Next Article in Journal
Portraying the Water Crisis in Iranian Newspapers: An Approach Using Structure Query Language (SQL)
Previous Article in Journal
Optimal Design of District Metered Areas in a Water Distribution Network Using Coupled Self-Organizing Map and Community Structure Algorithm
Open AccessArticle

Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications

Institute of Geography and Geoinformatics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
*
Author to whom correspondence should be addressed.
Academic Editors: Ying Zhao and Guido D’Urso
Water 2021, 13(6), 837; https://doi.org/10.3390/w13060837
Received: 20 January 2021 / Revised: 14 March 2021 / Accepted: 16 March 2021 / Published: 19 March 2021
(This article belongs to the Section Water, Agriculture and Aquaculture)
Soil water content or soil moisture content is considered one of the most critical properties of the soil for crop production, irrigation, and environmental studies. The technical development of soil moisture measurement devices is swift, but calibration among field conditions is still not entirely resolved. Accurate calibration requires samples taken right next to the sensor that disturbs the site and changes the soil conditions. Real field operation requires the probe to represent larger areas that have undisturbed soils around the probe. These would describe the parcel’s general soil conditions and start providing data from the time of installation. This study aimed to compare several potential solutions for off-site calibration of an operational EnviroScan sensor (Sentek Technologies, Stepney South, Australia). The performances of the default and soil texture-specific equations provided by the manufacturer were compared with the field and laboratory calibration approaches. Two statistical parameters, coefficient of determination (R2) and root square mean error (RMSE) was used to determine logarithmic model results. The results show that the default calibration equations in all three classes have relatively low performances with RMSE values of around 10–15 and R2 values ranging from 0.4 to 0.8. However, significant refinement was achieved by selecting texture-specific equations from the manufacturer’s libraries. The soil texture-specific equations of the EnviroScan often yielded quite satisfactory results, with RMSEs ranging between 2 and 4. Similar RMSE values were achieved from the laboratory calibration exercises, but the reapplication potential of these equations was often questionable due to the severely changed soil conditions of the laboratory processed soil compared to the field soil conditions. View Full-Text
Keywords: Sentek capacitance probe; soil water content; calibration Sentek capacitance probe; soil water content; calibration
Show Figures

Figure 1

MDPI and ACS Style

Kibirige, D.; Dobos, E. Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications. Water 2021, 13, 837. https://doi.org/10.3390/w13060837

AMA Style

Kibirige D, Dobos E. Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications. Water. 2021; 13(6):837. https://doi.org/10.3390/w13060837

Chicago/Turabian Style

Kibirige, Daniel; Dobos, Endre. 2021. "Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications" Water 13, no. 6: 837. https://doi.org/10.3390/w13060837

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop