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Abstract: The Caribbean is affected by climate change due to an increase in the variability, frequency,
and intensity of extreme weather events. When coupled with sea level rise (SLR), poor urban
development design, and loss of habitats, severe flooding often impacts the coastal zone. In order to
protect citizens and adapt to a changing climate, national and local governments need to investigate
their coastal vulnerability and climate change risks. To assess flood and inundation risk, some of the
critical data are topography, bathymetry, and socio-economic. We review the datasets available for
these parameters in Jamaica (and specifically Old Harbour Bay) and assess their pros and cons in
terms of resolution and costs. We then examine how their use can affect the evaluation of the number
of people and the value of infrastructure flooded in a typical sea level rise/flooding assessment.
We find that there can be more than a three-fold difference in the estimate of people and property
flooded under 3m SLR. We present an inventory of available environmental and economic datasets
for modeling storm surge/SLR impacts and ecosystem-based coastal protection benefits at varying
scales. We emphasize the importance of the careful selection of the appropriately scaled data for use
in models that will inform climate adaptation planning, especially when considering sea level rise, in
the coastal zone. Without a proper understanding of data needs and limitations, project developers
and decision-makers overvalue investments in adaptation science which do not necessarily translate
into effective adaptation implementation. Applying these datasets to estimate sea level rise and
storm surge in an adaptation project in Jamaica, we found that less costly and lower resolution data
and models provide up to three times lower coastal risk estimates than more expensive data and
models, indicating that investments in better resolution digital elevation mapping (DEM) data are
needed for targeted local-level decisions. However, we also identify that, with this general rule of
thumb in mind, cost-effective, national data can be used by planners in the absence of high-resolution
data to support adaptation action planning, possibly saving critical climate adaptation budgets for
project implementation.

Keywords: coastal risk assessment; sea level rise and storm surge modeling; Caribbean

1. Introduction

The Caribbean region, consisting of its sixteen Small Island Developing States (SIDS),
is among the world’s most vulnerable to climate change. The region supports a population
that exceeds 43 million people, with over 50% living within 1.5 km of the coast [1]. At the
same time, these Caribbean coastal zones are also facing: (1) more intense (and possibly
more frequent) hurricanes and other extreme climate events; (2) sea level rise; (3) sea surface
temperature rise; (4) ocean acidification, and; (5) increasing drought conditions [2–4]. For
example, in 2017, Puerto Rico and Dominica were two of the countries most affected by
weather-related loss events from Hurricane Maria. Over the past two decades, Puerto
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Rico and Haiti stand out as the most impacted SIDS in the region [5,6]. In September 2019,
Hurricane Dorian made landfall in the Bahamas, the strongest ever to hit the island, causing
approximately US$2.5 billion in damages or 7.3% of Abaco Island’s gross domestic product
(GDP) and 2% of Grand Bahama’s GDP [7]. Sea level rise is intensifying the problem and
has accelerated in the Caribbean to +0.725 cm/yr since 2005 with expectations of >0.3m
by 2050 [8]. This is resulting in both ecological and economic detrimental impacts. These
region-wide climate impacts are increasing foreign debt, affecting livelihoods and income,
leading to declines in ecosystem health (loss of coral reefs), exacerbating inland flooding,
and prompting some countries to not meet their Sustainable Development Goal targets.

To address climate impacts across this region and the world, the scientific commu-
nity has concentrated on understanding climate change scenarios and assessing socio-
economic vulnerability to inform climate change mitigation, adaptation, and resilience
plans. Resilience-building requires that stakeholders understand the impacts they face
from climate change and the potential solutions that can help in reaching desired out-
comes [9]. Decision science can help prioritize adaptation solutions and optimize locations
that address climate impacts. When effective solutions are implemented within vulner-
able communities, resiliency is enhanced. This can be attributed to an improvement in
community members’ ability to anticipate, prepare for, reduce the impacts of, cope with,
and recover from the effects of climate change without compromising their long-term
prospects [10,11].

Climate vulnerability assessments provide decision-makers with empirical data that
guides their mitigation and adaptation strategies and informs the development of targeted
interventions [4,12,13]. While these vulnerability assessments are useful, they are often
completed across broad spatial scales, resulting in generalized assessments of issues that are
local and community-specific. Indeed, risk and vulnerability are ultimately dependent on
the social, economic, political, and cultural conditions of communities. Therefore, climate
vulnerability assessments of small island nations should be developed at community scales.

These assessments, when carried out at the appropriate spatial scale to determine
a community’s level of exposure, sensitivity to stressors, and adaptive capacity to man-
age [13] and address the social, economic, and environmental systems that people depend
on. These assessments also consider the protection or restoration of risk reduction services
provided by the natural environment, such as benefits provided by the coral reef and man-
grove ecosystems (sometimes referred to as natural infrastructure or nature-based solutions
(NBS)) within the suite of priority activities to increase climate adaptation [14–18]. There is
growing interest in nature-based (or the more specific ecosystem-based) approaches for
adaptation as cost-effective measures for reducing coastal risk [19,20].

