDE) governing the streamwise velocity distribution
averaged over time, for open channels, under steady conditions. Note that, for uniform
flow, S f = ∂η/∂x = S apply, being S f the friction slope and S the bed channel slope. This
equation constitutes the theoretical basis for the 2D RANS model group, where the present
work contributes.
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2.1. Eddy Viscosity

One of the main parameters to be modeled is the eddy viscosity distribution, which
has been widely investigated in the literature. Assuming a linear shear stress distribution
with a maximum at the bed and zero at the water surface together with a logarithmic
velocity law and a parabolic mixing length function, Yalin [20] presented an empirical
equation for the vertical eddy viscosity given by

νt = κu∗d
(

1− d
h

)
, (5)

where κ ≈ 0.41 is the von Karman constant, d ≡ is the distance from the boundary, h ≡ is
the total depth and u∗ ≡ is the shear velocity. For non infinite wide channels, Kean and
Smith [11] and Kean et al. [17], among others, considered measuring d and h along the
rays (λ = constant in Figure 1), defined as the normal lines to isovelocity lines or isovels
(ξ = constant in Figure 1). However, it is still not clear the most appropriate expression for
νt. For instance, Kean et al. [17] proposed the expression

νt = κu∗d
τdx
τb

, (6)

being τdx ≡ the shear stress along the ray in the interior of the channel at a distance d from
the boundary and τb = ρu2

∗ the bed shear stress. Additionally, Kean and Smith [11] found
that the eddy viscosity increases along each ray until it reaches a maximum value to be
calibrated. However, in Cassan et al. [18], the eddy viscosity increases as it approaches the
free surface without reaching a maximum value. For simplicity reasons and avoiding the
use of adjustment parameters, a shear stress-independent function similar to Equation (5)
is considered hereinafter for the eddy viscosity distribution along the rays, increasing until
it reaches its maximum value of νt,max = κu∗h/4 at d = h/2, and then remaining constant
from that point to the end of the ray, at the point where maximum velocity is located.

y-coordinate

z-
co

or
di

na
te

Figure 1. Diagram of orthogonal ray (λ) and isovel (ξ) system.

2.2. Boundary Conditions Near Walls

Very close to the bed contours and up to a dimensionless distance ξ+ ≡ ξu∗/ν ≈ 5, the
viscous effects are predominant, causing the so-called laminar viscous sublayer [21]. These
effects can be neglected for values larger than ξ+ & 30, where the universal logarithmic
profile is valid with a good approximation inside the inner layer (see Figure 2). The log-law
for the velocity profile reads

u(ξ)
u∗

=
1
κ

ln
(

ξ

ξ0

)
, (7)

where
ξ0 =

ks

30
+

ν

9.2u∗
, (8)

is a small distance to the rigid contour and ks stands for the equivalent roughness. Equation (7)
is only valid with smooth boundaries, i.e., for dimensionless roughness ks∗ ≡ ksu∗/ν . 3.
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However, the following modification to the universal log-law velocity profile, based on the
work of Einstein [19], is valid for smooth, transitional and rough surface:

u(ξ)
u∗

=
1
κ

ln
(

ξ+

ks∗

)
+ B(ks∗), (9)

where function B can be calculated as

B(ks∗) = − ln

[
k−1/κ

s∗
exp 5.5

+
1

exp 8.5

(
1− exp

(
−0.0152k1.33

s∗

))]
. (10)

