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Abstract: Climate change has increased the temperature and altered the mixing regime of high-
value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help
provide a time series to allow an assessment of the ecological implications of this. Non-parametric
multiplicative regression (NPMR) was used to visualize and understand the changes that have
occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine
lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak
followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with
lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency
for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were
significant in NPMR included time, air temperature, total phosphorus, winter temperature, and
winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a
maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The
cause was probably cascading effects from increased winter temperatures, reduced winter mixing,
and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal
climate drivers.

Keywords: global warming; oligo-mesotrophic lakes; optical sensors

1. Introduction

Lakes are a useful medium through which to see the effects of climate change. Their
nature as a semi-contained system, catchment, and lake basin with a distinct and fast-
moving seasonal succession of flora and fauna, especially in plankton, marks them as
rapidly responding ecosystems ideally suited to observe change. While the response may
be complex resulting from interacting pressures, lake typology, and position on the trophic
gradient, there is also significant value in interpreting an integrated signal to understand
the impact on the natural environment [1,2].

Climate change is an important driver of global biodiversity in lakes and has been
ranked third after invasive species and land-use change [3]. Projections suggest that climate
change will have a much more widespread and substantial effect in the coming decades,
altering land cover, hydrology, nutrient cycling, and species composition [4,5].

The global increase in summer surface temperature has been estimated as 0.34 ◦C
decade−1, but the influence of local and lake-specific parameters such as morphology
means that there is not often regional consistency to these trends [6]. In addition, many lakes
in Europe now no longer cool to 4 ◦C, the maximum density of water. This critically affects
a key mechanism, colder water sinking, by which deep lakes mix [7]. The ecological effects
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of climate change are complex, lake-specific, and often depend on multiple interacting
pressures [8]. For example, phytoplankton can undergo changes to species composition,
production, size structure, and phenology, which are likely to result in (and from) significant
alteration to ecosystem functions at several trophic levels [2,9,10]. Higher temperatures
in summer and more stable stratification has been predicted to lead to increased harmful
algal blooms [11].

The deep subalpine lakes are of key economic importance in northern Italy, and
their size and depth make them a key regional water resource requiring priority man-
agement [12,13]. A warming trend has been detected in the lakes, with annual average
surface temperatures increasing 0.017 ◦C yr−1 and 0.032 ◦C yr−1 in summer [14]. This has
led to more stable stratification in the lakes, increasing the isolation of the lower layers
(hypolimnion) from the upper layers (epilimnion) with no complete mixing since 2006.
This reduced mixing has led to a decreasing trend in oxygen concentrations in the hy-
polimnion, with the result that climate now exerts more control on oxygen than trophic
status in these lakes [15]. This has also reduced nutrient transfer from the hypolimnion to
the epilimnion as documented for Lake Garda, resulting in alterations to phytoplankton
composition [16]. Generally, a process of oligotrophication of the epilimnion is occurring
in the deep subalpine lakes while total phosphorous (TP) in the hypolimnion is increas-
ing or remains stable [17]. Most studies have attributed the cause to long-term climate
change and fluctuations in large-scale regional climate drivers such as the North Atlantic
Oscillation (NAO) and especially the East Atlantic pattern (EA) during winter [15–17]. The
implications of climate change in altering chlorophyll-a and phytoplankton groups have
also been shown to be challenging to predict even with an eight-year calibration period at
a monthly resolution for Lake Maggiore [18].

In this context, satellite remote sensing can enable the observation of a suite of func-
tionally relevant indicators of water quality and ecosystem conditions for the study of
long-term environmental trends in lakes [19]. A bibliometric analysis [20] has shown how
optical remote sensing of lakes has expanded substantially over the past 50 years, with a
sharp increase in the past 10–15 years as a consequence of improvements in sensor resolu-
tion. In this context, one of the most studied parameters is phytoplankton and, in particular,
chlorophyll-a as a proxy of phytoplankton biomass. The spatial coverage and temporal
sampling frequency achievable with satellite images absolutely provide novel insights into
phytoplankton dynamic processes in lakes [21] that cannot be easily captured through in
situ sampling [22,23]. In Europe, remote sensing has been identified as a key component of
future implementation of the Water Framework Directive (WFD) that requires lakes are
ecologically assessed using biological quality elements, including phytoplankton [24–26].

