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Abstract: Direct measurement of unsaturated hydraulic parameters is costly and time-consuming.
Pedotransfer functions (PTFs) are typically developed to estimate soil hydraulic properties from
readily available soil attributes. For the first time, in this study, we developed PTFs to estimate the
soil hydraulic conductivity (log(K)) directly from measured data. We adopted the pseudo continuous
neural network PTF (PCNN-PTF) approach and assessed its accuracy and reliability using two
independent data sets with hydraulic conductivity measured via the evaporation method. The
primary data set contained 150 international soils (6963 measured data pairs), and the second dataset
consisted of 79 repacked Turkish soil samples (1340 measured data pairs). Four models with different
combinations of the input attributes, including soil texture (sand, silt, clay), bulk density (BD), and
organic matter content (SOM), were developed. The best performing international (root mean square
error, RMSE = 0.520) and local (RMSE = 0.317) PTFs only had soil texture information as inputs
when developed and tested using the same data set to estimate log(K). However, adding BD and
SOM as input parameters increased the reliability of the international PCNN-PTFs when the Turkish
data set was used as the test data set. We observed an overall improvement in the performance of
PTFs with the increasing number of data points per soil textural class. The PCNN-PTFs consistently
performed high across tension ranges when developed and tested using the international data set.
Incorporating the Turkish data set into PTF development substantially improved the accuracy of the
PTFs (on average close to 60% reduction in RMSE). Consequently, we recommend integrating local
HYPROPTM (Hydraulic Property Analyzer, Meter Group Inc., USA) data sets into the international
data set used in this study and retraining the PCNN-PTFs to enhance their performance for that
specific region.

Keywords: artificial neural network; soil hydrology; hydraulic conductivity curve; international
soils; Turkish soils

1. Introduction

Direct measurements of soil hydraulic properties in the field and laboratory can be
tedious, laborious, and often expensive due to their significant inherent spatial variability.
Therefore, pedotransfer functions (PTFs) are often developed and used to indirectly esti-
mate these properties by establishing empirical relationships based on the readily available
soil properties such as soil texture, bulk density (BD), and soil organic matter content
(SOM) [1]. The primary soil hydraulic properties include the soil water retention and hy-
draulic conductivity curves (SWRC and SHCC) that define the volumetric water content’s
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nonlinear relationships with the soil tension and the soil hydraulic conductivity, respec-
tively. The hydraulic conductivity decreases as the volumetric water content decreases
because of a reduction in the cross-sectional area of water flow and increased tortuosity
and drag forces [2,3].

The experimental determination of the SHCC is more complicated than the SWRC.
Therefore, the SHCC is often derived from the SWRC and saturated hydraulic conductivity
(Ks) information. A popular four-parameter expression developed by van Genuchten [4]
is widely used for SWRC parametrization, which coupled with Mualem-van Genuchten
model [4,5] is often used for SHCC parametrization using the Ks as a scaling factor. The
SHCC can also be described by Gardner’s empirical expression [6], which in some cases
works similarly or even better than the Mualem-van Genuchten model [6].

The PTFs are mainly developed to only estimate Ks (point PTF) and parameters
of the van Genuchten water retention model (parametric PTF), which are subsequently
used for estimating the SHCC using the abovementioned approach [7–10]. For example,
Schaap and Leij [11] used PTF-based SWRC parameters of van Genuchten equation to
estimate the SHCC. They observed that the best results are obtained when the parameters
Ks and L (a term for the interaction between pore size and tortuosity) were flexible and
not fixed as is the case in the classical Mualem–van Genuchten model. PTFs estimating
unsaturated hydraulic conductivity at specific moisture tensions also exist (e.g., Moosavi
and Sepaskhah [12]). However, little is known about the development and application of
PTFs to directly estimate the SHCC [13].

Multiple sources of error interact in a complicated manner when PTF-driven SWRC
and Ks are used to estimate the SHCC. The first type of error is associated with estimating
the parameters of the van Genuchten model and Ks using parametric and point PTFs,
respectively. The second type of error is related to the Mualem–van Genuchten parame-
terization of the SWRC and SHCC, which is often fitted only using a few water retention
data pairs measured by equilibrium approaches. The SHCC estimations via Mualem-van
Genuchten model can result in poor performance near saturation because of the inability to
account for water flow through macropores [10,14,15]. Furthermore, Ks is a highly variable
soil hydraulic property dependent upon the pore geometry at the scale of interest [14] and
seasonal variability [15]. Significant variabilities in Ks estimations might occur when using
different PTFs modeling approaches [16] and measurement techniques [17], ultimately
reflected in the SHCC estimations.

The pseudo-continuous PTF (PC-PTF) was introduced by Haghverdi et al. [18] as a
PTF development strategy for continuous estimation of the SWRC using machine learning
approaches such as artificial neural networks (NN) and support vector machines [19].
Using high resolution measured data is recommended for developing robust PC-PTFs since
PC-PTF learns the shape of the SWRC directly from the actual measured water retention
data [19].

Schindler and Müller [20] published a soil hydraulic international dataset using the
Evaporation method and HYPROPTM (Hydraulic Property Analyzer, Meter Group Inc.,
USA) system. The HYPROP system (Figure 1) is an automated evaporation-based benchtop
laboratory system that works based on the extended evaporation method [21,22]. The
HYPROP has a relatively fast measurement cycle and provides high resolution reliable
simultaneous measurements of soil water content and unsaturated hydraulic conductivity
within a few days or weeks [23–25]. Haghverdi et al. [26] used an HYPROP measured
Turkish soil data set to develop water retention PCNN-PTFs and reported promising results.
In a companion paper (Singh et al. [27]), we utilized the Schindler and Müller [20] dataset
to develop water retention PCNN-PTFs. However, no PCNN-PTF has been developed
to estimate the SHCC using high-resolution data measured via the evaporation method.
Consequently, this study was carried out to (I) develop PCNN-PTFs for SHCC estimations
by utilizing the abovementioned international [20] and Turkish [26] data sets measured
via the evaporation method, (II) determine the accuracy and reliability of the PCNN-PTFs,
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and (III) assess the performance of the developed models across soil textures and different
ranges of soil tension.

Figure 1. Experimental setup of the extended evaporation experiment using HYPROP system.

2. Materials and Methods
2.1. Soil Data Sets

In this study, two soil data sets were used to develop hydraulic conductivity PCNN-
PTFs and evaluate their accuracy and reliability. The measured hydraulic conductivity data
and the soil textural classification of the samples for both data sets are shown in Figure 2.
The primary data set, hereafter referred to as the international data set, was published by
Schindler & Müller [20] and consisted of 173 soils collected from 71 sites from all over the
world. This data set contains the measurements of water retention, unsaturated hydraulic
conductivity, K(h), and several basic soil properties, including textural data, organic matter
content (SOM), and dry bulk density (BD). The soil hydraulic properties were measured
using the evaporation experiments or the extended evaporation method via the HYPROP
method. A majority of the soil samples in the data set were collected from arable lands, yet
few samples from other land use types such as urban land, grassland, forests, fallow lands
and riverbanks were also present. After screening the international data set, a subset of
samples (i.e., 150 soils with 6963 total K(h) data pairs) was selected to develop PCNN-PTFs.
The characteristics of the selected soils are shown in Table 1. The most dominant texture was
silt loam; comprising 78 soil samples (52% of the data set), followed by loam; consisting
of 18 soil samples (12% of the data set). Values of K(h) were log-transformed because
hydraulic conductivity data are generally log-normally distributed [11]. The measured
log(K(h)) values ranged from −6.64 to 0.98 (0 to 9.65 cm d−1), with an average of −2.26
(0.073 cm d−1). The pF (logarithmic transformation of soil tension in cm of water) values
ranged from 0.22 to 4.21, with an average of 2.47.
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Figure 2. The soil hydraulic conductivity and tension pairs (a), and soil textural distribution for the datasets (b). Dark
orange circles depict the international data set [20] and blue circles represent the Turkish dataset [21,28–30]. pF is the
logarithmic transformation of soil tension in cm of water and K is the unsaturated hydraulic conductivity.

Table 1. Characteristics of soils from international and Turkish data sets used in this study to develop and test pseudo continuous
neural network pedotransfer functions (PCNN-PTFs).

