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Abstract: Soil water content or soil moisture content is considered one of the most critical properties
of the soil for crop production, irrigation, and environmental studies. The technical development of
soil moisture measurement devices is swift, but calibration among field conditions is still not entirely
resolved. Accurate calibration requires samples taken right next to the sensor that disturbs the site
and changes the soil conditions. Real field operation requires the probe to represent larger areas that
have undisturbed soils around the probe. These would describe the parcel’s general soil conditions
and start providing data from the time of installation. This study aimed to compare several potential
solutions for off-site calibration of an operational EnviroScan sensor (Sentek Technologies, Stepney
South, Australia). The performances of the default and soil texture-specific equations provided
by the manufacturer were compared with the field and laboratory calibration approaches. Two
statistical parameters, coefficient of determination (R2) and root square mean error (RMSE) was used
to determine logarithmic model results. The results show that the default calibration equations in all
three classes have relatively low performances with RMSE values of around 10–15 and R2 values
ranging from 0.4 to 0.8. However, significant refinement was achieved by selecting texture-specific
equations from the manufacturer’s libraries. The soil texture-specific equations of the EnviroScan
often yielded quite satisfactory results, with RMSEs ranging between 2 and 4. Similar RMSE values
were achieved from the laboratory calibration exercises, but the reapplication potential of these
equations was often questionable due to the severely changed soil conditions of the laboratory
processed soil compared to the field soil conditions.

Keywords: Sentek capacitance probe; soil water content; calibration

1. Introduction

Soil water content (SWC) or soil moisture content is considered as one of the most
critical properties of the soil for crop production, irrigation, and functioning of terrestrial
ecosystems. The vertical and lateral flow of water on earth and through the soil determines
patterns of eluviation and illuviation [1]. In particular, it strongly affects the land surface
fluxes for water and energy balances, thereby influencing the temperature, evapotranspira-
tion, and runoff generation and supporting the growth of vegetation [2]. To date, accurate
monitoring of soil moisture is critical for many environmental and hydrological applica-
tions, and commercial sensors have been used widely to detect the soil water content [3].
Many soil water content sensors are currently available to assist in the scheduling of irri-
gation and aid in soil science research. Some of these include tensiometers (measure soil
water tension or suction [4]), neutron probes (measure moisture content in soil through by
recording back-scattered slow neutrons [5]), and capacitance-based (made up of multiple
sensors that measure the electrical field frequency used by the device or measure the dielec-
tric constant of the soil media surrounding it) sensors, i.e., frequency domain reflectometry
(FDR) [3,6,7]. FDR sensors have been used mainly as equipment for indirect measurements
of SWC because they allow an easy and non-destructive [8] method of measurement if
compared with traditional methods. Mazahrih et al. [9] underlined the importance of soil
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moisture sensors operating in plastic access tubes inserted in the soil, i.e., downhole soil
moisture sensors, for research and precision irrigation scheduling. Downhole sensors have
the advantage of being mounted with minimum soil disruption around the entry tube
relative to other soil moisture sensors, meaning that it is not required to excavate any soil
pits and test soil water content over a soil profile. Among the downhole sensors, there are
Sentek (Sentek Technologies, Stepney South, Australia) soil moisture sensors.

The Sentek soil moisture sensors were initially made available to the general research
community to measure soil water content. Later it was integrated into operational irrigation
controlling/scheduling systems. Sentek (Sentek Technologies, Australia) soil moisture sen-
sors originate from Australia, though they have been used in other parts of the world [10].
They compromise three sensors—stand-alone sensors (EnviroScan and Drill & Drop) and
portable probes (Diviner 2000 probes). In this paper, stand-alone probes (herein called
EnviroScan) were used as the investigation instrument.

The EnviroScan sensor is a stand-alone continuous soil water monitoring system [11].
It is acclaimed as one of the world’s leading irrigation monitoring and scheduling device
by growers and researchers [3,11]. The EnviroScan sensor consists of a network of probes
that support an array of sensors for soil water. The sensors continuously monitor soil
water changes, highlighting the crop’s dynamic water use in environmental conditions and
irrigation management strategies.

Several methods for measuring soil water content have been developed that utilize
the dielectric constant of the soil, water, and air to determine volumetric water content (θv).
The dielectric constant of pure water at 20 ◦C is 80.4, soil material is between 3 and 7, and
the air is 1. Capacitance devices respond to small changes in θv because a relatively small
amount of water with its high dielectric constant can significantly increase the average
dielectric constant of soil, air, and water mixture. Since the soil’s electrical capacitance
changes with soil type, limitations occur in gravelly and coarse stony soils where air spaces
are more abundant than finer soils, and the soil’s overall capacitance is low. These methods
must be calibrated to the specific soil textures due to differences in dielectric behavior from
soil physical and chemical properties.

This technology is spreading fast in irrigation control. Reliable measurements require
the probe to be deployed on representative positions having the same soil conditions as
the rest of the field. Therefore, it needs to be deployed right after the seedbed creation and
sowing to ensure the same soil conditions that the crop is growing on. Any disturbance that
makes the site different from the field conditions limits the accuracy and reliability. This
makes the “traditional” calibration unsuitable for operational sensors, when calibration
has to be done fast, right after the deployment, to assist the irrigation from the beginning of
the vegetation period. There is no time for long field calibration, and any local disturbance
around the probe—like sampling—would change the sites’ soil conditions.

To date, a vast amount of literature (Table 1) on calibration equations has been con-
ducted. Most of the authors suggest that the Sentek default manufacturer’s calibration
equations need to be calibrated to specific soil textures to achieve the most accurate es-
timation of volumetric water content. So, the EnviroScan sensor requires soil-specific
calibrations to produce accurate estimates of soil water content due to the large variability
in soils. A measuring instrument’s calibration is made by aligning that instrument’s read-
ings against values determined by a long-established method and accepted as a standard
method for measuring the same value.

Several calibration procedures have been conducted in the laboratory [12–16] and field
conditions [17–19]. Both environments’ results support the accuracy of the capacitance sen-
sors improved when the system was calibrated for specific soil textures [20]. Furthermore,
other studies proved the default Sentek manufacturer’s equations overestimate soil mois-
ture content in coarse-textured soils [21], silty sand [20], silty loam [22], and underestimate
in sandy soils [17].
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Table 1. Summary of literature on Sentek EnviroScan and Diviner 2000 probes and other various capacitance probes.