This modification introduces an offset in the velocity profile with respect to the
universal log-law, being suitable for any roughness condition. The value of B has been
widely investigated for different flow and roughness conditions [22] but it has been usually
considered as a constant instead of a function of roughness, limiting the applicability of
the universal log-law. Considering B as a roughness-dependent function, Ligrani and
Moffat [23] also proposed an analytical expression for the B function with similar results
to Equation (10) that could be equally applicable. Both formulations are the result of
experimental data and studies (e.g., [24]). Figure 2 shows the different regions inside the
boundary layer. Since the characteristically thickness of a turbulent boundary layer is
small compared to the out flow field, a huge number of grid cells would be necessary to
numerically simulate the whole boundary layer. Similarly to Kean et al. [17], to reduce
the complexity of the numerical problem and the number of grid points required in the
calculation, the boundary conditions are not specified just on the wall but are applied at a
distance from the wall. However, instead of applying the law of the wall at a fixed distance
according to Kean et al. [17], which may be incorrect depending on the roughness, the new
method eliminates the laminar viscous sublayer and buffer zone from the numerical
domain, imposing the velocity obtained from Equation (9) as boundary condition at
ξ+ = 30. This approach allows leading with a spatial distributed roughness but does
not explicitly consider the presence of isolated rough elements [17] or the influence of the
microtopography of the bed [25]. However, the mean effect of those elements could be
modeled by adequately modifying the equivalent bed roughness.

Traditionally, the most employed method to obtain the value of the shear velocity and
therefore the velocity boundary condition, used for instance by the authors of [11,17,18],
apply the momentum balance over each portion of the flow between adjacent rays. In
that case, the streamwise component of the weight of water of the considered portion is
compensated by the local bed shear stress acting over the length in contact with the rigid
contour, which can yield to an overestimation of bed shear stress if free surface stress is not
considered. Unlike the above methods, we propose an alternative methodology to estimate
the local shear velocity. Instead of applying the momentum balance over each sub-area,
which requires considering the velocity distribution over the whole cross-section, the new
approach only uses velocity close to contours, reducing the computational effort. As long as
Equation (9) is valid for the range 30 . ξ+ . 1000, as shown in Figure 2, and the numerical
model domain is defined for ξ+ > 30, there is an overlapping zone where the numerical
and analytical results should be similar (30 . ξ+ . 1000). Hence, once the numerical
velocity distribution is known, the only value to be adjusted is the local shear velocity
u∗. It can be obtained by making the numerical and theoretical solutions compatible and
consistent by means of an objective function which minimizes the difference between both
solutions of the velocity profile within the fitting length for each individual ray.
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Figure 2. Velocity profile across the boundary layer.

2.3. Boundary Condition at the Free Surface

Since fluid particles located at the free surface move at a certain velocity, the air just in
contact with the free surface will generate a drag force. This wind shear at the air–water
interface leads to momentum transfer and vertical turbulent mixing in the water body [26].
The wind shear stress, τwx, can be parameterized as

τwx = CDzρairus|us|, (11)

where CDz ≡ is the empirical non-dimensional drag coefficient for z height, ρair ≡ is
the air density and us ≡ is the difference between the free surface velocity, u f s, and the
streamwise wind velocity at some specified height above the water surface, uw, typically
at z ≈ 10 m. Wróbel-Niedźwiecka et al. [27] presented some of the most common drag
coefficient formulae. For typical values of maximum streamwise velocity in open channels
(O(m/s, cm/s)), the classical parameterization proposed by Wu [28], valid within the
range 1 m/s ≤ us ≤ 15 m/s is adopted here, being the drag coefficient given by

CD,10 = 0.5 · 10−3|us|0.5. (12)

Additionally, setting Equation (11) equal to Equation (2), the following relationship
can be written at the free surface (considered as an horizontal plane)

∂u
∂z

= 0.5 · 10−3 ρair
ρνt

(
u f s − uw

)∣∣∣u f s − uw

∣∣∣1.5
, (13)

which is an implicit boundary condition for the derivative of velocity depending on the
same velocity and the eddy viscosity at the free surface and the wind velocity 10 m over the
water. If wind effect is neglected assuming uw ≈ u f s, Equation (13) becomes the classical
slip boundary condition (∂u/∂z = 0) leading to maximum velocities at the free surface.