During a critical time where climate change is increasing storm frequency and intensity
and accelerating coastline changes, scientists, practitioners, and managers must be able to
quickly assess flood risk to design adaptation and risk reduction actions on the ground.
Input data and modeling expertise to do these analyses are limited in SIDS, and flood risk
and adaptation analyses are sensitive to the resolution of data and models [19]. It is critical
for modelers to understand these sensitivities in order to select the most appropriate dataset
that effectively answers their management question and budget. This is especially nuanced
as new global DEM datasets are being released with increasing frequency and technologies
for collecting this type of data are becoming more accessible. The National Aeronautics and
Space Administration Shuttle Radar Topography Mission Version 3.0 (NASA SRTM v3),
Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model Version 3 (ASTER GDEM v3), Advanced Land Observation Satellite World
3D - 30m (AW3D30), and recently released NASA Digital Elevation Model (NASADEM)
are the highest resolution freely available digital surface models (DSMs) for Jamaica, at 30m
spatial resolution. Recent work by Kulp and Strauss [21] argues for improved accuracy over
these traditional global elevation models that do not adequately represent true “bare earth”
elevations, particularly in low-lying coastal areas where features such as tall mangroves
interfere with vertical accuracy. This causes sea level rise (SLR) and storm surge models to
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greatly underestimate the flood envelope of impacted coastal populations. The Multi-Error-
Removed Improved-Terrain (MERIT) [22,23] global elevation and Climate Central Coastal
DEM [24] are recent attempts to improve vertical accuracy (i.e., eliminate vegetation cover),
but they come at very different costs and resolutions. The NASADEM [25] is the most
recent attempt to integrate all available global elevation data (e.g., GDEM, AW3D30, and
ICESat laser altimeter) to improve and fill data voids, however, it is a digital surface model
(DSM) product and therefore problematic for coastal SLR and storm surge modeling where
tall and dense vegetation persists [26,27]. Some of these new products come with moderate
to substantial price tags, which may be difficult for stakeholders in SIDS. We aim to assess
whether one can get reasonable assessments of inundation risk from freely available data.

Menéndez et al. [19] is the first study to explore the sensitivity of flood models for
assessing risk reduction benefits of ecosystem-based adaptation measures, comparing the
risks and risk reduction benefits of mangroves in the Philippines to identify where to invest
in new modeling and data acquisition to improve decision-making. They found that coastal
flood risk valuation improves by using high-resolution topography and that flood reduction
benefits of mangroves are better valued by using consistent databases rather than investing
in single measures [19]. They also identify that while global or national approaches are
best suited for screening assessments to identify hotspots and national ecosystem rankings,
lack of modeling capacity and high-resolution data at the local level causes many local
adaptation decisions to be made based on information that is inappropriate at this scale [19].
We aim to build on their work by similarly assessing the sensitivities of coastal risk models
to the resolution of input data, specific to the products that are available in the Caribbean,
and the implications of these model outputs to adaptation and risk reduction decision-
making within a small coastal community in Jamaica.

To investigate the impact of data selection when modeling vulnerability, we consider
several methodological approaches applied at different spatial scales in Jamaica. These
approaches blend and compare bottom-up analyses with national-level models using
local-scale imagery. Our objectives are to (1) compare and identify patterns of sea level
rise and socioeconomic impacts using varying resolutions of input datasets; (2) inform
the appropriate selection of spatial data to better manage climate adaptation funds for
project implementation, and; (3) demonstrate how coastal inundation risk models can be
integrated into a portfolio of evidence to inform the design of climate adaptation solutions,
such as NBS. Following Game et al.’s [28] recommendation, we frame our analysis of coastal
vulnerability to achieve outcomes that follow specific resource-allocation problems. These
outcomes are targeted at: (1) minimizing the amount of people and infrastructure impacted
by storm surge and sea level rise; (2) increasing the coastal protection benefits of natural
ecosystems as a viable climate adaptation solution for SIDS, and; (3) maximizing budgets
available for climate adaptation project implementation. We apply these methods to the
small, coastal community of Old Harbour Bay, Jamaica, and present recommendations for
future research.

2. Materials and Methods
2.1. Climate Change Impacts in Jamaica

Tropical storms and hurricanes impact Jamaica on an annual basis which results in
high wind, heavy rains, and localized flooding, sometimes occurring days prior to and after
the event. Historically, these events have resulted in coastal and inland flooding, damage
to assets and infrastructure, and the loss of lives and livelihoods. Sea level rise in Jamaica
is projected to increase over 1m by the end of the century and has been seen to play a role
in exacerbating inland flooding, shoreline (and beach) recession rates and erosion, and
availability and quality of groundwater [3]. Recent publications [29,30] suggest generalized
shoreline changes across Jamaica. Observations during the period between 1968 to 2010
and projections to 2060 referenced long-term shoreline retreat rates of 0.17 and 0.76 m per
annum, with an average of 0.26 m per annum.
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Some notable events causing severe flooding (wide-scale inundation of dry land,
overflow of rivers, or groundwater seepage) include Hurricane Charlie in 1951, with
432 mm of rainfall, 154 reported deaths, and which cost about US$615 million, Hurricane
Ivan, a Category 4 hurricane in 2004, with 709 mm of rainfall, 17 reported deaths, and an
8% impact on Jamaica’s GDP, and Tropical Storm Gustav in 2008, with 491 mm of rainfall,
20 reported deaths, and a cost of 2% of Jamaica’s GDP [4,31]. The loss and damages
incurred during these events suggest heterogeneity resulting from factors such as socio-
economic conditions of the communities impacted, location of the community including
its proximity and elevation from the coast, and quantity and age of infrastructure, among
others. These are indicators of a community’s sensitivity and adaptive capacity that can be
measured to assess its vulnerability [4,13].

A study of 198 flood events between 1678 and 2010, estimated that flood occurrences
in Jamaica have been increasing, with 35 events occurring between 2000 and 2010 (the
highest during the time period studied) [31]. Since then, Jamaica has experienced severe
flooding events in 2012, 2017, and 2018 [32]. In addition, the twenty-year period comprising
1990–2010 was 49% more active than the forty-year period between 1970–2010 (0.9 events
per annum with reported losses) [31]. Just during the period between 2002 and 2007, where
six strong storm events impacted Jamaica, sixty lives were lost, and damages amounted to
US$1.02 billion [4]. These findings support climate change projections of an increase in the
frequency and costs of storm events. They also reflect development choices that have led to
unregulated and unsustainable urban planning, putting people and property in high-risk
zones. Overall, the average severe flood event costs US$62.1 million or roughly 0.5% of
GDP measured in 2010 values with an annual loss of life rate of 4 people [31]. Although
the majority of the loss and damages during these storms are caused by severe flooding,
Hurricane Gilbert in 1988 is a notable exception since it primarily caused wind damages
estimated at US$4 billion [33].