As regards the use of satellite observations of phytoplankton in subalpine lakes,
several studies have been published since the mid-90s [27] for developing and testing
algorithms to retrieve chlorophyll-a from space (e.g., Giardino et al. [28] and references in
Odermatt et al. [29]), whether for assessing chlorophyll-a changes in single lakes [30] or for
the entire subalpine lake district (e.g., Bresciani et al. [31] and reference therein). Specific
studies have also been performed for assessing phytoplankton growth as a consequence
of Saharan dust depositions [32], detecting cyanobacteria blooms [33,34], or to analyze
phytoplankton dynamics in relation to lake surface water temperature [35,36].

Here, we examine a 16 year (2003–2018) time series for four deep subalpine lakes
with the objective of identifying changes in chlorophyll-a in the context of climate change.
Satellite observations of chlorophyll-a provide a higher temporal resolution that, in addition
to their capacity to integrate signals over a large spatial area of the lake, allow a novel
synoptic standardized picture to be leveraged to examine regional changes. We expect
that the lack of deep mixing since 2005/2006 should be manifested in a disruption to
the ecological functioning of the lake visible in altered chlorophyll-a seasonal patterns
and concentration.
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2. Materials and Methods
2.1. Study Sites

The 4 lakes are situated in the subalpine region of northern Italy and are all large
(Figure 1, Garda: 368 km2, Como: 145 km2, Iseo: 61 km2, and Maggiore: 212 km2).
Owing to climatic conditions and the deep maximum depth of the lakes (Garda: 350
m, Como: 410 m, Iseo: 258 m, and Maggiore: 370 m), mixing historically only occurred
every 7 years, typically down to a depth of 200 m during cold and windy winters, while
mixing in Iseo was prevented by a salinity gradient. The last deep mixing event was
during 2005/2006 [15,16,37]. Total phosphorus trends have been analyzed for several
depth aggregations from 1992–2016 [15]. Trends and recent (2016) concentrations were
reported as increasing in Iseo (90 µg L−1) and Maggiore (13 µg L−1) and declining in
Garda (18 µg L−1) and Como (35 µg L−1) for spring whole-column averages. However, the
increases in Maggiore and Iseo were attributed to increasing hypolimnetic concentrations,
whereas epilimnion (0–20 m) concentrations have been relatively stable after the 2005/2006
mixing event [15].
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Figure 1. Location of the four subalpine lakes in Northern Italy and South Switzerland.

2.2. Collection and Processing of Satellite Data

The satellite measurements of chlorophyll-a concentrations used in this study were
obtained from 4 optical sensors that allowed us to cover the temporal range 2003–2011 and
2014–2018. The older set of data were provided by MERIS (Medium Resolution Imaging
Spectrometer) onboard of the Envisat-1 platform for 9 years and offered imagery data with
a spatial resolution of 300 m. The more recent dataset was built with images acquired
by optical sensors OLI (Operational Land Imager), MSI (multispectral instrument), and
OLCI (Ocean and Land Colour Instrument), onboard Landsat-8, Sentinel-2, and Sentinel-
3, respectively. The multispectral MSI sensor provided imagery data with a geometric
resolution of 10 m to 60 m, the OLI sensor was 30 m, while the OLCI data offered a 300 m
pixel resolution. Considering that the twin Sentinel-2 and Sentinel-3 satellites have been
operational since 2015 (5 days revisit time) and 2017 (1–2 days revisit time), respectively,
and adding the 16-day revisiting time of Landsat-8 as well as the fact that some lakes can be
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revisited twice due to the overlap of adjacent paths, there is at last an adequate replacement
of MERIS, which had a 2–3 days revisit time.

For each sensor, satellite observation of chlorophyll-a data were obtained by processing
cloud-free at-satellite-radiance data corrected for radiometric noise (e.g., atmospheric
effects) to allow the computing of chlorophyll-a from atmospherically corrected images.
In particular, for MERIS data, the processing was based on the method described in
Odermatt et al. [29], which has been successfully adopted and validated in the study
area [28,31]. In brief, radiometric noise was corrected using the BEAM-VISAT software
(SMILE correction) [38], adjacency effects using the tool ‘Improved Contrast between Ocean
and Land’ [39], and for simultaneously performing the correction of atmospheric effects
and the retrieval of chlorophyll-a the ‘Case-2 Regional neural network processor’ was
used [40,41].