Source Sensor/s Methodology Soil Texture Results Conclusions

Sentek Manufacturer [23] EnviroScan Exponential regression
analysis.

Sand, loam, clay loam,
sandy loam, clay, and

textured crackling clay

Sand, loam, clay loam: R2—0.97, sand, sandy
loam, clay: R2—0.99 and Uniform crackling

clay: R2—0.5
-

Paltineanu and Starr [13] EnviroScan Nonlinear models were used
for regression analysis. Silt loam R2—0.99, RMSE—0.009

More calibration research with these
capacitance sensors was needed for

special soils (e.g., swelling 2:1 clays or
high organic matter content).

Morgan et al. [17] EnviroScan
Linear and exponential models

were used for regression
analysis.

Fine sand R2—0.83, RMSE—0.009

Default calibration equations—yielded
22% lower estimates than data regression.
The exponential relationship provided the

best fit.

Evett et al. [24]
SM neutron probe (SMNP),
EnviroScan, Diviner 2000,
IMKO Trime tube probe

Preliminary calibration
compared with gravimetric

sampling.

Sand, Silt loam, Sandy
loam, Clay loam, Silty clay

loam & clay
R2 > 0.9, RMSE < 0.01

EnviroScan—overestimated water
content near saturation and

underestimated it near wilting point. The
plant available water capacity measured
by the EnviroScan system was twice that
indicated by laboratory measurements.

Leib et al. [25] EnviroScan and other
sensors

Statistical evaluation of
numerous sensors for their

ability to estimate water
content.

Silt loam soil EnviroScan: R2—0.94 to 0.95, RRMSE—59% to
68%

Soil-specific calibration of each sensor is
necessary to obtain a high degree of

absolute accuracy in SWC measurements.

Geesing et al. [22] Diviner handheld
capacitance probe

Exponential regression was
fitted to the model.

Site A—Silt-loamy
Site B—loam

Site A: R2—0.93, RMSE—0.04
Site B: R2—0.88, RMSE—0.03

Site A—underestimated the SWC. Site
B—overestimated SWC. At field

level—the model performed better than
the manufacturer’s calibration and the
calibration proposed by Paltineanu and

Starr (1997).

Groves and Rose [26] Diviner 2000 Calibration equations, derived
by regression analysis.

Sandy loam, Silty clay
loam, Clay and Organic

sandy clay loam
R2 > 0.93 for all

The natural heterogeneity of field soils
adversely affected the accuracy of such

methods.

Jabro et al. [21] EnviroScan and Neutron
probe

Statistically compared
calibrated soil water content

results with those estimated by
the uncalibrated equation.

Silt loam

Default & calibrated
1998: R2—0.95 and 0.96, RRMSE: 67% and 7%.

1999: R2—0.94 and 0.95, RRMSE: 59% and 41%.
2000: R2—0.94 and 0.91, RRMSE: 66% and 40%.

Calibrated equation 1998–2000; RRMSE: 7%,
41%, 40%

Uncalibrated RRMSE: 68%, 59%, and 66%

Results supported that the site calibration
equation gave more accurate estimates of

individual values (low RRMSE) of
volumetric SWC than those obtained

from the uncalibrated equation.
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Table 1. Cont.

Source Sensor/s Methodology Soil Texture Results Conclusions

Burgess et al. [27] Neutron Probe & Diviner
2000

Field calibrations—measured
the soil water content of a

shrinking–swelling clay soil.
Clay Neuron Probe: R2—0.87, Diviner: R2—0.80

Default or laboratory determined
equations differed from literature for a

shrinking–swelling clay for both neutron
probe and Diviner 2000 sensors. By using

the field, rather than the default,
calibrations, the two instruments gave

similar estimates of the change to water
content.

Evett et al. [28]
EnviroScan, Diviner 2000,
Delta-T PR1/6, Trime T3

tube-probes

Calibration equations derived
from a linear regression

analysis.

Silty clay loam, clay, and
clay loam

EnviroScan: R2—0.99, RMSE—0.018. Diviner:
R2—0.99, RMSE—0.025. Diviner, EnviroScan,

NMM, and Trime: RMSD > 0.05.

All of the devices required soil-specific
calibrations to achieve accuracies better

than 0.04.

Gabriel et al. [20] EnviroScan

Compared the errors in
evaluating θv when using
soil-specific equations as

opposed to manufacturer’s
default equation.

Loam, silt loam, and clay
loam

Lab: R2 & RMSE, Manufacturer: 0.73 and 0.051
With intercept—0.96, 0.027, and Without

intercept—0.96 and 0.027
Manufacturer—0.88 and 0.44, With

intercept—0.92, 0.024, and Without intercept
0.92 and 0.024

Manufacturer’s default equation—over
calculated θv (RMSE > 0.044).

Capacitance probe (CP) calibration
equations—provided accurate θv

determinations (RMSE < 0.028). Accuracy
of CP in monitoring θv under field

conditions was slightly better using the
laboratory calibration equation (RMSE =

0.019) rather than the field calibration
equation (RMSE = 0.023).

Paraskevas et al. [29] EnviroScan and Diviner
2000

Compared manufacturer
default equations with

literature calibration equations.
Clay loam and Loam EnviroScan: R2—0.87

Diviner 2000: R2—0.96

Equations exported from the local
calibration outweigh the ones in literature

and from the manufacturer default
equation.

Al-Ghobari et al. [3]
EnviroScan, Watermark

200SS sensor, and
tensiometer

Statistical parameters
compared uncalibrated and

calibrated EnviroScan sensor
results vs. Gravimetric method.

Sandy clay loam

EnviroScan: R2—0.94 to 0.96, RRMSE—16.8 to
19.17, Watermark 200SS: R2—0.89 to 0.93,

RRMSE—8.6 to 11.3, Tensiometer: R2—0.91 to
0.95

RRMSE—6.6 to 8.5%

Tensiometers were more accurate than the
EnviroScan and Watermark systems
without the site-specific calibration.

EnviroScan probe overestimated SWC
while the Watermark and tensiometer
sensors underestimated it. Site-specific
calibration will be needed to improve
their accuracy in estimating soil water

content data.

Zettl et al. [30] EnviroScan

Field and laboratory
measurements were done to

refine the relationship between
θv and SF.

Coarse-textured
reconstructed soils

Field: R2—0.933 to 0.974 and Lab: R2—0.955 to
0.966

Manufacturer’s calibration
equation—underestimate θv under wet

conditions. Calibration improves the
application of the EnviroScan for

coarse-textured soils.
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Table 1. Cont.