International Data (150 Soil Samples
with 6963 Data Pairs) Turkish Data (79 Soil Samples with 1340 Data Pairs)

Attribute Mean Range SD Mean Range SD
Clay (%) 20.0 0.0–60.0 12.5 34.1 9.4–62.2 15.1
Silt (%) 56.4 0.2–86.8 17.1 30.7 5.2–57.6 8.7

Sand (%) 23.6 3.9–99.8 17.4 35.3 6.0–84.0 17.4
Bulk density (g cm−3) 1.3 0.6–1.7 0.2 1.0 0.7–1.3 0.1

Organic matter content (%) 3.1 0.0–12.0 2.5 1.2 0.0–3.1 0.6

SD: Standard deviation.

The second data set (referred to as the Turkish data set herein) was mainly collected
from areas surrounding Ankara, Turkey, and consisted of 79 repacked soil samples with
1340 K(h) data pairs that were measured via the HYPROP system [26]. In this dataset, the
Ks data (pF 0) were measured using the falling head method with the KSAT instrument
(Meter Group Inc., Pullman, WA, USA). The K(h) points were measured for each sample
with pF ranging from 1.80 to 3.91, with an average of 2.51, and log(K) ranging from −4.75
to 3.27 (0 to 1862 cm d−1), with an average of −1.6 (0.03 cm d−1). Clay was the dominant
texture (38 soil samples or 48.1% of the data set), followed by sandy loam (13 samples or
16.5% of the data set). Further details about the laboratory procedures used to develop this
data set are available in Haghverdi et al. [21,28–30]. More information about HYPROP’s
measurement principles is available in Schindler et al. [28].

A statistical analysis conducted in the companion manuscript [27] using Mahalanobis
distance [29] revealed that these two data sets were independent and most Turkish samples
fall outside the domain of applicability of the international dataset.

2.2. Unsaturated Hydraulic Conductivity Calculations

During HYPROP measurements, saturated soil samples (closed from the base) were
placed on a balance. Two tensiometers were positioned such that the tensiometers’ tips
were at depths of 0.25 L cm and 0.75 L cm, where L was the soil column height (which is
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typically 5 cm in laboratory evaporation experiments). The soil surface was open to the
ambient atmosphere so that the soil water could evaporate. The medial pF value of the
sample was calculated based on the average value of the two tensions measured by two
tensiometers and corresponding water content was calculated based on the mass change of
the soil sample.

The hydraulic conductivity was calculated using the water flow velocity (qi[cm/d])
between time points ti-1 and ti through a horizontal plane that laid exactly in the middle of
the two tension-tips:

qi =
1
2
(∆Vi/∆ti)

A
(1)

where, ∆Vi is the change in water volume in the whole sample (cm3), ∆ti is the time
interval between two consecutive measurement points, and A the cross-sectional area (cm2)
of the column.

The data points for the hydraulic conductivity function were calculated by inverting
Darcy’s equation as:

Ki(hi) =
−qi

{
(

∆hi
∆z

)
− 1}

(2)

where, hi (cm) is the time- and space-averaged tension, ∆hi is the difference of tensions
between the two tensiometer tips, and ∆z (cm) is the distance between the tensiometer
tips. The calculations assume that moisture tension and water content distribute linearly
through the column and, therefore, the arithmetic mean of the tensions at two points was
used. This simplified assumption was shown to provide accurate results because linearity
errors in fluxes and tensions cancel each other out. [23]. The effect of hysteresis on water
flow and transport is well understood [30]. However, since HYPROP measurements are
taken during natural evaporation-based drying of soil samples, only drying hydraulic path
was considered in this study.

2.3. PCNN-PTFs Development

A three-layer feed-forward perceptron model was developed using MATLAB R2019a
(Mathworks, 2019). The transfer functions were the “hyperbolic tangent sigmoid” and
“linear” for the hidden and the output layers, respectively. The Levenberg–Marquardt
algorithm [31] was used for training the models. The maximum epoch (one complete pass
of the training data set through the learning process) was set to 1000 and the best weights
were loaded automatically for testing.

Soil samples were randomly partitioned into 5 folds such that 80% of the data were
used for the development of the PCNN-PTF models and 20% for testing the models. The
bootstrap technique was used on the development set to generate 100 replica datasets, each
containing approximately 67% of the data. The rest of the development data (~33%) were
used for cross-validation of the NN models. The training process was terminated when the
root mean square error (RMSE) of the cross-validation subset began to increase or remain
unchanged. To find the optimal topology of the neural network, the number of neurons of
the hidden layer was iteratively changed from 1 to 14. This process was repeated five times
leaving aside a different fold as the test set each time, such that all samples in the data
set were used for testing the models. The outputs of the 100 PCNN-PTFs with optimum
topology were averaged to obtain the hydraulic conductivity estimations.