In the case of newer OLI, MSI, and OLCI imagery, data have been processed using
validated methods that were easily adaptable to the configurations (e.g., spectral setting)
of the 3 sensors [34,42]. Briefly, the radiative transfer 6SV code [43] was used to first correct
imagery data from atmospheric effects. Chlorophyll-a was then retrieved using the tool
BOMBER [44], which implemented a bio-optical model that was parametrized with the
specific inherent optical properties of subalpine lakes [34,45,46]. The consistency of results
was further examined in this study by carrying out an ANOVA on the differences between
field and satellite data, and no evidence was found for differences among the sensors
(F = 0.3, p = 0.83, Figure S1).

For each chlorophyll-a product inferred from MERIS, OLI, MSI, and OLCI, regions of
interest (ROI) were defined to extract the average value. The ROIs were defined to cover
the equivalent surface area in units of km2 thus as to be not dependent on pixel size, which
varied across the sensors. The ROIs positions are listed in Table 1 and a buffer of 1 km from
the land was used to exclude the issues of shallow waters, mixed pixels, and residual noise
for having miss-corrected adjacency effects.

The NAO and EA values were obtained from NOAA-CPC (https://www.cpc.ncep.
noaa.gov/products/precip/CWlink/pna/nao.shtml (accessed on 2 April 2020)). Climatic
data were obtained from ERA5—the 5th generation ECMWF reanalysis for the global cli-
mate and weather (monthly averaged data on single levels) (https://cds.climate.copernicus.
eu/cdsapp#!/home (accessed on 15 January 2020)). Data used for analysis included: 10 m
u-component of wind, 10 m v-component of wind, total precipitation, 2 m temperature
(temperature of air at 2 m above the surface). The wind components were used to calcu-
late wind speed and direction. The fraction of cloud cover and specific humidity were
obtained from the ERA5 monthly averaged data on pressure level, with all data documen-
tation available online: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+
documentation (accessed on 15 January 2020). Total phosphorus data were obtained from
regional authorities (ARPA Lombardia, ARPA Veneto) and published values [15,37]. Winter
average values (DJF: December, January, February) were also calculated for NAO, EA, and
air temperature as this has previously been found to be a key controlling parameter for
these lakes [15,16,47]. The approach to analysis, primally based on satellite and climate
data compiled and available at the global level should also ensure that the approach was
scalable and portable to other areas, an important criterion for global change assessments.

Table 1. The locations of the Regions of Interest (ROI) used to analyze satellite data.

Lake ROI ID Latitude Longitude

Maggiore Ghiffa 45◦57′6.91” N 8◦37′48.78” E
Garda 371 45◦33′29.89” N 10◦40′38.70” E
Como Como 45◦49′42.62” N 9◦4′42.20” E
Iseo Montisola 45◦41′28.99” N 10◦4′32.51” E

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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2.3. Statistical Analysis

Nonparametric Multiplicative Regression (NPMR) [48] was used to estimate the
response of average monthly chlorophyll-a to climate and environmental parameters listed
above. NPMR can define response surfaces using predictors in a multiplicative rather than
in an additive way. This method was progressive in better defining unimodal responses
more typical of ecological data than other methods such as multiple regression [48]. It has
previously been applied to model tree species distribution [49], the response of lichens
to climate change [50], and in the time series analysis [51]. NPMR was applied using the
software HyperNiche version 2.3 [52]. The response of chlorophyll-a was estimated using
a local mean multiplicative smoothing function with Gaussian weighting. NPMR models
were produced by adding predictors stepwise with fit expressed as a cross-validated R2

(xR2), which can be interpreted in a similar way as a measure of fit as a traditional R2.
NPMR models were evaluated using a Monte Carlo procedure where concentration was
randomized, the procedure rerun, and the proportion of models (p) (with the same number
of predictors) with an xR2 greater than or equal to the original model evaluated. The
sensitivity, a measure of the influence of each parameter included in the NPMR model,
was estimated by altering the range of predictors by +/−0.05 (i.e., 5%) with resulting
deviations scaled as a proportion of the observed range of the response variable. Therefore,
a value of 1 would correspond to a change of equal magnitude in response and predictor
variables. Sensitivity can be used to evaluate the relative importance of variables included
in models because NPMR models are unlike linear regression and have no fixed coefficients
or slopes. The order of inclusion of variables in the models was less important. Instead of
fitting coefficients, in NPMR, tolerances were fit. These were reported in original units and
represented one standard deviation of the smoothing function. Kendall’s tau test and the
Theil-Sen slope for the significance and estimate of time series trends were carried out on
environmental data in R [53]. Regression was performed in R [54].