Source Sensor/s Methodology Soil Texture Results Conclusions

Al-Ghobari et al. [11] EnviroScan

An artificial neural network
(ANN) was used to calibrate

SWC compared with a
regression analysis derived

SWC.

Sandy clay loam
Regression of SF vs. gravimetric method:

R2—0.9225. Gravimetric method vs. ANN
model: R2—0.9928

ANN technique could be an effective
alternative calibration method for

estimating soil water content using the
EnviroScan sensor.

Provenzano et al. [31] Diviner 2000
Regression fitting using field

and laboratory calibration
protocols.

Seven soil types in
different regions are

characterized by different
particle size distributions

and shrink/swell potential.

Undisturbed monoliths: R2—0.84 to 0.95,
RMSE—0.015 to 0.053

Default calibration: RMSE—0.05 to 0.166
Regression fitting: R2—0.35 to 0.87, RMSE—0.04

to 0.121

Field calibration—default calibration
equation considered valid. Soil-specific
calibration—improved estimation of θv
and RMSE to values were lower than

default calibration.

Gao et al. [32] Proposed probe and
Diviner 2000

Compared probes: Proposed
probe—Lab testing. Proposed
probe + Diviner 2000—Field

testing.

Sandy loam and clay loam Proposed probe: R2—0.9644 and RMSE—0.0423.
Diviner 2000: R2—0.86 and RMSE—1.75

Both sensors were adaptable to the
measurement of the volumetric moisture

content of various soil types.

Roberti et al. [1] EnviroScan and TriSCAN
A semi-automated production

process that derived θv
measurements.

Clay and Sand Default calibration fit: RMSE—0.123
Soil-specific coefficients: RMSE—0.017

Soil-specific coefficients improved RMSE
in clay and sandy soils.

Campora et al. [14] Drill & Drop, Sentek
Sensor Technologies

Linear Regression and Multiple
Linear Regression analysis

fitting—θv and the mean grain
size, D50 as independent

variables.

Fine sand
LR: R2—0.96 to 0.99
RMSE—1.4% to 2.8%

MLR: R2—0.97 and RMSE—2.41%,

Results highlighted the need for
soil-specific calibration.

Jia et al. [2] TDR—315 L and Diviner
2000

Multiple linear regression
(MLR)—compared Gravimetric

volumetric water content
(VWC) and modeled VWC.

Sand TDR-315 L: R2—0.9820, RMSE—0.0255
Diviner 2000: R2—0.9233, RMSE—0.053

TDR—315L—more accurate than Diviner
2000. Diviner 2000—poor in moist soils.
Accuracy under laboratory conditions
improved significantly by applying the

calibration method.

Provenzano et al. [16] Diviner 2000
Gravimetric measurements

compared to laboratory
calibrated VWC.

Loamy Sand, Sandy Clay
Loam, Clay Loam, and

Clay

Root mean square error (RMSE) was lower than
0.049 cm3 cm−3 in all soil textures

A new model to estimate VWC using soil
bulk density as an independent variable
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Consequently, if uncalibrated equations are used to determine the soil water con-
tent, there is a strong likelihood of a high percentage difference in overestimated and
underestimated water content. The proposed manufacturer calibration procedure for the
EnviroScan and the Diviner 2000 [10] is not always possible. This led the scientists to
use either laboratory or field methods to obtain calibration equations, and many times
they also used already derived calibration equations in literature. However, none of these
approaches is ideal. Field calibrations require bulk sampling right next to the probe that
destroys the site. This can be done only afterward, which is not an option for operational
use. Laboratory calibration is done using disturbed soil that does not necessarily represent
the soils’ real field conditions. With this in mind, this study aimed to develop and test
off-site and laboratory calibration approaches to assist quick and easy development of
estimation equations or the selection of the best fitting equation from the manufacturer’s
library. This was done by comparing three approaches that were similar though their
purpose was very specific. The difference between our study to other studies was that
we aimed to calibrate the sensor without disturbing the site—mainly off-site sampling
for calibration—and compared the approach using the same soil material with all known
calibration techniques described in the literature. This approach gives innovation to our
study. It highlights the advantages and disadvantages of the different approaches when
quick deployment and site-specific calibration are needed for immediate operation and
data supply in any location, like in irrigation control. In the long run, this will give a direct
indication to agronomists when and how much to irrigate—saving them large amounts
of water. To achieve this, sensors have to be operational from deployment to assist the
technology throughout the entire vegetation period. Therefore, the objectives of the study
were (i) to compare the calibration equations obtained in the laboratory and field—off-
site of the sensor—for EnviroScan sensor in three different textures, namely sand, loam,
and clay soils; (ii) to compare statistical errors between field and laboratory calibration
techniques in evaluating soil water when using soil-specific equations as opposed to the
manufacturer’s default equation; (iii) assess the accuracy of EnviroScan sensor under field
conditions using the default manufacturer’s calibration equation and the calibration equa-
tions developed from the regression analysis. Finally, the derived equation was applied to
the loam site to test its accuracy on the EnviroScan sensor, and the results were compared
to the manufactures default equation.

2. Study Areas

The study areas were located in the north-eastern part of Hungary. The study sites
comprise of three regions—the clay sample was taken at the campus of the University of
Miskolc (48◦4′39.20′′ N, 20◦45′48.83′′ E), the loam one was from the outskirt of the town of
Tiszavásvari, and the sand sample was from the vicinity of the Görömböly; a district in the
city of Miskolc (48◦2′56.34′′ N, 20◦45′50.93′′ E) (Figure 1).
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Figure 1. The locations of the study areas within Hungary.

3. Materials and Methods
3.1. Materials
3.1.1. Soil Texture

Three soil textures were used as a medium for calibration (Table 2). The clay sample
(0–30 cm bgl) comprises black to brownish-black loose, granular-crumbly clay. The loam
sample (0–30 cm bgl) comprised of dark-greyish-brown to black—soft crumbly material.
The sand sample comprised of loamy sand (0–30 cm bgl) of dull yellowish-brown, finely
arranged material.
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Table 2. Soil texture of sand, loam, and clay.

Soil Texture Depth (cm)
Sand Silt Clay

Soil Textural Class *
>0.25 0.25–0.05 0.05–0.02 0.02–0.01 0.01–0.005 0.005–0.002 <0.002

Clay 0–30 2.99 0.38 17.5 4.69 6.87 5.78 61.8 Clay
Loam 0–30 0.78 6.54 25.4 25.9 6.98 10.3 24.2 Loam
Sand 0–30 34.10 27.04 17.21 7.48 4.34 3.60 6.23 Loamy Sand

* USDA classification [33].