These loss and damage estimates are highly dependent on the method of assessment
and post-storm data available. The most common type of assessment employed in Latin
America and the Caribbean is the DaLa methodology (https://www.gfdrr.org/en/dam
age-loss-and-needs-assessment-tools-and-methodology, accessed on 8 January 2021), de-
veloped by the Economic Commission for Latin America and the Caribbean (ECLAC),
which uses national accounts and statistics to calculate the financial value of damages and
losses due to disaster events. This methodology uses a sectoral approach and “itemizes
distribution and priority setting based on geopolitical divisions, sectors of the economy,
and different population groupings in the affected area” [34]. The assessment is triggered
by a request from countries and is not applied comprehensively. Accordingly, the data it
provides are limited to post-impact assessment, and more specifically to areas obviously
impacted. It does not readily allow for strategic planning and identification of areas for
prioritized investment in NBS.

2.2. Study Area

Old Harbour Bay (OHB) is located along the south coast of Jamaica in the parish
of St Catherine (Figure 1). It is the largest fishing village in Jamaica and contributes to
the economic viability of the agriculture sector. Land use within the area is supported
by its proximity to six micro-watersheds (Figure 2) and is characterized as agricultural,
commercial, industrial, residential, and recreational. OHB falls within the Portland Bight
Protected Area, the largest protected area in Jamaica, of immense ecological and biological
importance. It is a predominately flat, coastal community, with gullies and rivers which act
as a drainage system in times of heavy rainfall (Figure 3). The community is composed of
about 7388 residents living in 1894 households or dwellings [35].

https://www.gfdrr.org/en/damage-loss-and-needs-assessment-tools-and-methodology
https://www.gfdrr.org/en/damage-loss-and-needs-assessment-tools-and-methodology
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m, acquired on 23 October 2018) and GPS-referenced underwater field data. 
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Figure 3. Orthophoto mosaic of Old Harbour Bay derived from 7352 Unmanned Aerial Vehicle (UAV)
photos collected in November 2019 at a spatial resolution of 3.8 cm.

In OHB, exposure to natural and climate-related hazards such as flooding, storm surge,
and coastal erosion is a significant component of the community’s physical vulnerability.
The majority of the OHB community is situated in a low-lying coastal area of the Rio
Cobre Watershed Management Unit that extends 300 m inland with an elevation that is
less than 1.6 m (mean sea level). The immediate coastal zone is concentrated with human
and infrastructure assets and directly impacted by flooding. Given the area’s low-lying
nature, flooding is a regular occurrence from both upland stormwater flows and storm
surge. This flooding can be attributed to rising seas, poorly designed drainage systems,
and the solid waste management network, as well as the numerous gullies, drains, and
streams that traverse the community’s infrastructure and easily overflow during extreme
rain events.

The estimated shoreline change rates for Old Harbour Bay are at 0.74 m per annum
which may be further compounded as mangrove habitats within eroded zones will be
destroyed or drowned and the remaining mangroves buried with coastal sediments [30].
Further intensification of hurricane peak wind intensity and accelerated SLR rates may
increase the extent of mangrove inundation and reef stress [36,37]. Erosion in Old Harbour
Bay is associated with hurricane winds that generate strong waves and near-shore currents
that can mobilize sediments, as well as SLR. The large dependence on ecosystem-based
livelihoods for fisheries activities, as well as the location of important assets in this zone,
exacerbates the community’s vulnerability, impacting their resilience and ability to re-
cover from sudden shocks. The relatively high exposure necessitates the development of
environmental protective strategies, infrastructure repair, and policy adoption.

Accurate spatial data are needed for a more detailed vulnerability analysis of the OHB
community. These data and models will assist decision-makers in the development of
climate mitigation and adaptation strategies as well as the medium to long-term strategic
plans for the community to address climate change impacts. About 90% of Jamaica’s GDP
is generated in coastal areas, where fisheries and tourism are major sources of the country’s
revenue [38]. Given the community’s contribution to national GDP, it is important that
community-level datasets and models be used to analyze risks and vulnerabilities as
accurately as possible. To address this need, we present existing available environmental
and socio-economic datasets, use cost-effective means to develop new high-resolution
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datasets, and demonstrate how this information can be used to inform sea level rise
impacts and vulnerability analyses, which can serve as the basis for developing community
resiliency plans.

2.3. Topographic and Environmental Data

Flood model results that evaluate sea level rise, storm surge, or riverine flooding
events, can vary greatly depending on the intensity of modeling software used and the
quality of the input datasets applied. Coastal inundation models vary from simple static
bathtub models [39] to more accurate mesh-based hydrodynamic models that use com-
pound wave and water level events [40]. Global SLR and storm surge models have
historically been limited to simple bathtub scenarios due to computing capacity and lack
of finer-scale topographic and bathymetric data needed for hydrodynamic modeling. For
complex coastal flood vulnerability models to be precise, they require several key envi-
ronmental datasets to accurately estimate SLR or storm surge levels, including coastal
elevation, bathymetry, shoreline data, and marine and coastal habitat data (i.e., coral and
mangrove extent). Balancing the quality and expected accuracy of the data and model used
is controlled by project budgets and access to resources.

2.3.1. Digital Elevation Maps

Given the concentration of people and wealth on the coastline and climate change-
driven acceleration of rising sea levels and storm surge from extreme weather events, the
accurate coastal elevation is a critical data layer needed to predict and model the risks to
the estimated 11% of the global population that live in low-lying coastal areas prone to
coastal inundation [41]. To accurately predict the population and infrastructure impacted,
more precise elevation data and improved hydrodynamic models are needed.

For these reasons, modeling coastal inundation potential in OHB required an exhaus-
tive search of available elevation datasets, considering global, national, and local scale
products. Table 1 gives an overview of available digital elevation models (DEM) for Jamaica
and their corresponding sources, spatial resolution, vertical accuracy, and cost.

Table 1. Available Digital Elevation Models (DEM) for Jamaica.