3. Computational Method

The proposed method uses a module to numerically resolve the governing PDE in
the defined domain using the finite element method together with error control. In this
case, the numerical iterative procedure is developed combining Matlab and FlexPDE [29],
but any other appropriate software to solve PDE can be employed. FlexPDE allows the
user to define the problem in a high level language, specifying the PDE in their strong
form, unknowns, problem parameters, domain geometry and boundary conditions. It
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takes the problem to the weak formulation, performs a grid discretization (which can be
automatically refined throughout the calculation according to the values adopted by the
spatial gradient of the unknown), assembles the system of nodal equations and solves
it without requiring the development and implementation of a specific code. FlexPDE
subdivides the domain through an unstructured mesh of triangular elements and a more
refined mesh is imposed only near the contours (rigid contours and free surface) to reduce
the computational time (Figure 3b). To set the maximum mesh size near the rigid contours,
the mesh should contain at least 10 nodes in the fitting length (see Figure 2) to be compared
with the theoretical solution of the velocity profile. A relative error in velocity of 10−4 was
used for the computations. Matlab was used to build the FlexPDE files and perform the
iterative process.

Figure 3. (a) Rays for the first step using the MPM variation; (b) mesh used for the trapezoidal case;
and (c) Rays and isovels using the velocity distribution obtain from the first iteration.

To solve the problem, Equation (4) together with boundary conditions (9) and (13)
are considered. The input parameters of the model are the cross sectional geometry,
the roughness distribution at rigid contours (ks), the hydraulic slope (S f ) and the wind
velocity (uw) if not negligible. Since there are several parameters dependent on the velocity
distribution (unknown a priori), such as νt or u∗, an initial value must be provided for
them. For the first step, the shear velocity has usually been assumed as constant along
the wetted perimeter attending to the mean bed shear stress given by u∗ =

√
τb/ρ with

τb ≈ ρgRhS f being Rh the hydraulic radius. For the proposed methodology, a simple
variation of the Merged Perpendicular Method (MPM) [30] to compute the local shear
stress for the first step is adopted. The wetted perimeter is discretized in points and the
shear stress is computed by τb ≈ ρgdhS f being dh the distance between each point and
either a bisector or free surface using the lines normal to the wetted perimeter (Figure 3a).
This method provides a better initial approach of the boundary shear stresses reducing the
number of required iterations. Additionally, the spatial distribution of rays and isovels is
required to get the distance from the boundaries to any point and so the eddy viscosity
distribution. For the first step, these lines normal to the wetted perimeter are assumed as
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rays to calculate the eddy viscosity in the whole domain. Therefore, the PDE for the first
iteration can be solved.

Once the velocity distribution for the first step is settled, the new rays and isovels
are computed (Figure 3c) in addition to the distances measured along the rays (d and h in
Equation (5)). The shear velocity is then obtained at any point by means of an objective
function which minimizes the difference between the numerical results and theoretical
velocity profile within the fitting length along the corresponding ray. Figure 4 shows
both velocity profiles after the adjustment procedure for a specific ray. In that example,
applying Equation (9) with the adjusted value of the shear velocity (u∗ = 0.0288) yields a
theoretical profile close to the one obtained with the numerical model. From the adjusted
shear velocity for each ray, the boundary shear stresses are easily calculated.

Figure 4. (a) Rays for the solution of a trapezoidal section and definition of the example ray; and (b)
theoretical (u∗ = 0.0288; ks = 0.5 mm) and numerical solution for the example ray velocity profile in
the fitting length.

The next step consists of recomputing the velocity distribution with a boundary
condition deduced from the shear velocity determined in the previous step. The iterative
process continues until acceptable performance in terms of the Root Mean Square Error
(RMSE) between u∗ value for two consecutive iterations is reached. For all tests presented
in following sections, the criterion RMSE ≤ 1 · 10−4 was fixed. The flow diagram of the
computation process with its inputs and outputs is shown in Figure 5.



Water 2021, 13, 1001 9 of 22

FIRST STEP 

Estimated local shear 
velocity and rays: 
MPM variation 

Solve Eq. 4 

Calculate rays: 
 

Set BC  
First Step 

Local shear velocity 

Viscosity distribution: Eq. 5 

Solve Eq. 4 

Set BC  

 

YES 

NO 
CONDITION 

SOLUTION 
Boundary shear stress 
Streamwise velocity 

Inputs 
Geometry    ks 

          Sf            uw 

 

Output 
Velocity distribution 

 

Output 
Velocity distribution 

 

Figure 5. Flow diagram of the computation process.