3. Results

Chlorophyll-a in the four lakes showed significant variation over the 2003–2018 period
(Figure 2). The temporal patterns could be considered as three phases. In the first phase
up until 2010 (Como, Iseo) or 2012 (Garda, Maggiore) the seasonal pattern was typically
defined by a significant bloom occurring during winter/spring (December-March) followed
by a clear water phase and summer/autumn peaks. The second phase was defined by a
period of low chlorophyll-a in Lakes Como and Iseo (2010–2011), Maggiore (2013–2014),
and from 2014 an extended period of lower values in Garda. The third phase, comprising
the remaining period up to 2018, had a seasonal pattern with less defined spring blooms
and a tendency for annual maxima to occur in summer. The satellite data had gaps where
no suitable images were available, including a large gap where the MERIS sensor satellite
was not available in 2012. Nonetheless, the aforementioned transition in seasonal patterns
was still visible, changing from essentially a concave to a convex annual pattern with more
prominent mid-year concentrations.

In order to better understand the variation in chlorophyll-a over time, we carried out
a non-parametric multiplicative regression analysis on each of the lakes (Table 2). The
models for all four lakes were significant, with xR2 ranging from 0.49 to 0.64. Time and air
temperature were consistently included in models for all four lakes. Variables averaged
over the winter period were also included in the models for all lakes: Temperature (Garda)
and DJF NAO (Maggiore, Iseo, Como, Italy). The concentration of total phosphorus was
also included in the model for Lake Iseo. The sensitivity value provided an indication of
the importance of the variables in the models. In Lake Garda, winter temperature had the
highest sensitivity value (0.31), and in Iseo and Como the monthly temperature had the
highest sensitivity (0.23 and 0.27, respectively). In Maggiore, the time variable had the
highest sensitivity (0.54). Monthly temperature sensitivity values ranged from 0.23–0.27
among the four lakes.
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Table 2. Results of NPMR (Non-Parametric Multiplicative Regression) models for Chlorophyll-a (2003–2018). xR2 =
cross-validated R2; Ave. size = Average neighbourhood size; Tol. = Tolerance; Sen. = Sensitivity. DJF_◦C = December,
January February mean temperature; DJF_NAO = December, January February mean North Atlantic Oscillation values; TP
= Total Phosphorus.

Lake
xR2 Ave. Size Variable 1 Tol. Sen. Variable 2 Tol. Sen. Variable 3 Tol. Sen. Variable 4 Tol. Sen.

Chl-a

Garda 0.58 5.50 Time 62.04 0.04 ◦C 4.02 0.25 DJF_◦C 0.28 0.31
Como 0.49 6.00 Time 16.83 0.26 ◦C 3.42 0.27 DJF_NAO 0.77 0.08
Iseo 0.64 5.50 Time 77.70 0.04 ◦C 2.44 0.23 TP 2.60 0.10 DJF_NAO 0.81 0.08

Maggiore 0.37 6.50 Time 11.22 0.54 ◦C 3.74 0.23 DJF_NAO 2.80 0.01
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Figure 2. Chlorophyll-a derived from satellite in four subalpine lakes from 2003–2018.

Contour plots were produced to visualize model results for chlorophyll-a with tem-
perature over time (Figure 3). The contour lines and color intensity represent chlorophyll-a
in 1 µg L−1 increments. Common to all the lakes were the higher concentrations in the
bottom left of the figures occurring at lower temperatures (<10 ◦C) typically found over
the winter-spring during the period 2003–2010. Directly above this, in the upper left,
were lower concentrations typically found at higher summer temperatures during this
period. This pattern then appeared to change. For Lakes Como and Maggiore, from about
2010 or 2013, the pattern was inverted, with higher concentrations now being found at
higher temperatures (summer) and lower concentrations at lower temperatures in the
winter-spring. Garda and Iseo appeared to transition to lower concentrations with more
uniform concentrations at all temperatures.