3.1.2. Instrument—EnviroScan Sensor

The EnviroScan sensor consists of multiple sensors installed on an extruded plastic
framework placed at intervals of 10 cm along its length (Figure 2). The sensor consists of
two brass rings mounted on a plastic sensor body separated by a 12 mm plastic ring [13,20].
The conductive rings of the sensor form the plates of the capacitor. This capacitor is
connected to an LC oscillator consisting of an inductor (L) and a capacitor (C) connected
to circuitry that oscillates at a frequency depending on the values of L and C [20]. As the
inductor is fixed (seven turns of 0.5-mm wire), the frequency of oscillation varies depending
on variations in the capacitance. The oscillating capacitance field generated between the
two rings of the sensor extends beyond the polyvinyl chloride (PVC) access pipe into
the surrounding medium. The sensor measures the oscillation frequency of the sensor’s
capacitance field and extending into the surrounding medium. A data logger connected
to the sensor records output counts proportional to the frequency of oscillation, which is,
in turn, proportional to the capacitance of the soil being sampled [16]. The EnviroScan
sensor determines soil water content through a scaled count [34]. Counts were recorded
for each sensor inside an access tube suspended in the air. The second set of counts were
recorded for each sensor inside a sealed container of water. This was done to determine
the full scale of counts between no water (air) and 100% water [34]. The scaled count for
a given sensor can be considered a percentage of full scale where the difference between
air count (no less water) and the measurement count is divided full scale of counts for
the sensor. Dane and Topp [35] list the positive features of capacitance probes as robust
and stable instrumentation, fast response times, accuracy with good soil-probe contact,
ease of use, safety, availability in several sensor configurations, and ability to be linked
to an automatic data logger. However, for a capacitance probe to function correctly, there
must be good contact between the access tube and the surrounding soil materials [36]. de
Rosny et al. [37] and Scobie et al. [38] also found that the capacitance probe’s sensitivity to
soil moisture was significantly reduced when good contact between the access tube and
surrounding soil is not maintained.

Two of the EnviroScan sensor limitations could be the normalization of the EnviroScan
sensor and the selection of distance to take a sample adjacent to the sensor, i.e., the sphere
of influence. Firstly, normalization is the process of obtaining measurements in water
and air to enable the comparison of raw count readings between different probes. In
this study, Sentek Solo using Probe Configuration Utility (PConfig) and a Normalization
container were used. The normalization process involves setting the effective range over
which the EnviroScan sensors work. These limits are set between air and water, with
the sensor located in the appropriately sized access tube. Without accurate EnviroScan
sensor normalization, the final calibration equation would be inaccurate. Therefore, since
one sensor was used for both field and laboratory calibrations, the normalization process
was completed once. However, if multiple sensors were used, the procedure would
differ. Thus, to ensure consistent data, the probe would be renormalized using the same
environment and normalization container as the original normalization. Secondly, the
Sphere of Influence (SOI) of the EnviroScan, EasyAG, and Diviner 2000 sensors is assumed
to extend radially to 14 cm from the access tube’s surface [23]. Axially, the SOI can be
assumed to extend 5 cm above and 5 cm below the mid-point between the two constituent
brass rings of the capacitance sensor. The sphere of influence, or region of soil measured by
the probes, is much smaller for capacitance sensors (10 cm) than for the neutron-emitting
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source (15–25 cm) [39]. The larger the sphere of influence, the higher the level of sensitivity
and accuracy, and a better representation of soil water content, but a smaller sphere
size with increased water contents changes the sample size and decreases accuracy in
saturated soils [23]. Therefore, careful attention was given in both field and laboratory
calibrations to reduce the sphere influence’s effect during the collection of soil samples
used for gravimetric measurements.
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Figure 2. EnviroScan capacitance sensor as installed in a PVC access tube in the field [11].

3.2. Methods
3.2.1. Gravimetric Method

Undisturbed soil samples were taken from field and laboratory measurements. The
samples were placed in closed rings and transported to the laboratory for measurement
and processing. Measurements were started immediately after the sampling to avoid any
loss of soil moisture by accidental drying.

A well-known, direct and accurate method for measuring soil water content is the
gravimetric method by which soil samples are weighed before and after oven-drying,
thereby determining the weight loss of water per unit of soil mass or soil volume [39,40].
The samples were weighed to get a “Total wet” sample reading (Mw) and dried for 24 h at
105 ◦C to remove all water in the soil. Once the drying was complete, the sample was then
weighed again, and a “Total dry” sample (Md) measurement was taken. The dried soil was
then removed from the metallic ring (R), and the ring was weighed as well. After this, the
“Total wet” soil measurement was subtracted from the ring’s measured weight to get the
actual wet soil measurement; the same was done for the dry soil. Finally, the wet (Ww) soil
was subtracted from the dry (Wd) soil to get volumetric water content in V/V%. As there
were replicate samples per depth, an average was calculated.

Ww = Mw − R (1)

Wd = Md − R (2)

θv = Ww −Wd (3)

whereby Ww = Wet soil measurement; Wd = Dry soil measurement; Mw = Total wet
measurement; Md = Total dry measurement; R = Ring; θv = Volumetric Water Content.
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1 g/cm3 density of the water was assumed, so the weight in grams was directly
converted to cm3. The ring’s total volume was 100 cm3, so the amount of water in cm3 was
equal to the volumetric percentage.

3.2.2. Calibration Procedure
The General Framework of the Calibration Procedure

The framework used for the calibration procedure was split into two major steps:
In step 1: The calibration exercise started with a field experiment, where three sites

with different textures were selected, and Sentek calibration measurements were done nine
times between March and June 2020 to cover a relatively wide range of soil moisture (SM)
conditions. This could be considered a short study duration; however, the objective was to
test the calibration under different seasonal, temporal moisture patterns throughout the
plant’s growing life. Each time, undisturbed samples were taken from the neighborhood for
gravimetric SM measurements to characterize the sensor performance using its default man-
ufacturers equation and select the best built-in equation to maximize the performance. In
the end, regression analysis was performed to develop the soil-specific estimation equations.