Source of DEM Elevation Dataset Spatial
Resolution (m)

Vertical
Accuracy (m) * Product Cost

Space-based Radar

MERIT DEM 90 12 DSM Free
SRTM DEM v3 30 9–17 DSM Free

NASADEM 30 N/A DSM Free
AW3D30 30 3–12 m DSM Free

CoastalDEM 30 <2 DTM Contact Climate
Central

WorldDEM 12 1–4, depending on
product DSM/DTM $12 per km2

AW3D Standard 2.5, 5 5–7 DSM/DTM $3–17 per km2 (min
area 400 km2)

Space-based
Photogrammetry

ASTER GDEM v3 30 8–17 DSM Free

AW3D Enhanced 0.5, 1, 2 1–2 DSM $95–190 per km2

(min area 25 km2)
Custom

satellite-derived
DEMs (e.g., Maxar,

AirBus)

0.5, 1,2.5, 4, 8 2–10, depending on
product DSM/DTM $50–190 per km2

(min area 100 km2)

Jamaica National
DSM (IKONOS

stereo-pair)
6 unclear DSM N/A

Airborne UAV
Photogrammetry

UAV-derived
elevation model 0.03 m <1 m when calibrated DSM

Depends on UAV
sensor and software

used

* varies depending on the land cover type, budget, and resources used including the amount and quality of vertical ground control and
how extensive post-processing methods were applied (e.g., filtering, precision break lines, manual editing).
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Many studies [42–45] show that the accuracy of the DEM, in both the spatial resolution
and vertical accuracy of the data source, directly influences the modeled coastal inundation
area and underlying population and infrastructure that are impacted [46]. DEMs can be
classified into two different products: (1) Digital Surface Models (DSM) that represent the
Earth’s surface and all objects on it (e.g., vegetation, buildings), and (2) Digital Terrain
Models (DTM) that represent the bare ground with all objects removed. The NASA SRTM
v3, ASTER GDEM v3, AW3D30, and recently released NASADEM are the highest resolution
DSMs freely available for Jamaica, at 30 m spatial resolution. Recent work by Kulp and
Strauss [21] argue for improved accuracy over these traditional global elevation models that
do not adequately represent true “bare earth” elevations, particularly in low-lying coastal
areas where features such as tall mangroves interfere with vertical accuracy (see Figure 4
for comparison of products showing vegetation removal). This causes SLR and storm surge
models to greatly underestimate the flood envelope of impacted coastal populations.
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The MERIT [22,23] global elevation, also freely available, is a recent attempt to improve
the vertical accuracy (i.e., eliminate vegetation cover), however, it is only available at a
90m spatial resolution [31]. The NASADEM [25] is the most recent attempt to integrate
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all available global elevation data (e.g., GDEM, AW3D30, and ICESat laser altimeter) to
improve and fill data voids, however, it is a DSM product and therefore problematic for
coastal SLR and storm surge modeling where tall and dense vegetation persists. The
Climate Central Coastal DEM was derived from the NASA SRTM product, however, the
vertical accuracy was greatly improved using a multilayer perceptron artificial neural
network which effectively removes vegetation cover up to the 20m contour, reportedly
reducing the vertical bias in half, but requires a significant budget [24].

Figure 4 shows a satellite image and comparison of five DEM products for Bajo Yuna
National Park in the Dominican Republic, an area with a dense band of tall mangroves
along the edge of Samaná Bay. Figure 4b–e show freely available 30 m DEM products
while Figure 4f shows the vertically corrected 30 m CoastalDEM product. The Coastal-
DEM represents the closest estimation of ‘bare earth’, with mangroves removed from
the elevation profile. For coastal modeling in a heavily vegetated areas, the CoastalDEM
would be the most appropriate product, as the others would significantly underestimate
coastal inundation. Figure 5 shows the available DEMs for Old Harbour Bay, Jamaica.
There is less apparent variation between the products in Old Harbour Bay since this area
is comparatively less vegetated than Bajo Yuna. However, the variations between these
DEMs in OHB become more apparent when comparing the modeled impacts of sea level
rise on the community (Table 3).
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Figure 5. Comparison of elevation products of Old Harbour Bay, Jamaica. (a) Satellite image showing Old Harbour Bay;
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All of the elevation models applied in this research (Figure 5), excluding the Jamaica
National DSM and the Unmanned Aerial Vehicles (UAV)-derived DSM, are derivatives
of the Shuttle Radar Topography Mission (SRTM) global dataset. The MERIT DEM (90m)
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and Climate Central CoastalDEM (30 m) both improved upon the SRTM data by applying
vertical correction algorithms to remove vegetation. Generally, the cost for these prod-
ucts increases as spatial resolution and vertical accuracy increase. More details on the
distinctions between these DEMs are described in Table 1.

Technologies that can greatly enhance the spatial resolution and vertical accuracy of
local elevation data include LiDAR, X-band airborne radar, and digital photogrammetry,
such as the acquisition of stereo photos from UAVs. Products with higher accuracy often
require a significant budget to collect, as they are not readily available in Jamaica. Costs of
these technologies are scale-dependent: LiDAR becomes more cost-effective over larger
areas [47], while UAV methods are more cost-effective or logistically feasible for small,
local projects. When investments in UAVs and photogrammetry software are made, DEMs
at spatial resolutions of 2–3 cm can be produced for areas on the order of square kilometers
and can provide high-density point clouds that can be filtered using post-processing
software to achieve a ‘bare earth’ DTM. UAV methods require the upfront investment
in equipment and software as well as the knowledge and skillset to collect and process
the data, however, once the capacity is achieved, the cost-effectiveness and benefits of
acquiring these data can multiply, spilling over into many other projects that require these
types of data.

2.3.2. Bathymetry Data

In addition to elevation data, bathymetry and shoreline data are critical inputs for sea
level rise and storm surge models. The General Bathymetric Chart of the Oceans (GEBCO_
2020, https://www.gebco.net/data_and_products/gridded_bathymetry_data/, accessed
on 1 February 2021) gridded bathymetry data are the latest highest resolution and freely
available global bathymetric product at 15 arc-second (~450 m) spatial resolution [48]. The
GEBCO grid is the result of an international collaboration of bathymetric data providers
and interpolated from contours that were digitized from a variety of nautical charts. Recent
efforts have integrated additional ship track information from multibeam and single beam
soundings and satellite altimetry. ETOPO1 (https://www.ngdc.noaa.gov/mgg/global/,
accessed on 1 February 2021) is an older global relief model with a bathymetric grid at 1
arc-minute (~1852 m). These data are useful for deep ocean areas, (>200 m and >500 m
depth), however, higher-resolution data are needed to model the hydrodynamic nature of
the shallow coastal zone.

Using raster modeling, multiple scales of bathymetric data can be blended together to
provide the spatial resolution needed to accurately model coastal inundation events. For
example, local and national scale nautical chart data can be used to supplement existing
data using soundings and contour information that can increase accuracy in the shallower
areas (e.g., 0–100 m depth). Satellite-derived bathymetry (SDB) is an alternative option
for modeling depth in the shallow zone (i.e., <30 m), using clear water column imagery
from freely available Landsat (30 m) or Sentinel-2 (10 m) scenes, or from high-resolution
imagery purchased from private companies such as Planet’s Planetscope Dove (4 m) [49]
or Maxar’s WorldView-3 (1.25 m) [50] satellites. However, developing the bathymetric
derivation algorithm requires software access and technical capacity. Another option is to
purchase these products from companies that specialize in SDB solutions.

2.3.3. Shoreline Data

Shoreline data can similarly be derived from varying scales of satellite imagery. Pre-
vious global shoreline vector products have excluded many small islands (i.e., <1 km2 in
area), however, a new 30 m product developed from annual composites of 2014 Landsat
satellite imagery provides a consistently mapped land and ocean interface boundary with
global ecological coastal units [51]. Older global shoreline products include the Global
Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS) [52] and the World Vector
Shoreline Plus produced at a scale of 1:250 K with 90% of shoreline features within a
500 m circular error of their true geographic location [53]. Shoreline can also be extracted

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.ngdc.noaa.gov/mgg/global/
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from high-resolution imagery [54] or manually digitized using Google Earth, Esri, and
Microsoft Bing image libraries. For example, The Nature Conservancy manually digitized
the shoreline for all areas within the Caribbean Basin through image interpretation of these
image libraries, and this vector file is freely available via CaribbeanScienceAtlas.tnc.org
(accessed on 1 February 2021).

When considering the coastal resilience benefits of marine and coastal habitats (e.g.,
coral reefs, seagrass, mangroves), it is critical to include their mapped spatial extents as
data input for improving SLR and storm surge models. Satellite-derived freely available
global products such as the UNEP-WCMC global distribution of coral reefs [55] and Global
Mangrove Watch [56] provide 30 m resolution. The Allen Coral Atlas is greatly improving
global-scale benthic habitat products, providing PlanetScope Dove-derived maps of coral
reefs and seagrass beds at a spatial resolution of 4 m [57]. While these global-scale products
may be the best data available, it is important to recognize the limitations and implications
of using these datasets for national or local scale analyses. High-resolution satellite and UAV
imagery can be acquired at this scale and used for creating finer scale benthic habitat maps.
These features can also be manually digitized through image interpretation using image
libraries in Google Earth, Esri, or Microsoft Bing. For benthic habitat data in the Caribbean
Basin, including coral reefs and seagrass beds, The Nature Conservancy provides freely
available benthic habitat data that have been produced at the regional scale at 4m resolution,
derived from PlanetScope Dove satellite imagery acquired in 2018–2019, with 13 standardized
habitat classes via CaribbeanMarineMaps.tnc.org (accessed on 1 February 2021).

2.4. Socioeconomic Data Availability

Once a coastal inundation model has been developed, socioeconomic data are needed
to estimate threats to populations and damages to infrastructure under varying storm
scenarios. Gridded population models are available via Oak Ridge National Laboratory’s
LandScan dataset [58] and the European Commission’s Global Human Settlement layer [59],
at 1 km and 250 m resolution respectively (Table 2). WorldPop is available globally at 1 km,
or at the national level for most countries, including Jamaica, at 100 m resolution for years
2000–2020 [60].

Table 2. Available Population Datasets for Jamaica.

Dataset Temporal Resolution Spatial Resolution
(m) Cost

LandScan 2018 1000

Free for U.S. Federal
Government agencies

and for those within the
educational community
for non-commercial use

Global Human
Settlement 2014 250 Free

World Pop 2020 100 Free
Satellite or

UAV-derived
population
estimates

2019 0.03 Variable

Higher accuracy, national census data are often available at the enumeration or munici-
pal district level, however, these data are summarized per district, which can be challenging
to use in small-scale coastal inundation models since these data are not gridded. At the
community level, buildings can be digitized from high-resolution satellite or UAV imagery
and combined with census estimates of people-per-household to derive fine-scale estimates
of coastal flood risk to populations. Gridded models were compared to freely available
2018 census data at the parish level from the Jamaica Statistical Institute (STATIN) for this
study. WorldPop data, with 100 m × 100 m pixels, correlates the closest with census data

CaribbeanScienceAtlas.tnc.org
CaribbeanMarineMaps.tnc.org
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at the parish level and was identified as the best available population dataset for modeling
avoided damages to people, in locations where UAV imagery is not available or cannot
be collected.