2.4. Modeling Scenarios

We evaluated the accuracy and reliability of the PCNN-PTFs (developed using the in-
ternational and the Turkish data sets) with four combination models of the input attributes,
including textural constituents—sand, silt, and clay (SSC), BD, and SOM (Table 2). Model 1
constituted all the input attributes and the logarithmic transformation of soil suction (pF).
Model 2 included SSC and pF. Model 3 included SSC, BD, and pF. Model 4 included SSC,
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SOM, and pF. The log(K (cm/d)) was the output parameter corresponding to the input
pF value.

Table 2. Combinations of input attributes used in this study to develop PCNN-PTFs.

Model Input Attributes

1 SSC, BD, SOM, pF
2 SSC, pF
3 SSC, BD, pF
4 SSC, SOM, pF

SSC: sand, silt, and clay percentages (%), BD: bulk density (cm3 cm−3), SOM: soil organic matter content (%), pF:
the logarithmic transformation of soil tension in cm of water.

Four data partitioning scenarios, as shown in Table 3, were considered when the
international data set was used for training and testing (scenario 1), the Turkish data set
was used for training and testing (scenario 2), the international data were used for training
and the Turkish data for validation (scenario 3), and a combination of the two data sets
was used for training and the Turkish dataset for testing (scenario 4). The accuracy of PTFs
was assessed using a randomly selected subset of the development data set that was not
used to derive the PTF. The reliability was evaluated based on the performance of PTFs on
an independent data set beyond the statistical training limits and the geographical training
area of the development dataset. For example, we estimated the log(K) of the Turkish soil
samples to assess the reliability of the PCNN-PTFs derived using the international data set.
The results of the modeling scenarios were assessed to (i) quantify the improvements in
international PCNN-PTFs for a specific region after incorporating local samples into the
training data set and (ii) determining whether the international PCNN-PTFs trained using
the integrated data works as accurately as the local PCNN-PTFs.

Table 3. Different data partitioning scenarios used in the study to train, test, and validate PCNN-PTFs.

Scenario Data Sets

S1 Training: International, Test: International.
S2 Training: Turkish, Test: Turkish.
S3 Training: International, Test: Turkish.
S4 Training: International + Turkish, Test: Turkish.

2.5. Model Evaluation

The root mean square error (RMSE, Equation (1)), mean absolute error (MAE, Equation (2)),
mean bias error (MBE, Equation (3)), and correlation coefficient (R, Equation (4)) were
calculated for the test data to evaluate the performance of PCNN-PTFs:

RMSE =

√
1
n

n

∑
i=1

(Ei −Mi)
2 (3)

MAE =
1
n

n

∑
i=1
|Ei −Mi| (4)

MBE =
1
n

n

∑
i=1

(Ei −Mi) (5)

R =
∑n

i=1
(
Ei − E)(Mi −M

)
∑n

i=1
(
Ei − E

)2
∑n

i=1
(

Mi −M
)2 (6)

where, E and M are the estimated and measured log(K), respectively; E and M are the mean
estimated and measured log(K), respectively; and n is the total number of measured water
retention points for each model. In addition, the error statistics were calculated separately
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for dominant soil textures at the wet (pF ≤ 2), intermediate (2 < pF ≤ 3), and dry ranges
(pF > 3) of the SHCC.

3. Results
3.1. Importance of the Input Predictors

Figure 3 shows the scatterplots of measured versus estimated log(K) values for the
PCNN-PTFs developed in this study using different combinations of input predictors. All
models showed acceptable performance, demonstrated by the well-scattered data around
the 1:1 reference line except for the Ks estimations in scenario 3 (training: the international
dataset, test: Turkish datasets).

Figure 3. Scatterplots of measured versus estimated log(K) using PCNN-PTFs. S1: training and test: the international dataset,
S2: Training and test: Turkish dataset, S3: training: the international dataset, test: Turkish dataset, S4: training: international
+ Turkish dataset, test: Turkish dataset. Model 1 inputs: sand, silt and clay percentages (SSC), bulk density (BD), and soil
organic matter content (SOM); Model 2 inputs: SSC; Model 3 inputs: SSC, BD; Model 4 inputs: SSC and SOM.

Table 4 summarizes the performance statistics of the models for all the scenarios. For
scenario 1 (training: International, test: International), Model 2 (inputs: SSC, pF) resulted
in the best performance with an RMSE of 0.520 and MAE of 0.406, followed by Model 4
(SSC, SOM, pF) where RMSE was 0.529 and MAE was 0.417. The lowest performance was
observed in model 1 where RMSE was 0.571 and MAE was 0.428. MBE varied from 0.013
to 0.033, demonstrating no substantial under or overestimation of log(K) for all models.
The R values varied from 0.855 to 0.881, showing a high agreement between measured and
estimated log(K) in all models.
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Table 4. Performance of the PCNN-PTFs estimating log-transformed soil hydraulic conductivity data (cm d−1) across four
modeling scenarios.

Training and Test: I Training and Test: T Training: I.; Test: T Training: I + T; Test: T

M RMSE MAE MBE R RMSE MAE MBE R RMSE MAE MBE R RMSE MAE MBE R

1 0.571 0.428 0.013 0.855 0.343 0.227 0.023 0.959 1.097 0.971 −0.959 0.935 0.429 0.312 −0.139 0.947
2 0.520 0.406 0.027 0.881 0.317 0.217 0.011 0.965 1.317 1.254 −1.249 0.954 0.613 0.456 −0.335 0.906
3 0.547 0.418 0.033 0.868 0.336 0.219 0.017 0.961 1.235 1.142 −1.133 0.942 0.453 0.308 −0.165 0.938
4 0.529 0.417 0.022 0.877 0.350 0.243 0.043 0.958 1.243 1.144 −1.132 0.943 0.554 0.400 −0.280 0.920

M: Model, RMSE: Root mean square error, MAE: mean absolute error, MBE: mean biased error, R: correlation coefficient. I: international
data set, T: Turkish data set.

For scenario 2 (training: Turkish dataset, test: Turkish dataset), Model 2 (inputs: SSC,
pF) resulted in the best performance with RMSE of 0.317 and MAE of 0.217, followed
by Model 3 (inputs: SSC, BD) where RMSE was 0.336 and MAE was 0.219. MBE varied
from 0.011 for model 2 to 0.043 for model 4, demonstrating no considerable under or
overestimation of log(K). The R values were high (between 0.958 and 0.965) and similar
among all models.

For scenario 3 (training: the international data set, test: the Turkish data set), model 1
with RMSE of 1.097 and MAE of 0.971 performed the best. Model 2 with RMSE of 1.317 and
MAE of 1.254 showed lower accuracy compared to the other models. The estimated log(K)
values were highly correlated with the measured data (R: 0.935–0.954), yet all models
showed an underestimation tendency (MBE ranging from −1.249 to −0.959). This is
evident in Figure 3 as well, where data points are well scattered but located mainly below
the 1:1 line.

For scenario 4 (training: combined international and Turkish data sets, test: the Turkish
data set), the best performance was observed for Model 3 with RMSE of 0.453 and MAE
of 0.308. Model 1 also had a similar performance. Slight underestimation of log(K) was
observed with MBE ranging from −0.335 for model 2 to −0.139 for Model 1. Correlation
between observed and estimated log(K) was high and similar among all models, with R
values ranging from 0.906 to 0.947.

No distinct relationship was observed between BD and SOM with RMSE values except
for the Turkish clay soils where RMSE declined as BD increased (Figure 4).

Figure 4. The root of mean squared error (RMSE) as a function of bulk density (BD) and organic matter content (SOM) for
the PCNNPTF Model 1 with SSC, BD, SOM as inputs. The model was developed using combined international and Turkish
data sets and tested using the Turkish data set (scenario 4). The error was calculated for each soil sample separately.

3.2. Performance across Soil Textures

The following analysis was only conducted using model 1 as the best performing PTF
in the test phase. Table 5 shows the performance of the PCNN-PTF models for the dominant
soil textures, representing about 89% and 92% of the international and Turkish data sets,
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respectively. When the international data set was used as the training set (scenario 1), clay
loam had higher RMSE and MAE values than other soil textures. RMSE values ranged
from 0.517 to 1.124, MAE values ranged from 0.342 to 0.748, and MBE values ranged from
0.026 to 0.288 for all textures. Furthermore, the model showed a tendency to overestimate
log(K) for all soil textures, except loam, where underestimation of log(K) was observed. The
correlation coefficient (R) values varied between 0.603 in clay loam to 0.881 for silt loam.