In step 2: The field exercise did not provide wide enough coverage of the potential SM
ranges. Therefore, complementary measurements after field wetting of the sandy soil and
laboratory measurements for loam and clay soils were performed. It provided one extra—
fully saturated—repetition for the sand field measurement—extending the soil moisture
condition to the most extreme saturated state. Similar field wetting would have been very
slow and insufficient for the other two texture classes, so laboratory measurements with
continuous wetting and mixing were decided. Several measurements of different wetness
conditions for loam and clay textures were performed. Unfortunately, the soil conditions
are changed compared to the field exercise; therefore, field and laboratory measurements
were kept and used separately for the statistical analysis.

Step 1—Field calibration

Field calibration was split into two phases; in phase one, field calibration took place
between March and June 2020. During this period, nine measurement campaigns were
carried out, with the initial aim of selecting calibrated equations specific to different textures
of soil. This comprised processing and selecting the best-fit calibration equation from an
array of sixty-nine built-in EnviroScan sensor equations. During March, the first four
measurement campaigns were carried out to observe the change in season from Winter to
Spring, where the soil water status was changing. The second campaign was accomplished
during the middle of Spring, once temperatures started to rise and soil water content
decreased due to evapotranspiration. The third campaign was completed during the
summer season, characterized by hot and humid temperatures and even lower soil water
content. The nine corresponding dates are indicated in Table 3.

Three different sites with sand, loam, and clay textures were selected for the field-
work. During all nine repetitions, one EnviroScan sensor access pipe was installed at each
site. The same sensor array with three sensors at the depths of 0–10 cm, 10–20 cm, and
20–30 cm—was used for all sites, using it as a portable device placed into the access tube at
the time of reading and sampling. Access tubes were installed with the specific kit. A tripod
with a vertical leveling capability was anchored to the ground and held the PVC access
pipes in an upright position. Simultaneously, a soil auger was inserted through the pipe to
remove the soil inside the tube and deepen the hole for easier cut by the pipe. The PVC
tube was then pushed down into the hole, and the process was continued until a depth of
60 cm was reached. After cleaning the inside of the PVC tube, a compression rubber plug
was inserted to seal the pipe’s bottom against water and vapor. The male-threaded section
of PVC, which was used to receive the probe’s removable screw cap, was then sealed with
silicone glue to the top of the pipe. This installation was done to reduce soil disturbance
during installation and ensure perfect contact between the soil and tube to avoid air gaps
and preferential water flows [40].
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Table 3. Volumetric water content from Gravimetric method.

11-March 16-March 25-March 31-March 08-April 15-April 06-May 18-June 24-June

Soil
Type

Depth
(cm)

Moisture
[v/v%] Avg Moisture

[v/v%] Avg Moisture
[v/v%] Avg Moisture

[v/v%] Avg Moisture
[v/v%] Avg Moisture

[v/v%] Avg Moisture
[v/v%] Avg Moisture

[v/v%] Avg Moisture
[v/v%] Avg

Clay
0–10 37.13

37.27
41.03

40.67
35.92

36.61
32.48

33.73
33.96

33.93
25.14

25.56
25.46

25.16
29.83

30.75
28.56

28.6610–20 38.76 40.87 37.91 34.54 33.62 26.09 25.01 30.11 29.58
20–30 35.92 40.12 35.99 34.18 34.22 25.45 25 32.32 27.85

Loam
0–10 33.22

34.2
32.73

32.5
30.54

30.68
33.56

34.11
34.83

33.66
32.47

33.11
30.26

29.73
28.87

29.53
34.27

33.110–20 34.05 31.47 30.51 34.66 33.99 33.27 30.41 29.14 32.09
20–30 35.34 33.31 31 34.1 32.15 33.59 28.51 30.59 32.93

Sand
0–10 25.76

24.46
22.45

21.77
20.95

20.23
18.12

18.3
18.51

18.69
16.57

18.23
17.63

17.36
12.61

12.7
10.37

11.2910–20 25.49 21.58 20.78 18.67 19.02 18.53 18.01 12.52 11.81
20–30 22.12 21.29 18.95 18.1 18.54 19.58 16.44 12.97 11.69
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The same sensor set was used for all sites and repetitions. Initially, the sensor was
calibrated by placing it in the air and into a water tank using the access pipe, and raw
readings were recorded for the two extremes. The water tank measurement was repeated
with saturated soil as well, but no significant change was experienced. During each mea-
surement campaign, data was recorded for approx. 15 min per measurement campaign, in
all three depths, namely 0–10 cm, 10–20 cm, and 20–30 cm. The data was then downloaded
using the Sentek software and used to calculate the Scaled Frequencies, which is calculated
as below:

SF = (FA − FS)/(FA − FW) (4)

whereby SF = Scaled frequency, FA = raw count suspended in air (Air Count), FW = raw
count in a water bath or normalization container (Water Count), and FS = raw count in the
PVC access tube in the soil at each particular depth level (Field Count).

These SF values were analyzed to calculate volumetric water content with the best fit
curve as the water content obtained from the gravimetric method. Data from the 0–10 cm
and 20–30 cm were used only for background information to characterize the vertical
changes and the potential measurement mistakes or errors. Only the 10–20 cm depth sensor
data was used for the regression exercise.

At the time of the measurements, three undisturbed soil samples were taken between
1 and 2 m distances from the access tube (adjacent to the PVC tube) to keep the sensors’
immediate surroundings undisturbed. Samples were taken from the three corresponding
depths (0–10 cm, 10–20 cm, and 20–30 cm). After collection, soil samples were immediately
leveled, cleaned and sealed, and taken to the laboratory for analysis, as explained in the
gravimetric method above.

Step 2—Complementary measurements

The weather conditions throughout the sensing period were less variable than we ex-
pected; no substantial precipitation occurred that could totally saturate the soils. Therefore,
phase two of field and laboratory calibrations were performed in October 2020. Comple-
mentary field application was completed for the sand soil texture only due to its faster
infiltration rate. The same procedure was followed as was described in phase one, except
for wetting the soil. A total of 60 L of water was applied to the sand texture until complete
saturation was reached after one hour. Soil samples were collected at depths of 0–10 cm,
10–20 cm, and 20–30 cm for gravimetric assessment. These samples were taken immediately
next to the access tube because the tube was removed, and there was no need to keep
the site undisturbed anymore. Finally, the recorded measurements were downloaded
for analysis.