Infrastructure data are scarcely available in the Caribbean, although roads, utility lines,
and building footprints can sometimes be found from the relevant government ministries.
The Global Assessment Report on Disaster Risk Reduction (GAR) provides a gridded global
model of economic exposure split by use sector (public, private, government, etc.) at a 1km
resolution. This information is derived from several global datasets including: building
structure typology from the World Agency of Planetary Monitoring and Earthquake Risk
Reduction (WAPMERR); socioeconomic indicators from the UN; GDP distribution from
the World Bank; Built-Up Reference (BUREF) from the Joint Research Center (JRC); among
others. This information can be downscaled to 100 m using available population data
from WorldPop via geospatial resampling methods. Open Street Map (Map data copy-
righted OpenStreetMap contributors and available from https://www.openstreetmap.org,
accessed on 8 January 2021) has spatial data freely available for roads, water towers, cell
towers, and wastewater plants. The Ministry of Health (MoH) and Planning Institute
of Jamaica (PIOJ) have spatial data on emergency facilities, such as hospitals, fire sta-
tions, police stations, and health centers, which can be freely accessed via their websites
(https://www.moh.gov.jm/, accessed on 8 January 2021; https://www.pioj.gov.jm/, ac-
cessed on 8 January 2021; https://jis.gov.jm/government/agencies/national-spatial-da
ta-management-division/, accessed on 8 January 2021; http://www.licj.org.jm, accessed
on 8 January 2021). Additionally, the National Spatial Data Management Division (NS-
DMD) and the secretariat for the Land Information Council of Jamaica (LICJ) collects,
manages, and shares infrastructure data for Jamaica, which is made available through a
data requisition process.

Once a data inventory has been completed, decisions are made on what data are
needed and data gaps that need to be filled. It is important to ensure all data are co-
registered and georeferenced prior to importing for SLR or storm surge modeling. This
can be done using Google Earth, Esri, or Microsoft Bing image base maps at fairly high
resolutions, which vary depending on location, with an average resolution of 1–2 m. High-
resolution satellite or UAV imagery provides the ability to map building footprints of homes
and community facilities at 3 cm–0.3 m resolution, respectively (Figure 6). Local estimates
of housing costs per unit area can be used to calculate infrastructure damages under
flooding scenarios, using the UAV-derived or other digitized format housing footprints.

For the community of Old Harbour Bay, UAV imagery was collected using a DJI Mavic
Pro 2 at an altitude of 120 m (3.8 cm pixel). The UAV collected 7352 images that were
processed using DroneDeploy (San Francisco, CA) cloud-based photogrammetry software
to create a digital surface model (DSM) and orthophoto mosaic that covered 12.82 km2

(Figure 1). The orthophoto mosaic was georeferenced to RMSE <1 m using ground control
targets throughout the community and the vertical elevation was adjusted based on the
observed high tide line. Building footprints and other infrastructure were then manually
digitized via image interpretation.

https://www.openstreetmap.org
https://www.moh.gov.jm/
https://www.pioj.gov.jm/
https://jis.gov.jm/government/agencies/national-spatial-data-management-division/
https://jis.gov.jm/government/agencies/national-spatial-data-management-division/
http://www.licj.org.jm
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3. Results
3.1. Bathtub Sea Level Rise or Storm Surge Modeling

To compare and identify patterns of sea level rise and socioeconomic impacts using
varying resolutions of input datasets, we developed flood envelope maps for several of
the DEMs listed in Table 1 using a simple bathtub approach to simulate 3 m of sea level
rise or storm surge in Old Harbour Bay, Jamaica. Given this model, it is assumed that all
areas with elevation less than 3 m are flooded, regardless of proximity to the coast. Each
SLR/storm surge model was intersected with high-resolution socioeconomic data (e.g.,
building footprints), derived from UAV imagery, to assess the differences in inundation
impacts using different elevation data sources.

Although oversimplified, the bathtub models (see Table 3) illustrate the need for
careful selection of environmental datasets as inputs for coastal inundation modeling.
Under each of these models, it was assumed that any structure within the flood envelope
constituted 100% damage to people and infrastructure. Our analysis was done to identify
the magnitude of the differences in assessments of coastal risk when using different DEM
datasets. A census estimate of 3.2 people/household for this parish was applied across
the entire building footprint layer, regardless of the size or function of the structure [61].
Similarly, an estimate of US$65.50 per square foot was calculated as an average value
for properties in the Old Harbour Bay community using costs and square footages of
online property listings from several realtor sites and applied to all buildings digitized
from UAV imagery. There is no regulated system for house prices in Jamaica and market
value varies according to rural, urban and peri-urban as well as historical and cultural
values. Additionally with an expansion in the housing market, low interest rates, and
an influx of foreign investors, the housing market is now experiencing a boom in new
construction especially apartments and townhouses. This has led to a shift in market prices.
To obtain the average property cost for the community of OHB, approximately ten sites
were systematically scanned looking at offers for sale, comparable for similar properties
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and characteristics of the property. Information was collected for fifteen units and costs
averaged. These results are not meant to predict SLR/storm surge risk exactly, rather
comparatively. For specific coastal risk assessments in the area, we have used complex
hydrodynamic and coastal inundation models, coupled with depth damage curves [29].

Table 3. Calculated damages to people and infrastructure under 3 m-digital surface model (SLR) using various DEM datasets.

Elevation Dataset People
Flooded

Infrastructure Flooded
(USD)

Old Harbour Bay UAV Imagery
Flooded to 3 m SLR/Storm Surge

(Bathtub Model)

Multi-Error-Removed
Improved-Terrain (MERIT) (90 m) 2896 people US$40.0 million
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Table 3. Cont.

Elevation Dataset People
Flooded

Infrastructure Flooded
(USD)

Old Harbour Bay UAV Imagery
Flooded to 3 m SLR/Storm Surge

(Bathtub Model)

UAV-derived Elevation Model
(The Nature Conservancy, 3.8 cm) 9619 people US$172.5 million
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Though higher resolution or vertically corrected datasets are generally preferable, the
use of these DEMs may not be feasible for national-scale assessments due to cost constraints.
For complex hydrodynamic inundation modeling, there is also a tradeoff between DEM
resolution and processing times. The results here demonstrate that higher resolution and
vertically corrected DEMs also tend to give higher SLR/storm surge damage estimates.
For example, the NASADEM and the CoastalDEM are both 30 m resolution, however, the
CoastalDEM represents improved vertical accuracy resulting in damage estimates greater
by 1596 people and $15.7 million USD. The UAV-derived DEM has the highest spatial
resolution at 3.8 cm and estimates the greatest damages at 9619 people and $172.5 million
USD, a difference of 6723 people and $132.5 million when comparing the results of the
coarsest resolution DEM (MERIT, 90 m).