Table 5. Performance of PC-PTFs on main textural classes of the international and Turkish data sets
for estimating log(K).

Data Sets Texture RMSE MAE MBE R

Training: I; Test: I SiL 0.517 0.421 0.026 0.881
L 0.612 0.485 −0.180 0.789
SiCL 0.433 0.342 0.144 0.870
CL 1.124 0.748 0.288 0.603
SL 0.593 0.522 0.042 0.700

Training: T, Test: T C 0.252 0.174 0.006 0.978
SL 0.366 0.277 −0.096 0.966
CL 0.206 0.146 0.018 0.982
L 0.395 0.312 −0.048 0.926

Training: I,
validation: T C 0.986 0.863 −0.860 0.961

SL 1.353 1.241 −1.223 0.96
CL 0.964 0.894 −0.894 0.978
L 1.444 1.377 −1.370 0.917

Training: I and T,
Test: T C 0.303 0.218 −0.013 0.972

SL 0.535 0.446 −0.317 0.963
CL 0.230 0.173 −0.094 0.985
L 0.745 0.683 −0.614 0.915

RMSE: Root mean square error, MAE: mean absolute error, MBE: mean biased error, R: correlation coefficient.
I: international data set, T: Turkish data set. SiL: Silt Loam: L: Loam, SiCL: Silty Clay Loam, CL: Clay loam, SL:
Sandy Loam, C: Clay.

When only Turkish data were used for training (scenario 2), RMSE and MAE values
varied from 0.206 to 0.395 and 0.146 to 0.312, respectively. MBE values ranged from −0.096
for sandy loam to 0.018 for clay loam, and no substantial underestimation or overestimation
of log(K) was observed. The agreement between the measured and estimated log(K) values
was very high, indicated by high and similar R values (between 0.926 and 0.982) for all the
models within each soil texture.

When the international data set was used for training and the Turkish data set for
validation (scenario 3), RMSE and MAE values varied from 0.964 to 1.444 and 0.863 to
1.377, respectively. Underestimation of log(K) was observed for all the soil textures with
MBE values ranging from −1.370 to −0.860. Loam had the highest error relative to other
soil textures, while clay had the lowest. High and similar correlation coefficient values
(between 0.917 and 0.978) were observed for all the models and soil textures.

When the Turkish data set was used as a test and a combination of international and
Turkish data sets were used for the training (scenario 4), the RMSE and MAE values varied
from 0.230 to 0.745 and 0.173 to 0.683, respectively. The loam and sandy loam had higher
RMSE and MAE values, while the errors for clay loam and clay were similar to when just
the Turkish data were used for training (scenario 2). The MBE values ranged from −0.614
to −0.013, showing slight underestimation of log (K) for most soil textures except clay
and clay loam where underestimation was not substantial. The agreement between the
estimated and observed log(K) was high, as depicted by the high R values (ranging from
0.915 to 0.985) for all the models.
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3.3. Performance at the Wet, Intermediate and Dry Parts of the SHCC

Table 6 shows the performance of different PCNN-PTFs over three moisture ranges
of the SHCC for the four data partitioning scenarios evaluated in this study. When the
international data set was used for the training and testing of the models (scenario 1), the
RMSE of Model 1 varied from 0.548 in the wet range to 0.603 in the dry range. The MAE
values varied from 0.420 in the wet range to 0.440 in the intermediate range of the SHCC.
The MBE values varied between −0.060 in the wet range to 0.140 in the dry range. The R
values ranged from 0.509 for the wet to 0.640 in the intermediate range.

Table 6. Performance of the PCNN-PTFs (inputs: SSC, BD, OM, and pF) developed to estimate the log(K) at wet (pF ≤ 2)
intermediate (2 < pF ≤ 3) and dry (pF > 3) parts of the SHCC.