The other two soil texture types were analyzed further in the laboratory. The laboratory
calibration took place using one sensor for two soil textures—clay and loam. This was done
because of their slower infiltration properties as compared to sand. The height of the soil
profile was 20 cm. The capacitance sensor on the probe was placed in the middle of the soil
volume. Figure 3 shows a schematic of the experimental setup and its dimensions. Both
soils were air-dried for 12–48 h to allow excess water content to evaporate and reach the
driest condition to extend the soil moisture range measurements. Once the soil had dried,
it was poured and mixed homogenously in a bucket—with the EnviroScan sensor placed
in the center of the bucket. To ensure there was close contact between the probe and soil,
the soil was poured in uniform layers as the probe was being firmly held to ensure there
would be no spaces between the soil and the outer part of the probe. However, we were
careful to make sure we do not compress the soil as this would change the bulk density
properties, affecting the water content. An initial measurement was then recorded as a dry
sample, and then frequent wetting and mixing were done. The soil was moistened using
a handheld garden sprinkler. Approximately 4–8 readings were taken per soil texture or
until complete saturation of the soil was obtained. During each of the repetitions, two
undisturbed soil samples were taken for gravimetric measurements.
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Application of Equations Provided by the Sentek Manufacturer

Data was downloaded from the EnviroScan sensor via the data logger onto a CSV
file for both field and laboratory calibrations. The CSV file data was used to convert raw
counts obtained from the EnviroScan sensors at each particular depth level into SF values.

First, an evaluation of the EnviroScan equations was made by comparing the estimated
SM values with the volumetric water content values determined gravimetrically from a
location adjacent to the tube. These values were then plotted on a graph to visualize
the relationship described by a mathematical equation, dependent on the graph’s curve.
During the first phase of the field calibration, sixty-nine calibration equations (including
the default Sentek calibration equation) were tested for each soil texture to estimate soil
water content. These sixty-nine equations were derived in various soil textures from mainly
Australia and the United States of America [23].

Statistical Analysis

Besides using the built-in equation set, regression analysis using the SF and gravi-
metric volumetric content was performed on the datasets. By default, Sentek uses a
power/logarithmic regression formula, where the coefficients (A, B, and C) can be entered
in the EnviroScan sensor display unit of the calibration registry to derive the calibration
equation. After that, the volumetric water content can be derived using the following
formula [23]:

SF = AθB
v + C (5)

which is: θv = ((SF − C)/A)ˆ1/B (6)

whereby A, B, C = Coefficients.
Linear and logarithmic regression analyses were run in this study using the scaled

frequency and volumetric water content. Logarithmic regression was used to present the
results for a few reasons. One, it yielded better results than linear regression, two; the curve
fit of points in the upper and lower ends of the data set was better fitted for a logarithmic fit,
and three; the Sentek calibration manual suggests a power/logarithmic regression formula.
The statistical metrics used for analysis were the coefficient of determination (R2) and root
mean square error (RMSE). The derived regression coefficients were recorded and used in
the soil-specific calibration equation.

4. Results

The results are presented in two sections; field calibration only and complemented
with laboratory calibration setups. The field calibration comprised of two phases; phase
one included all three soil textures, and phase two only sand soil texture. The sand
soil texture was measured in phase 2 because phase 1 results showed a low correlation
in wet conditions. Besides, it was not time-consuming due to fast infiltration during
field calibration.
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4.1. Field Calibration—Phase 1

In this part of the work, we tested the built-in SM estimation algorithms of the Sentek
sensor. The default Sentek calibration algorithm was tested first, as the most commonly
used one for none soil experts. After testing the default equation, we selected the best
fitting equation from the Sentek library for each texture class, regardless of their names.
Finally, we grouped the algorithms based on their names, indicating the corresponding
texture class, because this is what an expert would do to optimize the estimation. All
algorithms that indicated “clay” in their name were used for the clay group, and the same
approach was used for the loam and the sand texture classes.

4.1.1. Sentek Default Calibration

The field calibration setup results are presented by showing the laboratory-measured
gravimetric water content results obtained in each soil texture at their corresponding depths
(Table 3). The fieldwork took almost four months, starting in early spring and ended in
early summer. The period was chosen as a representative time span for spring crops. This is
also the period with the highest potential range of soil moisture values, close to saturation
in early spring and drying out for the summer. The actual measured ranges of soil moisture
values varied among the textures. Maximums and minimums for the clay, loam, and sand
textures were 40.67–25.56, 34.2–29.5, and 24.46–11.29.

The recorded estimations calculated using the default Sentek calibration equation
are also presented in each soil texture and depth (0–10 cm, 10–20 cm, and 20–30 cm)
(Table 4). These measurements were then compared to the gravimetric method measure-
ments (Figure 4). Figure 4 shows high absolute differences between gravimetric and
recorded measurements from the EnviroScan sensor for the 10–20 cm only, as this was
the depth used for the calibration exercise. For clay, the sensor’s first four repetitions
overestimated the volumetric water content (VWC), whereas in repetitions five to nine, it
underestimated the VWC. In the example of loam, the sensor overestimated VWC, whereas,
in the sand, it underestimated the VWC. The three cases’ interpretation indicates that the
default Sentek equation overestimated the VWC for the higher VWC ranges and under-
estimated it for the drier soil conditions. The root mean square error (RMSE) for the clay
and loam were about 15, while sand was much better, with a value of 5.77. These values
mean a 30% (for the sand) and 60–70% (clay and loam) relative difference in soil water
content, thus rendering the default Sentek calibration equation not optimal for calibration
and requiring soil-specific calibration equations.

Table 4. Estimated Volumetric water content using the default Sentek calibration algorithm (Field Calibration—Phase 1).

11-March 16-March 25-March 31-March 8-April 15-April 6-May 18-June 24-June

Soil Type Depth EnviroScan Estimations

Clay
0–10 34.81 30.8 23.58 15.17 5.4 4.95 1.23 5.55 18.85

10–20 44.78 44.84 44.26 42.69 29.32 12.27 3.54 7.38 11.89
20–30 40.76 42.71 45.17 43.13 45.16 34.99 6.94 19.35 6.01

Loam
0–10 33.72 35.46 33.27 34.98 24.4 23.07 12.19 31.77 33.9

10–20 52.11 51.65 51.54 51.75 53.28 52.06 41.61 47.76 47.39
20–30 49.09 49.87 46.8 49.38 47.56 49.61 33.73 39.5 39.29

Sand
0–10 12.37 12.43 12.21 11.52 11.48 11.46 11.96 8.72 7.23

10–20 14.38 13.97 14.07 13.57 13.2 13.2 14.16 10.35 8.86
20–30 12.37 13.17 12.93 13.06 12.62 12.52 14.74 10.8 9.23
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for the nine dates.