3.2. Complex Hydrodynamic Modeling

A complex storm surge model and subsequent damage assessment were developed
by Beck et al. [29] for the entire country of Jamaica using the input datasets outlined
in Table 4 as part of a project for the World Bank and Government of Jamaica. This
assessment included multiple storm scenarios and estimated avoided damages to people
and infrastructure attributed to the coastal protection benefits provided by mangroves.
This storm surge risk assessment combined a variety of high-resolution national databases
with complex hydrodynamic models such as XBeach [62].

Storm surge flooding was assessed for 1 in 5-, 25-, 50-, 100-, and 500-year storm
events with and without mangroves. Modeled output shows flood height values in meters
based on a 375 m × 375 m pixel. Flood heights were binned into four groups: less than
0.5 m flood height, 0.5–1 m flood height, 1–2 m flood height, and greater than 2 m flood
height. Population and infrastructure damages were calculated based on damage functions
developed by the European Commission’s Joint Research Centre (EU JRC). These functions
assume that any level of flooding to a building constitutes 100% damage to the population
in that household. They estimate damages 60%, 85%, and 100% damages to infrastructure
based on 0.5 m, 1 m, and 2 m flooding thresholds, respectively.

Nationally, the avoided damages were calculated at the enumeration district level,
resulting in the coastal inundation protection benefits of mangroves per district. These
estimates are based on global, gridded models: the 2015 JRC-EU Global Human Settlement
Layer (250 m) for population and the GAR17 (UNISDR)—Total, Residential, Industrial
Stock for property values. The GAR17 was downscaled from 1km resolution to 250 m
resolution using resampling methods. These modeled socioeconomic datasets were utilized
because there are no national datasets available for building footprints. The resulting
avoided damages in the community of Old Harbour Bay were found by aggregating
the results within its 14 enumeration districts (see Table 5). Although higher-resolution
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elevation, habitat data, and shoreline data derived from UAV imagery were available for
Old Harbour Bay, there was no technical or budgetary capacity to run a multivariable
storm surge analysis at this scale. This complex, multivariable analysis reveals a much
greater level of detail and more realistic storm surge estimates than the bathtub models
described in Section 3.1 [29].

Table 4. Input datasets used for the Jamaica national-level storm surge analysis.

Data Type Source Spatial Resolution Temporal Resolution

Digital Elevation Model Government of Jamaica national DSM
(derived IKONOS stereo-paired mages) 6 m 2004

Bathymetry

A blend of (1) Landsat-derived
bathymetry from IHC (0–25 m depth); (2)

Navionics nautical charts-interpolated
bathymetry (25–100 m depth); and (3)

ETOPO1 (>500 m depth)

10 m nearshore, 1 km deep
ocean –

Shoreline OpenStreetMap global coastline shapefile 10 m –

Mangroves Baseline: Government of Jamaica – 2005
Current: The Nature Conservancy 1–2 m 2013

Population JRC-EU Global Human Settlement Layer 250 m 2015
Economic Exposure

(stock/property)
GAR17 (UNISDR)—Total, Residential,

Industrial Stock
1 km downscaled to 250 m

using GHS population layer 2017

Table 5. Modeled avoided damages in Old Harbour Bay, Jamaica, attributable to mangroves under 2
storm scenarios using different socioeconomic datasets.

National Assessment

People Protected Avoided damages to assets
1-in-100 years storm 858 people $29 million USD
1-in-500 years storm 4958 people $45 million USD

4. Discussion

The impacts of climate change compounded by poor planning in urban areas have led
to increased vulnerability in coastal communities. Modeling the impacts of storm surge and
SLR is crucial for understanding and developing policies for risk reduction and targeted
coastal management [63]. Local governments need to be able to visualize potential flooding
zones in order to implement actions for better disaster management and urban planning.
In addition, public awareness of high-risk flood areas is essential to better prepare for these
hazards and strategically implement risk reduction actions via improved infrastructure
and nature-based solutions. We suggest a thorough examination of available datasets prior
to executing a flood model and urge data users to understand data limitations—matching
the appropriate data to the scale of the project, within budget constraints.

Our case study presents two types of models, a simple bathtub model and a complex,
hydrodynamic inundation model, that can be applied at different scales using various
datasets, to assess coastal inundation risk. As expected, the results of coastal risk assess-
ments vary greatly depending on the quality and assumptions of the underlying data. We
find significant disparities, for example, in the quality of the SLR/storm surge maps when
using different DEMs, with lower resolution DEMs underestimating flood risk at the local
level. The vertical accuracy of elevation datasets also varies greatly and impacts coastal
risk estimates in areas with coastal vegetation, such as mangroves. In our study site of Old
Harbour Bay, we found that the use of a vertically corrected DEM (Climate Central Coastal-
DEM) estimated risk to 1596 more people and US$15.7 million more in infrastructure than
an equal resolution (30 m) DEM that was not vertically corrected (NASADEM). We find that
the highest-resolution (3 cm) UAV-derived DEM estimates the risk to 3565 more people and
US$71.3 million more in infrastructure than the 30 m Climate Central Coastal DEM. These
results suggest that DEM spatial resolution and vertical accuracy heavily affect coastal risk
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estimates. Flood model resolution impacts on coastal risk estimates are less clear from our
results. As compared to coarse bathtub models, complex hydrodynamic models offer the
ability to more specifically model risk under varying storm scenarios and to quantify the
benefits of flood reduction benefits of mangroves under those scenarios. Coarse bathtub
models cannot present this level of clarity on the benefits of nature-based solutions for
coastal risk reduction benefits. However, Menéndez et al. [19] identified that improvements
in flood methods had the least improvement in all risk assessments, indicating that coarse
bathtub models give a fine approximation of risk.