Training and Test: I Training and Test: T Training: I, Validation: T Training: I and T, Test: T

Wet Mid Dry Wet Mid Dry Wet Mid Dry Wet Mid Dry

RMSE 0.548 0.570 0.603 0.588 0.317 0.375 2.285 1.002 0.466 0.757 0.400 0.396
MAE 0.420 0.440 0.381 0.471 0.206 0.298 2.158 0.936 0.342 0.602 0.291 0.322
MBE −0.060 0.007 0.140 0.031 0.016 0.109 −2.158 −0.926 −0.292 −0.520 −0.134 0.154

R 0.509 0.640 0.522 0.809 0.860 0.831 0.768 0.785 0.860 0.805 0.791 0.818

RMSE: Root mean square error, MAE: mean absolute error, MBE: mean biased error, R: correlation coefficient. I: International data set, T:
Turkish data set.

When only Turkish data were used for the training and testing of the PCNN-PTF mod-
els (scenario 2), the lowest error was observed in the intermediate range (RMSE = 0.317,
MAE = 0.206, and MBE = 0.016) and the highest error belonged to the wet range (RMSE = 0.588,
MAE = 0.471, and MBE = 0.031). The agreement between the observed and estimated log(K)
was comparable among models with R ranging from a minimum of 0.809 in the wet range
to a maximum of 0.860 in the intermediate range.

When the Turkish data were used as the validation data set (scenario 3), the PTFs
showed their highest performance in the dry range (RMSE = 0.466 and MAE = 0.342) and
their lowest performance in the wet range (RMSE = 2.285 and MAE = 2.158). Despite high
R values (0.768–0.860), a tendency to underestimate log(K) was observed in all regions, as
indicated by negative MBE ranging from −0.292 to −2.158.

When both international and Turkish data sets were used for the training of the models
(scenario 4), the lowest error values were observed in the dry range (RMSE = 0.396 and
MAE = 0.322) and the highest error in the wet range (RMSE = 0.757 and MAE = 0.602).
RMSE values varied from 0.396 in the dry range to 0.757 in the wet range. Negative MBE
values of −0.52 and −0.134 indicated a tendency to underestimate log(K) in the wet and
intermediate ranges, respectively. The R values were high across all soil tension ranges.

4. Discussion
4.1. Accuracy and Reliability of the Developed PTFs

In our study, the best international hydraulic conductivity PCNN-PTF showed the
accuracy (same data set for development and test) and reliability (independent data sets
for development and test) of RMSE = 0.520 and 1.097, respectively. The local PCNN-PTF
developed and tested using the Turkish dataset showed even higher performance, as
expected, with an RMSE of 0.317. Parasuraman et al. (2006) stated that better performance
in estimating Ks is observed when a NN model is trained even on a small set of relevant
data rather than a larger general dataset. Our study emphasizes that a local data set, when
available, should be included in the training of PCNN-PTF for a more accurate estimation
of the SHCC.

Schaap and Leij [6] reported RMSE values ranging from 1.12 to 1.76 for calibration
subset and from 1.18 to 1.77 for an independent validation data set for their hydraulic
conductivity PTFs, indicating lower accuracy and reliability than the PCNN-PTF developed
in this study. Børgesen et al. [7] reported a reasonable accuracy for their hydraulic con-
ductivity PTFs with RMSE ranging from 0.598 to 1.196, yet most of the models showed
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underestimation. The above mentioned studies used the typical procedure to estimate the
SHCC, which relies on estimated or measured Ks values and parametric SWRC PTFs using
NN approach combined with bootstrap. Therefore, the PCNN-PTFs approach developed
and tested for the first time in this study could be used as an alternative high-performance
approach to estimate the SHCC.

Large data sets being used to develop international PTFs typically consist of smaller
data sets, employing different techniques to measure soil hydraulic properties. The com-
monly used devices have discrepancies in Ks measurements because of factors such as
sample size, soil conditions, flow geometry and installation procedures [32]. The same is
true for the various devices used for unsaturated hydraulic conductivity measurements
such as the steady-state pressure membrane method, tension disc infiltrometer, hot-air
methods, and the widely used multistep outflow method [33–35]. We recommend using
HYPROP data sets for developing hydraulic conductivity PCNN-PTFs. PCNN-PTF takes
advantage of the high resolution measured data provided by the HYPROP system to
learn the shape of the SHCC directly from the actual measured data points, unlike the
parametric PTFs where the relationships between the parameters and their predictors
have to be known a priori. Furthermore, using only one method (evaporation experiment)
for obtaining hydraulic conductivity data in the laboratory is expected to improve the
performance of the PCNN-PTFs by eliminating the variance related to employing multiple
measurement techniques.