4.1.2. Best-Fitting Equation from the Manufacturer’s Library

The EnviroScan has sixty-nine built-in soil-specific calibration equations. All of them
were run on our field dataset to choose the best fitting algorithm. Figure 5 shows significant
correlation improvements in all classes. The RMSE values have decreased significantly in
all three texture classes; the average deviance from the laboratory data ranged between 2
and 3.5, which are quite acceptable for any field measurement. The best-fitting algorithms
were always the ones referring to the texture class in question.

4.1.3. Best-Fitting Equations from the Manufacturer’s Library with the Indication of Texture

Soil experts—understanding the importance of soil property-specific estimation
algorithms—would choose the algorithms according to the texture class indication in the
naming. In this phase of the study, soil texture-specific calibration equations—indicating
the corresponding texture class in the name of the algorithm—were selected and tested to
identify the best-fit calibration equations for each soil type. Figure 6 presents the best three
fits for each of the three soil textures. The most consistent performances of the available
equations were found for the sand soil texture class, where all the best three options were
found to have an RMSE value around 2–2.5. Similarly, well-distributed RMSE values were
found for the clay category; however, the overall performance was less accurate. The worst
results were found for the loam class with RMSE values ranging between 2 to 9, and only
one equation had acceptable performance. The second best RMSE was 6.3, which is already
exceeds 10 relative percent of the potential full range of values.
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4.1.4. Regression Results

Regression analysis was performed for all three datasets using the average volumetric
water content of the three depths and the scaled counts of the 10–20 cm depth sensor.
Several kinds of regression models were tested. The linear model performed well, but the
best fits were achieved using logarithmic regression models for each soil texture. This meets
with the manufacturer’s suggestion because the SF value change for a unit of SM change
is decreasing toward the wet part following a logarithmic relationship. The statistics are
given in Table 5.

The coefficient of determination (R2) values for the three soil textures were relatively
significant with clay—0.79 and sand—0.83, whereas for loam—0.40, it was less significant
(Figure 7). The RMSE values were almost in the same range for all texture classes as of
the default Sentek equation results, meaning that phase one of field calibration did not
improve the correlation, and as such further measurements were required. The p values for
clay (0.001) and sand (0.003) textures showed statistical significance (p ≤ 0.05). In contrast,
the loam (0.07) texture was not statistically (p > 0.05) significant. This weak performance
was probably due to the small range of measured SM (namely 5% absolute) values. The
measured values were between 34.2 and 29.5, representing a very small range of potential
values. The potential measurement errors were probably close to the measured range of
values, explaining the low performance. The clay and sand classes had much wider ranges,
around 15% (Table 3).

Table 5. Statistical metrics associated with coefficients of various calibration equations (Field calibration—Phase 1).

Soil Type Calibration Name Coefficient A Coefficient B Coefficient C R2 p-Value RMSE (%)

Clay
Clay—Heavy

Cracking Clay, Narrabri 60 cm 0.0254 1 −0.119 (0.58) - 3.56

Regression results 0.0361 1 −0.4243 0.79 0.001 13.74

Loam
Diviner 2000 Silty Clam

Loam Sentek No data is given by the manufacturer - 1.89

Regression results 0.0165 1 −0.3955 0.40 0.07 14.01

Sand

EnviroScan Sandy Loam
(1.3 g/cm3) USDA 0.013 1 0.326 (0.97) - 2.05

Regression results (Phase 1) 0.0069 1 0.4872 0.84 0.003 5.82

R2 values in brackets are taken from the manufacturer’s records.

4.2. Field Calibration Complemented with Artificial Wetting of the Site (Sand Only)—Phase 2

Due to the unsatisfactory results during phase one of field calibration, additional
methods needed to be applied to improve the estimation performance. The laboratory SM
values represented a limited range only, where the magnitude of the deviation from the
estimated value was comparable with the measured SM range. The scatterplots—especially
for the loam class—were quite scattered, so we decided to extend the range toward the
extreme values by saturating the soil. The sand was selected as the only soil texture for
field calibration, whereas clay and loam were analyzed using a laboratory calibration
procedure. The sand was wetted using 60 L of water until saturation was reached. Bulk
samples were taken from this saturated stage and analyzed in the laboratory. The results
show an improved fit between the derived soil-specific equation and the gravimetric VWC
(Figure 8).
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A logarithmic regression model was run on the extended database between the
scaled frequencies from the EnviroScan sensors and the gravimetric VWC. This one extra
observation was very significant and resulted in an R2 value of 0.91 (Figure 9 & Table 6).
This showed that catering for extreme soil conditions from moderately to very wet sandy
soil improved the range and the correlation between SF and gravimetric VWC. As in
phase 1 of field calibrations, the p-value of sand (1.25 × 10−8) texture was statistically
significant (p ≤ 0.05).
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Table 6. Statistical metrics for the Phase 2 sand calibration.

Soil Type Calibration Name Coefficient A Coefficient B Coefficient C R2 p-Value RMSE (%)

Sand Calibration—Sand
(Phase 2) 0.082 1 0.4106 0.91 1.25 × 10−8 1.86

4.3. Laboratory Calibration

Laboratory calibration was conducted on clay and loam soil textures due to their
slower infiltration capacities. As in phase one of field calibration, the first step was to
measure and retrieve gravimetric water content. Tables 7 and 8 show the gravimetric
results of the laboratory calibration phase. The samples were collected at a single depth
due to the bucket’s size. Two samples were collected per repetition to allow for better
representativity of the soil. The soils were air-dried for 12–48 h. to widen the range of
wetness conditions. Then, soils were wetted using a handheld spray sprinkler and mixed,
homogenized continuously. A series of measurements and sampling were executed in the
different soil moisture conditions until complete saturation was reached. Loam (Table 8)
was analyzed in two batches to measure different soil properties—the first batch comprised
measuring original soil and wetting. The second batch included air drying, bucket drying
in a semi-closed environment.

The results show a better fit in both clay and loam soil textures (Figure 10). This
is suggestive that due to the full spectrum of moisture conditions being analyzed, the
correlation was strong, resulting in a good estimated VWC and an almost perfect fit
between gravimetric VWC and estimated VWC for both clay and loam. In contrast to the
field measurement, where samples were taken at least from 1 m far from the sensor to
avoid disturbance, here the sampling was done right next to the tube, which explains the
almost “perfect” fit of the regression.
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Table 7. Clay Laboratory calibration—Volumetric water content from Gravimetric method.