The directional influence of the other variables was examined through additional
NPMR response plots (see Supplementary Materials). In Lake Maggiore, only a minor
influence of the climate index DJF NAO was indicated by the low sensitivity value (0.02,
Table 2), and this is visible in the response plot showing only a very marginal increase
in chlorophyll-a at more negative values of the DJF NAO (Figure S2). In Lake Como,
positive values of the DJF NAO were associated with higher estimated chlorophyll-a
concentrations up until about 2011, when the reverse was true with more negative values
leading to higher chlorophyll-a (Figure S3). Similarly, in Iseo, positive values of the DJF
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NAO were associated with higher estimated chlorophyll-a concentrations, the influence
of which declined from 2009 (Figure S4). Total phosphorus was also included in the
model for Iseo and was predicted to increase chlorophyll-a concentrations as would be
expected (Figure S5). In Lake Garda higher chlorophyll-a was associated with lower DJF air
temperatures (Figure S5). It is interesting that the EA index was not included in the models
rather that the NAO—this may be because of its relationship with temperature—which was
already selected for model inclusion. For example, winter air temperature was positively
correlated with winter EA for Como (rS = 0.82, p < 0.01), Iseo (rS = 0.69, p < 0.01) and Garda
(rS = 0.58, p = 0.02) but not Maggiore (rS = 0.42, p = 0.11), where it was more correlated with
the NAO (rS = 0.68, p < 0.01).
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As mentioned above, the seasonal pattern centred around summer appeared to un-
dergo a shift from a concave to a convex pattern (Figure 2). In order to examine this shift in
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the seasonal pattern in more detail, we fitted a second-order polynomial to chlorophyll-a
each year between April and October. The coefficient of the squared term was then assessed
to see if it was changing from positive (indicating a concave curve) to negative (indicating
a convex curve) over time. A significant negative trend was found for Lakes Como, Iseo
(p ≤ 0.002), and Garda (p ≤ 0.05) but not for Maggiore (p = 0.08) (Figure 4).

To indicate environmental change over time that may be contributing to the disrup-
tion and alteration of chlorophyll-a concentrations, we tested trends in a longer dataset
(1980–2018) for the four lakes (Table 3). Trends in air temperature for all four lakes were
highly significant, with slopes ranging from 0.062 to 0.069. Similarly, DFJ air temperature
slopes ranged from 0.049 to 0.073. The total increase in annual average ranged from 2.3
to 2.6 ◦C over the 39 years. Rainfall and wind speed did not show a significant difference
in annual averages with the exception of Lake Iseo, which had a slight decline in wind
speed (Table 3).
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Table 3. Sen slope results on annual data from 1980–2018. *** = p ≤ 0.001, ** = p ≤ 0.01.

Parameter Garda Maggiore Iseo Como
◦C 0.062 *** 0.062 *** 0.069 *** 0.069 ***

DJF◦C 0.049 ** 0.054 *** 0.073 *** 0.063 ***
Wind speed 0.000 0.001 −0.002 ** −0.001

Rain 0.000 0.000 0.000 0.000

4. Discussion

The dataset covered four lakes across the Italian-Swiss subalpine region of differing
trophic conditions. Examination of the dataset and NPMR model contour plots indicated
that there had been a disruption to the pre-2010 pattern of well-defined spring peak, clear
water phases followed by summer peaks. Following a one or two-year period of low
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chlorophyll-a (which extended for Lake Garda), the seasonal pattern had less defined
spring blooms and a tendency for annual maxima to occur in summer. Contour plots
from the NPMR analysis indicated that this pattern of shifting spring to summer maxima
was similar for Como and Maggiore, while Garda and Iseo had less pronounced spring
chlorophyll-a over time. The consistency of this pattern of change suggests a regional
controlling influence such as climate rather than catchment-specific factors.