4. Model Validation

In this section, the numerical results are compared against experimental values avail-
able in the literature for both velocity and bed shear stress distribution in order to test the
validity of the proposed modifications: (i) new procedure to obtain bed shear stress con-
sidering only near bed velocity distribution; (ii) definition of velocity boundary condition
at a rough-dependent distance to the wall; (iii) eddy viscosity model without adjustment
parameters; and (iv) inclusion of free surface shear stress due to the wind. Experimental
data were selected to consider different cross section shapes and roughness conditions
among the most used works, usually contemplated for validation purposes (see Table 1),
considering null wind velocity (this assumption does not imply that free surface shear
stress is null since there exists a relative velocity between water at the free surface and
air) and null sediment transport rate, i.e., fixed bed. As a rule, grid spacing was chosen to
obtain around 500 grid points along the wetted perimeter, around 100 grid points at the
free surface and a total number of grid points of 2000–5000 (specific values of grid spacing
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for each simulation are shown in Table 1). Regarding the values adopted for the roughness,
for those cases with no values provided in the original work, kS = 1 mm for smooth and
ks = 10 mm for rough cases were adopted.

Table 1. Experimental cases employed for comparison purpose, where D ≡ is the pipe diameter (circular), S f ≡ is
the longitudinal slope, ks ≡ is the roughness, H ≡ is the water depth, B ≡ is the base width, s ≡ is the sidewall slope
(trapezoidal), Bw ≡ is the water surface width (compound), ∆p ≡ is the grid spacing along the wetted perimeter and ∆ f ≡
is the grid spacing along the free surface.

Shape Citation Experimental Setup u τb Numerical Setup

circular

[31]

D = 0.244 m ∆p = 1 mm
S f = 0.0010 ∆ f = 2 mm
ks = not available (PVC) ks = 0.5 mm

(a) H = 0.0813 m X X
(b) H = 0.2015 m X

[32]

D = 0.304 m X ∆p = 1 mm
S f = 0.0019 ∆ f = 2 mm
ks = not available (rough) ks = 10 mm
H = 0.1015 m

rectangular

[33]

B = 0.480 m X ∆p = 1 mm
S f = 0.00170 ∆ f = 2 mm
H = 0.129 m
ks(left,bottom) = 0.2 mm
ks(right) = 20 mm

[34]

B = 0.200 m ∆p = 0.5 mm
S f = 0.00435 ∆ f = 1 mm
ks = not available (rough) ks = 10 mm

(a) H = 0.175 m X
(b) H = 0.111 m X

trapezoidal

[35]

B = 0.150 m ∆p = 1 mm
S f = 0.0010 ∆ f = 2 mm
ks = not available (smooth) ks = 1 mm
s = 1V : 1H

(a) H = 0.150 m X
(b) H = 0.100 m X

[36]

B = 2.440 m X ∆p = 10 mm
S f = 0.0010 ∆ f = 20 mm
ks = not available (smooth) ks = 1 mm
s = 1V : 0.5H
H = 0.3048 m

compound

[37]

B = 0.200 m X ∆p = 1 mm
S f = 0.0055 ∆ f = 2 mm
ks = not available (rough) ks = 10 mm
H = 0.153 m

[17]

B = 0.690 m X ∆p = 10 mm
S f = 0.00036 ∆ f = 20 mm
ks(wall & channel) = 0.235 mm
ks(other) = 0.800 mm
s = 1V : 1H
H = 0.555 m

[38]

B = 0.711 m ∆p = 10 mm
ks = not available (concrete) ∆ f = 20 mm

(a) S f = 0.00045, H = 0.1445 m X X ks = 1 mm
(b) S f = 0.00036, H = 0.1814 m X
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4.1. Streamwise Velocity

The proposed method is tested for a wide range of flow conditions using the measured
velocity distribution in circular, rectangular, trapezoidal and compound channels. The
experimental values have been obtained by scanning the images with at least 200 points of
control. For these points we can define the velocity error, εv, as the root mean square of the
differences between numerical and experimental values of the streamwise velocity.