Advanced elevation modeling technologies, such as LiDAR, are typically more ac-
cessible in developed countries that have greater resources and budgetary capacities.
Consequently, these data are generally less expensive to collect per unit area and produce
elevation products that are more accurate and better suited for inundation modeling [47].
For example, the U.S. Geological Service has plans to complete the acquisition of LiDAR-
derived elevation products throughout the US by 2023 and make these DEM products
publicly available [64]. However, due to smaller land masses and economic constraints in
SIDS [65], high-resolution elevation data are often scarce and prohibitively expensive to
collect. This implies weighing available dataset costs against risk assessment benefits to
match an input dataset or modeling technique to a management question is not always
simple. We found that less costly and lower resolution data and models provide up to
three times lower coastal risk estimates than more expensive data and models, indicating
that investments in better resolution DEM data are needed for targeted local-level deci-
sions. However, we also identify that, while high-resolution datasets are well-suited to
support the development of plans and policies to address localized risks, there is value in
using the lower resolution, national-level estimates at the community level, when no other
datasets are available. These lower-resolution datasets can provide a ballpark estimate
for decision-making, reserving climate adaptation budgets for intervention actions on
the ground.

Models can provide insight into where climate adaptation actions would be most effec-
tive, however, limited adaptation budgets must be conserved for implementation response.
We concur with the suggestions of Menendez et al. [19] that for local, high-resolution
flood estimates, we must consider how to combine data and methods to produce the best
possible result while minimizing expenses, rather than assuming the use of the highest
resolution methods is best. Preston et al. [66] identified that investments in adaptation
science in the past have not necessarily translated into adaptation implementation, due
to a variety of mental models, or heuristics, used in climate adaptation research. This
includes the ‘predict and respond’ heuristic, in which a strong emphasis is placed on
developing insights into future climate and socioeconomic trends, including projections of
future societal and/or ecological vulnerability. Preston et al. [66] state that while 61% of
relevant papers endorse this ‘evidence-based’ approach to decision-making and planning,
it’s critical for decision-makers to note that uncertainty cannot be eliminated from these
models, and the assumption that more accurate/precise information is needed to adapt
to climate change may not always be valid [67,68]. Preston et al. [66] suggest that climate
adaptation research should pivot from the ‘predict and respond’ heuristic to ‘predict and
learn’, in which modeled vulnerability estimates are not used for their literal, direct ap-
plication in decision-making but instead to identify sensitivities and thresholds [69,70],
facilitate discussion [71,72], and contribute to a portfolio of evidence that may inform
possible adaptation responses [66].

In instances where lower resolution DEMs are utilized, policymakers and planners
should take note that the derived damage is often underestimated. We find that there can
be more than a 3-fold difference in the people and property flooded based on the source
DEM that is used. Our DEM analysis serves as a proxy, highlighting the importance of the
appropriate selection of input environmental datasets on the SLR and storm surge model
results. Differences in coastal risk estimates can also have substantial effects on funding
availability for hazard mitigation, disaster recovery, and climate adaptation. This can
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affect the assumed cost-effectiveness of strategies—including nature-based strategies such
as coral reef or mangrove restoration for coastal flood mitigation and climate adaptation.
Furthermore, because of data limitations in developing countries with limited resources that
impair data and analyses at granular levels, planning and implementation of adaptation to
address coastal changes and the impacts of SLR are often hindered.

As suggested by Preston et al. [66], the coastal risk estimates discussed in this paper
were integrated into a portfolio of evidence used to develop a suite of climate adapta-
tion solutions to mitigate storm surge and SLR risks. Our portfolio for OHB included
satellite-derived land cover and benthic habitat maps, an analysis of high-risk areas for
sedimentation within the greater watershed, a rapid ecological assessment, and expert
advice from climate adaptation scientists. Though the feasibility of these solutions is still
under review by the community, these proposed solutions aim to comprehensively address
ecological threats to coastal habitats and socioeconomic vulnerability to coastal inundation
in the community using NBS, improved management, and livelihood strategies. NBS
includes ecosystem-based adaptation strategies such as coral nurseries, a living breakwater,
and mangrove and seagrass replanting to increase flood protection benefits of these habi-
tats. Improved management solutions aim to mitigate risks to these coastal and marine
habitats and include the installation of moorings, invasive species management, long-term
monitoring, seasonal closures, special protection zones, and policies requiring tertiary
treatment for all new coastal developments. Livelihood strategies aim to address com-
munity resilience and awareness and include establishing community-based ecotourism,
after-school sustainability programs, community resilience building workshops, a recycling
program, and the development of emergency action plans.

Suggested future research could include comparing the population and infrastructure
impacts derived from national models with those of community models to identify a
potential rate of difference to estimate a rule of thumb for interpretation of national models.
For example, we identified a roughly 3-fold difference in people and property flooded with
a simple bathtub model utilizing global versus local elevation datasets. A more rigorous
comparison using complex inundation modeling with multivariable environmental inputs,
as well as several community sites, could potentially identify a more reliable difference
factor.
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https://www.globalmangrovewatch.org/; 4m-resolution, Dove-derived shoreline—https://caribb
eanscienceatlas.tnc.org/; hand-digitized mangrove data for the insular Caribbean—https://storym
aps.arcgis.com/collections/58321fb0f35f4659a1f508630d45c76c; benthic habitat data at 4m resolution,
derived from Planetscope smallsat satellite 2017–2018 scenes—https://storymaps.arcgis.com/collect
ions/58321fb0f35f4659a1f508630d45c76c; LandScan—https://landscan.ornl.gov/; Global Human
Settlement—https://ghsl.jrc.ec.europa.eu/; World Pop—https://www.worldpop.org/. Restrictions
apply to the other datasets used such as the Jamaica census data. This data was obtained from The
Statistical Institute of Jamaica (STATIN). STATIN provides a repository for certain Jamaica national
datasets. This Institute is able to respond to data requests for research purposes when the contact
form is completed at: https://statinja.gov.jm/.
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