All of the NPMR models included a winter climatic parameter (DJF NAO or winter
air temperature), indicating the importance of regional climate patterns in controlling
chlorophyll-a. In Lake Garda, colder winter temperatures were found to increase the
chlorophyll-a concentration, and its importance was underlined by it being the most
sensitive parameter included in the NPMR model. In Lake Como, the influence of the
DJF NAO appeared to change from 2011 with more negative values leading to higher
chlorophyll-a. Similarly, in Lake Maggiore, concentrations were predicted to be higher at
more negative DJF NAO from 2011 but only marginally so. In contrast, in Lake Iseo, more
positive values of the NAO consistently led to higher chlorophyll-a. Although EA was
not directly included in any of the models, a more negative EA is known to be associated
with colder air temperatures [16] and a significant correlation with winter temperature was
found for Lakes Como, Iseo, and Garda in this dataset. As temperature was preferentially
selected by the models, EA may not have explained residual variation and, therefore,
would not be included in models. Further evidence for a change in chlorophyll-a pattern
was evident in a shift from a concave to a convex seasonal pattern centered around summer
visible in the plotted time series. This was examined using the coefficient of the squared
term of the second-order polynomial. The lakes had a significant trend in the coefficient,
reflecting a shift from a concave to a convex pattern between April to October with the
exception of Lake Maggiore. Interestingly a steeper slope and higher r2 were observed for
more eutrophic lakes such as Iseo and Como compared to Garda and Maggiore, indicating
that nutrient concentrations may condition the change in seasonal pattern. However, it is
recommended to test this observation by conducting a wider application of this method to
other deep lakes undergoing alteration to stratification across a nutrient gradient.

The destabilization of stratification with lower surface water temperatures and sinking
of colder water in winter is one of the principal mechanisms contributing to deep lake
mixing [7,55], and positive values in the EA and NAO, resulting in higher winter temper-
atures that are likely to critically alter this process. The winter EA has been found to be
increasing since the 1950s [16]. A recent analysis on 635 lakes worldwide has predicted that
for 100 lakes, their mixing regimes are likely to be altered under climate change scenarios,
with some at risk of becoming permanently stratified, reducing nutrient upwelling, and
decreasing hypolimnion oxygen [56]. This may be the situation for this set of subalpine
lakes as positive values in the EA and NAO, and higher winter temperatures have been
linked to a shallower mixing depth and the failure of the subalpine lakes to fully mix since
2005/2006 [15]. The observed decline in spring chlorophyll-a and alteration of the seasonal
pattern is, therefore, likely a response to lower transport of nutrients to the epilimnion
and the altered physical structure imposed by climate-driven changes to the stratification
regime. The large-scale warming in the northern hemisphere since the 1970s has been
attributed to anthropogenic radiative forcing and also to the multidecadal pattern of the
North Atlantic Oscillation (NAO), which had a positive phase from the 1980s to the early
2000s, resulting in poleward heat transport [57]. However, the next decade may see a more
negative phase with lower temperatures [57], and this could increase the likelihood of a full
overturn in these lakes, which, in some cases, would transport substantial amounts of nu-
trients, given their accumulation in the hypolimnion, and radically alter the phytoplankton
dynamics [15,16].

Total phosphorus concentration was significant in the NPMR for Iseo, and this lake
had relatively the highest concentrations over the examined time period (Rogora et al.,
2018). Previous analysis found that these subalpine lakes had broadly stable epilimnion
TP concentrations over the period (Rogora et al., 2018) and this is probably a contributing
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factor as to why the influence of climate on chlorophyll-a was detectable. Given the strong
deterministic effect of phosphorus in controlling algal populations [58], it is likely that in
many other lakes globally, the variation in nutrients will obscure the influence of climate
change on chlorophyll-a. While rainfall was not included directly in any of the NPMR
models, the increasing frequency of extreme rainfall events has been linked to transporting
nutrients to Lake Maggiore supporting summer blooms of cyanobacteria that have occurred
regularly since 2005 [59]. Wind speed was not included in the NPMR for the lakes.