4.1.1. Circular Channels

Knight and Sterling [31] carried out some experiments on a partially full smooth
pipe with an internal diameter D = 0.244 m and longitudinal slope S f = 0.001. The
experimental data show that the maximum velocity core is located below the water surface
mainly due to secondary flow, as shown in [39–41]. As the model does not consider this
phenomenon, the experiment in which the maximum velocity core is close to the water
surface, with a water depth H = 0.0813 m, is selected. Figure 6 shows the predicted velocity
distribution compared with the experimental data. In general, there is a good agreement
between the numerical results and the measurements, being the differences located near the
boundaries and water surface, where the secondary flows causes the velocities to decrease.
Notwithstanding these differences, both the velocity magnitude and distribution are quite
similar, with εv = 0.0158 m/s.

0

0.1

0.2

0.3

0.4

0.5

Figure 6. Comparison of calculated and measured streamwise velocity distribution in a smooth
circular conduit of the experiments of Knight and Sterling [31].

4.1.2. Rectangular Channels

For rectangular channel with variable bed roughness, one of the experiments presented
by Wang et al. [33] is here considered. The channel width was B = 0.48 m and the water
depth H = 0.129 m. The bed slope is null and S f is deduced from the water surface profile
(S f = 0.0017). The roughness of one wall and the bottom was about ks = 0.2 mm while
the roughness of the other sidewall was ks = 20 mm, leading to the asymmetry of the
flow, as shown in Figure 7. Despite this asymmetric flow distribution, the agreement of
the results is good and both values and shape of the velocity distribution are correctly
estimated (εv = 0.0718 m/s). The flow rate calculated by the model is Q = 0.0274 m3/s
whereas the measured one is Q = 0.0261 m3/s, which means a relative error below 5%.
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Figure 7. Comparison of calculated and measured streamwise velocity distribution in a rectangular
flume of the experiments of Wang et al. [33].

4.1.3. Trapezoidal Channels

Yuen [35] performed some experiments for trapezoidal channels with different width-
depth ratios. The main channel width was B = 0.15 m and the sidewalls slope of 1V:1H
with longitudinal slope S f = 0.001. Two cases are numerically simulated, B/H = 1 and
B/H = 1.5, as shown in Figure 8. In both cases, secondary flows are negligible in the central
region and hardly produces dip phenomenon, which encourages the good behavior of the
model, which is in reasonable agreement with magnitude and structure of the measured
field. For the first case, the error in velocities is εv = 0.0195 m/s and the calculated
discharge (0.0266 m3/s) is close to the measured one (0.0263 m3/s, 1% difference). For
the second case, the calculated discharge is 0.0127 m3/s, whereas the measured one is
0.012 m3/s, being the velocity error εv = 0.0194 m/s.

Figure 8. Comparison of calculated (right) and measured (left) streamwise velocity distribution in
trapezoidal channels of the experiments of Yuen [35]: (a) B/H = 1; and (b) B/H = 1.5.
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4.1.4. Compound Channels

Finally, experimental tests from [17,38] on compound channels are considered. Ra-
jaratnam and Ahmadi [38] carried out some experiments on an asymmetric channel with a
width of 1.22 m and made up by a 0.711 m-wide main channel and a 0.508 m-wide flood-
plain on the right side. All sidewalls were vertical and the floodplain height was 0.0975 m
over main channel bed. Although no velocity distribution measurements were available,
horizontal velocity profiles were measured at several heights (εv = 0.0245 m/s). The water
depth for the selected test was H = 0.1445 m and the longitudinal slope S f = 0.00045.
Figure 9 shows the horizontal velocity profiles predicted compared with the experimental
data. In general, there is a high degree of congruity between computed and measured
velocity in all the profiles.

Numerical results
Measurements

Numerical results
Measurements

Numerical results
Measurements

Numerical results
Measurements

Figure 9. Comparison of calculated and measured horizontal velocity profiles in a compound channel
of the experiments of Rajaratnam and Ahmadi [38]: (a) z = 0.097 m; (b) z = 0.099 m; (c) z = 0.11 m;
and (d) z = 0.123 m.