4.2. Importance of Input Variables

Studies have shown that the systematic variation in Ks is explained by properties
like soil texture, porosity, SOM, and BD [36,37]. According to Zhang and Schaap [38],
adding BD and SOM as input predictors improved the performance of PTFs in most studies
estimating the Ks. Moosavi and Sepaskhah [12] observed that the combination of inputs
SSC, BD, SOM (Model 1 in this study) and SSC (Model 2 in this study) produced the best
accuracy in estimating unsaturated hydraulic conductivity. In our study, considering SOM
and BD as extra input attributes in addition to soil texture did not improve the accuracy
of the international and local PTFs (scenarios 1 and 2). However, adding BD and SOM as
input attributes noticeably enhanced the performance of the PCNN-PTF in scenarios 3 and
4. This result differs from our observation in the companion paper (Singh et al. [27]), where
adding SOM as an extra input did not improve the performance of the water retention
PCNN-PTFs.

Except for scenario 1, BD was a more effective additional attribute than SOM in all
modeling scenarios. Improvements in the estimation of log(K) were observed in other
studies too when BD was included as an additional PTF input predictor [6,39]. The BD,
however, only provides limited information about soil structure as different preferential
flow pathways may result in substantially different soil hydraulic conductivities [40].
Hao et al. [41] reported that Ks is influenced primarily by porosity and macro water-
stable aggregates, which are not among typical PTF inputs. Further studies are needed
to determine the impact of considering additional soil structural input parameters on the
performance of hydraulic conductivity PCNN-PTF.

4.3. Performance across Textural Classes and Tension Ranges

The PCNN-PTFs showed better performance for fine-textured (Clay and Clay Loam)
than more coarse-textured (Loam and Sandy Loam) Turkish soils (scenarios 2, 3, and 4),
which is attributed to a relatively higher number of fine-textured Turkish soil samples. We
observed an overall improvement in the performance of PTFs with the increasing number
of data points per soil textural class (Figure 5). These results concur with the results we
reported in the companion paper (Singh et al. [27]), where high performance was observed
for the dominant soil textures for the SWRC estimations. Since PCNN-PTFs are machine
learning-based models, their performance is expected to improve as more data become
available for training.
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Figure 5. The root of mean squared error (RMSE) as a function of the number of measured hydraulic
conductivity data pairs for each textural class for the PCNN-PTF Model 1 with SSC, BD, SOM as
inputs. The model was developed using combined international and Turkish data sets.

The performance of PCNN-PTFs was consistent across tension ranges when developed
and tested using the international data set, which concurs with the results observed in the
companion paper for soil water retention estimations [27]. Moosavi and Sepaskhah [12]
reported a relatively lower accuracy of the NN-based PTFs to estimate hydraulic conductiv-
ity at the saturated and/or near-saturated tensions. We observed a somewhat higher error
in the wet tension region (pF ≤ 2) for the Turkish data set, primarily when PCNN-PTFs
were developed using the international data set. In our companion paper, however, the per-
formance of water retention PCNN-PTFs was similar in three tension regions. The relatively
higher error in the wet range in this study was because the Turkish data set only contained
Ks data in the wet part (measured via the KSAT instrument), while Ks measurements were
not available for the international data set.

5. Conclusions

We developed and evaluated PCNN-PTFs to estimate the SHCC measured using the
evaporation experiments, mainly via the HYPROP system. The PCNN-PTF approach
showed promising performance for continuous hydraulic conductivity estimation over
a wide range of soil tensions. The HYPROP system offers the advantage of producing
high-resolution soil hydraulic conductivity data over a wide range of soil tensions (pF = 1.5
to 3.5), which is critical for developing robust PCNN-PTF models since this approach
learns the shape of the SHCC directly from measured data. The KSAT instrument can be
employed to measure the saturated hydraulic conductivity (Ks) that can be used along with
HYPROP data. The water retention PCNN-PTFs developed and validated in the first part
of this study (Singh et al. [27]) also performed very well. Consequently, we recommend
the PCNN-PTF approach to derive the next generation of water retention and hydraulic
conductivity models using high-resolution data measured via the HYPROP system.
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