The observation of a period of disruption to the cycle of one to two years is interesting.
It may represent a lag phase when the phytoplankton community is adjusting to changed
environmental conditions resulting from reducing water column mixing. Although given
the significant diversity in the phytoplankton and the persistence, at least at a low density
of many species, it would be unusual that some species would not respond quicker [60]. In
addition, in the ocean, reduced mixing has been found to lead to oscillations and disruption
to phytoplankton through increasing loss of nutrients via sinking phytoplankton coupled
with less upward movement of nutrients from lower layers [61]. However, the reduction
in production driven by ocean stratification [62] was not, in purely proportional terms,
as notable as the drop observed here. Further work is needed to examine the changes
in species composition and drivers behind this period of low chlorophyll-a in order to
understand if there are lessons on the implications of climate change for other ecosystems.
In Lake Garda, the chlorophyll-a continued to be consistently lower after 2012, the reasons
for which are uncertain but could be related to the fact that the temperature is consistently
1 to 2 ◦C higher in this lake compared to the others [15], which could strengthen the
stratification further inhibiting nutrient transfer to the epilimnion.

The increase in temperature with climate change, mediated by the NAO, has led to
an earlier occurrence of the spring diatom bloom in Sweden based on March NAO values
(Weyhenmeyer et al., 1999). While the key climatic driver of warmer temperatures leading
to earlier spring bloom may be clear, the implications posed by the absence of winter mixing
may be more complex. It is expected that the species composition and abundance of the
phytoplankton are likely to be altered and undergo disruption to the established seasonal
succession of species. Ordinated long time series of phytoplankton community composition
have shown shifts from being associated with euphotic depth and nutrient ratios in the
1980s to stratification strength and thermocline depth in the 1990s [63]. Moreover, while
blooms of cyanobacteria are notably favored by increasing water temperature and column
stratification in nutrient-rich lakes, blooms of different phytoplankton groups or taxa may
occur in oligotrophic conditions at analogous physical conditions of high water column
stability. Mougeotia, a filamentous green phytoplankton species that competes well at lower
nutrient levels [64,65] and stratified conditions, recorded mass developments during recent
decades in some large subalpine lakes such as Lakes Geneva, Garda, and Maggiore [66].
In particular, it was observed to dominate at over 80% of total phytoplankton biomass
during the summer of 2011 in Lake Maggiore, the highest value in records dating from
1984. Filamentous green algae, smaller diatoms, cyanobacteria, and other species capable
of depth regulation are favored with intensified stratification [63]. Similarly, in Lake Garda,
the increased stratification resulted in lower epilimnion nutrients and was found to lead to
a shift to motile species such as dinoflagellates and cryptophytes as well as changes in the
cyanophyte community [16]. Alteration of the phytoplankton community, development
timing and magnitude of seasonal peaks in chlorophyll-a can have cascading effects on
the ecosystem, impacting zooplankton and higher trophic levels such as fish [10]. Further
investigation at high temporal resolution is needed on summer nutrient and plankton
dynamics to understand the increased chlorophyll-a concentrations better.

Climate change can have a significant influence on lakes through indirect and unan-
ticipated pathways. This study found reduced winter turnover likely exerted significant
control reducing the concentration of chlorophyll-a but also considerably altered the sea-
sonal pattern. At higher latitudes, an increase in the length of the growing season has
been attributed not to a direct influence of higher temperatures but rather to an increasing
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proportion of rain relative to snow resulting in earlier delivery of the nutrient load to
lakes [67]. While climate change may have direct physiological consequences associated
with higher temperature, often the effects of the change on the structural functioning of the
catchment and lake can have more powerful effects [11]. The restructuring of ecosystems is
likely to be of more important than individual species temperature thresholds and difficult
to anticipate.

Satellite observations may have proved essential in revealing these trends in chlorophyll-
a concentration over time. The benefits of using remote sensing to assess chlorophyll-a are
the good spatial, temporal, and synoptic ability allowing several lakes to be assessed in a
consistent approach [28]. While data gaps are a feature of the satellite record, the principal
pattern of a switch from a concave shape (spring peak, clear phase, and summer/autumn
peak) to a convex shape (dominant summer concentrations) was visible from the satellite
record alone. This is important to demonstrate as the approach could be used to examine
alterations in plankton dynamics from climate change in unmonitored lakes globally.
However, it would be important to account for differing optical lake types to ensure a
better relationship between reflectance and chlorophyll-a [68]. Opportunities to extend such
approaches have recently been advanced with the European Space Agency’s commitment
to providing data on climate variables for lakes, including chlorophyll-a [69]. An important
drawback of using remote sensing is the satellite’s inability to provide a depth profile of
chlorophyll-a, with satellite estimates being dependent on light penetration equating to 90%
of Secchi depth [70]. Chlorophyll-a is well known to vary significantly with depth—often
having a maxima below 10 m with particular species adapted to live even deeper [71,72].
This may be important given the switch to more motile species such as dinoflagellates and
cryptophytes as in Lake Garda [16]. It is possible that the lower surface chlorophyll-a in
Lake Garda recorded by satellite could be an artifact and reflect a shift to motile species
occurring at a deeper depth.