Additionally, the behavior of the model in a compound channel with variable bed
roughness is assessed using the experiment by Kean et al. [17]. They considered a 1.22 m
wide asymmetrical compound section consisting of a main channel (B = 0.69 m) and a
floodplain on the left (0.33 m wide) with a longitudinal slope S f = 0.00036 and a water
depth H = 0.555 m. The floodplain was 0.24 m above the main channel bed and the
slope was 1H:1V. The roughness was ks = 0.235mm for walls and main channel bed and
ks = 0.8mm for the floodplain and slope. As the floodplain contained a similar-sized
cobbles array not included by the model, the floodplain roughness has been increased to
simulate a similar effect. Figure 10 shows the velocity distribution predicted compared with
the experimental data. As a rule, the predicted velocity is in reasonable agreement with
the magnitude and structure of the measured field (εv = 0.0803 m/s). Similar differences
with experiments were observed and were attributed by Kean et al. [17] to secondary
currents found experimentally. The discharge calculated by the model is 0.406 m3/s and
the measured one is 0.396 m3/s (2.5% difference).
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Figure 10. Comparison of calculated and measured streamwise velocity distribution in a compound
channel of the experiments of Kean et al. [17].

4.2. Boundary Shear Stress

In this section, many of the works considered by Khodashenas et al. [42] and others
that include the measure of the local shear stress distribution are analyzed. The model
is tested for a wide range of flow conditions using the measured boundary shear stress
distributions in circular channels from [31,32], in rectangular channels [34], in trapezoidal
channels [34,36] and in compound channels [37,38]. Throughout this section, the local
boundary shear stress at point “i” is non-dimensionalized by its mean value along the
wetted perimeter, i.e., τ∗i = τi/τ, being represented against the dimensionless perimet-
ric distance, Pd = s/P, where s is the distance between any location on the channel
boundary and its left water margin along the whole wetted perimeter P. Following
Khodashenas et al. [42], two performance indicators are also used to quantitatively mea-
sure the performance of the method results as compared to measurements: (i) the relative
error, εr; and (ii) the root mean square error, εrms.

4.2.1. Circular Channels

In Figure 11, the boundary shear stress distribution predicted by the model is com-
pared with the experimental data of Replogle and Chow [32] for partially full circular
conducts. The geometrical and hydraulic parameters were diameter D = 0.304 m, water
depth H = 0.1015 m and S f = 0.00187. The predicted boundary shear stress distribution
using the new method agrees well with the experimental data, being the errors εr = 9%
and εrms = 25%, which indicate a good performance of the model when compared with
other methods, as shown in [42]. Likewise, the model is applied to the experimental data
of Knight and Sterling [31] for partially full pipes with S f = 0.001, diameter D = 0.244 m
and a flat bed with a thickness t. For non flat bed cases, the considered water depths
were H = 0.0813 m and H = 0.2015 m and even though the shear stress distribution
measured varies between the two cases, there is a good agreement between model results
and experimental data in both experiments, as shown in Figure 12. The results of the
performance indicators are εr = 4% and εrms = 5% in the first case and εr = 7% and
εrms = 9% in the second one. Table 2 shows the behavior for flat bed cases. Despite the
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different conditions, there is a satisfactory agreement between the model results and the
measurements in all cases.

Table 2. Model behavior for flat bed cases by Knight and Sterling [31].

Test t/D (H + t)/D S f Description εr(%) εrms(%)

a 0.250 0.499 0.00196 thin flat bed 5.9 6.6
b 0.504 0.666 0.00200 thick flat bed 5.4 7.2
c 0.332 0.750 0.00200 high depth 6.5 7.4
d 0.250 0.666 0.00862 supercritical flow 7.7 9.0

Numerical results
Measurements

Figure 11. Comparison of calculated and measured boundary shear stress distributions in a rough
circular conduit of the experiments of Replogle and Chow [32].

Numerical results
Measurements

Numerical results
Measurements

Figure 12. (a) Channel cross section and notation; and (b,c) comparison of calculated and measured
boundary shear stress distributions in a smooth circular conduit of the experiments of Knight and
Sterling [31].
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4.2.2. Rectangular Channels

For rectangular channels, the available data including shear stress distribution are less
common. Figure 13 compares calculated shear stress distribution with the measurements
obtained by Ghosh and Roy [34] in two experiments carried out on a rectangular channel
(width B = 0.2 m and hydraulic slope S f = 0.00435) with water depths H = 0.175 m and
H = 0.111 m, respectively. The boundary shear stresses are in good agreement in both
cases, being εr = 6% and εrms = 7% in the first case and εr = 11% and εrms = 15% in the
second one. However, small discrepancies are observed which may be due to secondary
flows [34].

Numerical results
Measurements

Numerical results
Measurements

Figure 13. Comparison of calculated and measured boundary shear stress distributions in a rectangular
channel of the experiments of Ghosh and Roy [34]: (a) H = 0.175 m; and (b) H = 0.111 m.

4.2.3. Trapezoidal Channels

In addition, Figure 14 compares the predicted boundary shear stress distribution with
the experimental data of Lane [36] collected in a smooth trapezoidal channel, based on
B = 2.44 m, H = 0.3048 m, S f = 0.001 and channel sidewall slopes of 1V:0.5H. A quite
good agreement between the model results and the measurements is achieved (εr = 7%,
εrms = 11%).

Numerical results
Measurements

Figure 14. Comparison of calculated and measured boundary shear stress distributions in a smooth
trapezoidal channel of the experiments of Lane [36].

4.2.4. Compound Channels

The work by Ghosh and Mehta [37] in a symmetrical rough-bed compound channel
with a 0.2 m wide main channel and two 0.075 m wide floodplains is here regarded. The
floodplains height was 0.1 m above main channel bed, the water depth H = 0.153 m,
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the hydraulic slope S f = 0.0055 and the main channel sidewalls were vertical, whereas
the slope of the floodplain sidewalls was 1V:0.58H. The predicted boundary shear stress
distribution is compared with the experimental data in Figure 15. The numerical model
provides reliable results throughout the whole wetted perimeter except for some local
discrepancies. This can be attributed to secondary currents and to the momentum transfer
between the main channel and its floodplain. Nevertheless, the results are satisfactory
(εr = 16% and εrms = 20%).

Numerical results
Measurements

Figure 15. Comparison of calculated and measured boundary shear stress distributions in a rough
compound channel of the experiments of Ghosh and Mehta [37].

Furthermore, Rajaratnam and Ahmadi [38] performed some experiments on a 1.22 m
wide asymmetric compound channel consisting of a 0.711 m wide main channel and a
0.508 m floodplain on the right. The model is applied for the experiments with greater water
depth (H = 0.1445 m with S f = 0.00045; and H = 0.1814 m with S f = 0.000364). Figure 16
shows the comparison between predicted and experimental shear stress. In general, the
results agree satisfactorily with the experimental data: εr = 16% and εrms = 20% for the
first case and εr = 15% and εrms = 20% for the second one. However, there are local points
with small differences where the shear stress is underestimated, in the vertical walls or in
the floodplain, and it is overestimated in the center of the channel.

Numerical results
Measurements

Numerical results
Measurements

Figure 16. Comparison of calculated and measured boundary shear stress distributions in a com-
pound channel of the experiments of Rajaratnam and Ahmadi [38]: (a) H = 0.1445 m; and (b)
H = 0.1814 m.
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4.3. Influence of Free Surface Boundary Layer

All the above presented numerical results incorporate the free surface boundary con-
dition given by an additional shear stress at the interface between water and air. However,
this effect can be negligible for low values of the water velocity at free surface with air at
rest, as is the case with all the experimental data in the literature, and there is no difference
with null shear stress boundary condition. To study the effect that wind speed could
have, which is common in real open channels, the qualitative influence of wind on the
velocity field and boundary shear stress distribution is analyzed without experimental
data, although the problem has been known for a long time [43]. To do this analysis, the
experiment by Kean et al. [17] is taken as a basis, checking how wind velocity affects the
numerical results. Winds either against the flow direction (negative values) or in the same
direction as the flow (positive values) are analyzed and compared with the basis case,
uw = 0. Note that the analyzed values, |uw| 6 20 m/s, agree with the formulation for
the drag coefficient given by Equation (12). For higher wind speeds, other formulations
collected by Wróbel-Niedźwiecka et al. [27] should be implemented.