Ideally, a high-resolution dataset covering temporal, spatial, and depth gradients
would be available to allow a comprehensive analysis. Several observations can be gathered
per month by satellites, often during the summer period when cyanobacterial blooms occur,
thereby defining these events more adequately than a fixed field schedule could afford [73].
However, cloud cover often means that one or more months may not have adequate data.
An alternative approach could incorporate in situ or modeled data, although as field data
are often depth-integrated, this could be challenging. Some approaches have aggregated
many years of data to define seasonal patterns, such as 10-year sliding windows [67].

In Europe, the Water Framework Directive (WFD) requires that lakes are ecologically
assessed using biological quality elements, including phytoplankton (chlorophyll-a as well
as taxonomic composition). Ecological status is measured as deviation from reference con-
dition, which varies depending on lake type and geographic region [22,23,74]. The system
adopted for alpine lakes included only altitude, mean depth, alkalinity, and lake size [75].
However, the mixing characteristics of the lake were included as optional type parameters
in the directive [22]. Climate change may, therefore, create pressure to alter management
targets and strategies as the lake typology and, therefore, ecological status boundaries
may effectively change, presenting a management dilemma between unobtainable goals
and the need to protect and improve water quality [4]. While chlorophyll-a may decline
with continued stratification, superficially indicating an improvement, other biological
quality elements such as macroinvertebrates in the sub-littoral and profundal zones may
deteriorate given the lower oxygen concentrations below the thermocline [76]. Climate
change may, therefore, test whether the intentions of the WFD to appraise the structure
and functioning of freshwater ecosystems can be realized given current approaches.

Answering the question as to whether a tipping point has been passed, leading to a
regime shift and alternative state for the subalpine lakes, can risk being caught in semantics.
A strict interpretation of a tipping point is one past which a previous ecological state cannot
be regained, an irreversible change [77]. Obviously, the permanency of this depends on



Water 2021, 13, 866 12 of 15

future climatic trends. However, frequent past anomalies in the mixing behavior of lakes
are likely a predictor of future regime shift with climate change [56].

5. Conclusions

A significant change in the seasonal pattern of chlorophyll-a occurred in the four
subalpine lakes under study between 2003–2018. There was a shift from a dominant
spring peak, clear water phase, and summer peak to a weakened spring peak with more
prominent summer concentrations. Non-parametric multiplicative regression indicated
that winter climatic variables were important, with higher values of the NAO and higher
temperatures likely reducing the amount of thermal mixing in the lakes. The key driver
is, therefore, likely to be higher winter temperatures linked to the failure since 2005/2006
of the lakes to mix fully, resulting in lower nutrient concentrations in the epilimnion. The
satellite estimation of chlorophyll-a and its capacity to gather a regional synoptic picture
may have proved essential in revealing the changing trend over this 16 year period. The
permanency of this significant change to the subalpine lakes will depend on climate change
and inter-decadal climate drivers.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/6/866/s1, Figure S1: Boxplot showing the difference from mean chlorophyll-a among sensors
used. No evidence was found for a difference among sensors (ANOVA, F = 0.96, p = 0.42, n = 5.5).
Differences were based on chlorophyll-a determined in-situ (within a 3-day timeframe) and that
estimated using the sensors aboard the different satellites used in this study. Figure S2: Lake Maggiore
response curves for chlorophyll-a (µg L−1) with DJF NAO. Figure S3: Lake Como response curves
for chlorophyll-a (µg L−1) with DJF NAO. Figure S4: Lake Iseo response curves for chlorophyll-a
(µg L−1) with DJF_EA and TP. Figure S5: Lake Garda response curves for chlorophyll-a (µg L−1)
with DJF Temperature ◦C.
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