As shown in Figure 17 for low wind speeds, |uw| 6 5 m/s, the velocity distribution
in the cross section differs little from the base distribution, so the effect of the free surface
shear stress could be neglected. However, for wind speeds above that value, differences
become more noticeable. For winds against the flow direction, dip phenomenon occurs
even when no secondary currents are considered by the numerical model. The location
of the maximum velocity occurs below the water surface with the dip position heavily
dependent on the wind speed. This phenomenon completely modifies the flow pattern
and the predicted flow rate, decreasing the flow rate by up to 50% of the original for
uw = −20 m/s.

Conversely, for winds in the same direction as the flow, the higher is the wind speed,
the larger is the predicted the flow rate, with a maximum increment of 29% (less variation
than in the case of negative wind speeds). These results highlight that, for real open
channels with considerable wind speeds, the effect of the free surface boundary layer must
be considered for an adequate characterization of the velocity distribution and flow rate.
However, these results should be analyzed and verified with experimental data. Obviously,
the modification of the velocity distribution leads to a change in the boundary shear stress.
Figure 18 represents the boundary shear stress along the wetted perimeter in comparison
with the same at the basis case with null velocity. Again, for lower wind speeds, the bed
stress barely changes. However, for highest values, |uw| > 10 m/s, the bed shear stress
is increased by up to 80% for positive wind values and reduced by up to 90% in the case
of negative speeds. This variation is more noticeable near the water surface, where free
surface shear stress acts closer to the contours. Given these results, it seems clear that the
effect of wind speed cannot be neglected in those cases requiring of accurate estimations
of velocities, flow rates or bed shear stress, and, therefore, the free surface should be
implemented and validated.
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Figure 17. Effect of wind speed on the velocity field for the experiment of Kean et al. [17]. Grey lines
are the results for the case uw = 0 m/s where the calculated flow rate is Q0 = 0.4062 m2/s.
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Figure 18. Bed shear stress considering wind effects respect the case with null wind for the experiment
of Kean et al. [17].
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5. Conclusions

An enhanced treatment of the boundary conditions both at the bottom and at the
free surface for 2D RANS streamwise velocity models in open channel flow is presented,
yielding a simple, economical and fully predictive numerical model to compute the longi-
tudinal velocity and the boundary shear stress distributions in a free surface stream. The
new treatment avoids some of the drawbacks of previous methods. Instead of applying
the momentum balance over each sub-area, the new methodology estimates the boundary
shear stress only focusing on the near-contour region by reconciling the numerical and
theoretical resolutions of the ray velocity profiles where both resolutions could be applied.
This modification reduces computation load, creating a more efficient approach. Another
new feature is that it integrates the free surface boundary layer due to wind effects. Wind
can modify the velocity distribution and boundary shear stress and should be taken into
account in the PDE problem and the balance equation as it can compensate or promote the
downstream component of the weight of water in each sub-area. Its effects are properly
considered in the new method by correctly applying the free surface boundary condition
in the PDE problem. Previous results show the significant influence that wind speed could
have on the flow. The solution is obtained though an iterative procedure that resolves the
governing equations by the finite element method employing error control. The procedure
successfully predicts behavior, without requiring parameter adjustments to achieve better
results or closer agreement with measurements.

The validation was performed by comparing results to measurements of the stream-
wise velocity and boundary shear stress distributions available in the literature. Different
cross-sections were used (circular, rectangular, trapezoidal and compound section), and
the results are satisfactory for all of them. Generally, numerical results are in reasonable
agreement with the magnitude and distribution of the velocity and boundary shear stress
measurements in all cases. The comprehensive validation process and its results support
the reliability of flow models employing the ray–isovel turbulence closure to correctly
estimate the velocity distribution and boundary shear stress for any type of section and
roughness. Discrepancies between numerical results and measured velocity distributions
are mainly due to secondary currents, which are not considered in these models. Despite
this simplification, the proposed treatment properly reproduces the measurement patterns.
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