November-20

Original Wetting 1 Wetting 2 Wetting 3 Wetting 4 Wetting 5 Air Drying 12 h Air Drying 24 h Air Drying 48 h

Soil Texture Depth (cm) Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Clay 30 29.21 32.06 41.47 50.05 48.1 57.88 22.61 20.01 12.61

Table 8. Loam Laboratory calibration—Volumetric water content from Gravimetric method.

November-20 December-20

First Batch Second Batch

Original Wetting 1 Wetting 2 Wetting 3 Wetting 4 Wetting 5 Wetting 6 Wetting 7 Bucket Drying 12 h Air Drying 48 h

Soil Texture Depth
(cm)

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/%]

Moisture
[v/%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%]

Moisture
[v/v%] Moisture [v/v%] Moisture [v/v%]

Loam 30 30.13 39.58 38.83 41.07 30.13 28.83 41.79 37.86 24.52 7.92
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The regression results for both clay and loam recorded an R2 value of 0.92 and 0.83
and a root mean square error (RMSE) of 3.85 and 2.27, respectively (Table 9 and Figure 11).
The R2 values showed a little bit of an increase, but the RMSE has not been improved com-
pared to the best fitting manufacturer’s equations. The p-value for clay texture remained
significant, just like in the results field calibration—phase 1, whereas the loam texture
results changed from non-significant to significant.
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4.4. The Impact of Sample Disturbance—Compaction

Sampling from disturbed soil may introduce additional errors due to the different
levels of artificial compaction. This is noted in the low bulk densities of the loam samples
given in Table 10. These values around 0.7 g/cm3 are very low and probably due to the
artificial loosening by the sampling and sample processing. The large, massive chunks were
broken, and a relatively good, loose structure was created. Bulk density was calculated as
an additional experimental factor to observe the impact of compression on the pore spaces’
volumetric water content in loam texture soil. Two conditions were chosen; dry and wet
conditions to see the effect of compression on both extremes. Dry and wet soils were bulk
sampled, compacted, and uncompacted to characterize the potential magnitude of the
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introduced error. In theory, bulk density increases as compaction are applied and decreases
the total porosity, resulting in increased VWC for the lower water contents dominated
by capillarity water and solid surface water absorption. The opposite is expected for the
saturated soils, where compaction decreases the available pore space. The results showed
what is expected in reality that for relatively dry soil conditions, the less the bulk density,
the lower the water content, and the more the bulk density, the higher the water content
for the same soil material.

Table 10. Bulk densities of Loam texture soil.

December-20

Dry Uncompressed Dry Compressed Wet Uncompressed Wet Compressed

Moisture
Avg [v/v%]

Bulk
Density Avg
[g/100 cm3]

Moisture
Avg [v/v%]

Bulk
Density Avg
[g/100 cm3]

Moisture
Avg [v/v%]

Bulk
Density Avg
[g/100 cm3]

Moisture
Avg [v/v%]

Bulk
Density Avg
[g/100 cm3]

29.41 65.55 32.82 73.61 30.60 67.01 45.71 89.01

4.5. Application of Derived Calibration Equation

The last step of the study involved applying derived equations to a study area where
the EnviroScan sensors are currently deployed to check the accuracy of the calibration
equations. This reapplication exercise was performed on the same field where the loam
sample was taken from two locations with similar soils were selected 50 m from each
other. The plow layer was sampled in three depths, 0–10 cm, 10–20 cm, and 20–30 cm.
The soil material for the three depths is expected to be the same due to tillage mixing.
This way, the number of repetitions could be increased to six, using only two sites. The
two locations in three depths were sampled, so six pairs of bulk samples were taken and
compared with the estimated data derived using our laboratory calibrated estimation
algorithm. The results showed that the calibration equation overestimated VWC by a 9%
to 13% absolute difference in soil water content (Figure 12). This means there is still room
for improvement as the recorded difference is still high; however, the regression results
show a fair correlation (R2 = 0.65) between scaled frequency from the EnviroScan sensor
and the gravimetric measurements (Figure 13). One potential source of the overestimation
is the different compaction status of the homogenized soil material used in the laboratory
than what the field soil material had.
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5. Discussion

Calibration is one of the greatest challenges for field soil moisture measurements. The
installation is time-dependent. Any disturbance of the site will decrease the representativity
of the measuring site. However, the variability of soil structural properties is very high and
varies locally, of which this conflict is difficult to overcome. Calibration with high reliability
can be achieved only with soil samples taken right next to the probe, but sampling in the
sensed volume will change the soil properties and decrease the representativity.

The EnviroScan sensors were calibrated using field and laboratory measurements.
The calibration Equations (7)–(9) were developed by comparing the sensors’ measurements
(Scaled Frequencies, SF) with the soil water contents obtained from the gravimetric method
using logarithmic regression equations. The p-value of the regression results is significant.
The derived equations that yielded the highest statistical correlation between volumetric
water content from gravimetric and scaled frequencies were:

Clay: θv = ((SF − 0.4521)/0.0092)ˆ1/1 (7)

Loam: θv = ((SF − 0.3137)/0.0161)ˆ1/1 (8)

Sand: θv = ((SF − 0.4106)/0.0082)ˆ1/1 (9)

5.1. Model Performance

Statistical metrics associated with coefficients of various calibration equations are
presented in the summary of results (Table 11). Our best model results for dominant clay
soils (R2 = 0.92) were from laboratory calibration using equation 6. This is an improvement
from the results obtained by best fitting Sentek manufacturer equation, [23] (R2 = 0.58),
Evett et al. [24] (R2 = 0.9), Burgess et al. [27] (R2 = 0.80), Paraskevas et al. [29] (R2 = 0.87),
and Gao et al. [32] (R2 = 0.86) for soils with high clay content. Groves and Rose, [26]
(R2 = 0.93), Evett et al. [28] (R2 = 0.99) model results were better than the results obtained
in this study due to larger data sets resulting in better data representation. The laboratory
results obtained for Loam soils recorded an R2 of 0.83. This is a marginal improvement
from the best fitting manufacturers algorithm, which had an R2 of 0.82. Geesing et al. [22]
recorded similar results to ours with an R2 of 0.88, though they used an exponential
regression model, which performed fractionally better than the logarithmic regression
model we used. In addition, Paraskevas et al. [29] also recorded an R2 of 0.87 from
equations exported from the local calibration that outweighed the manufacturer default
equation. Then, Leib et al. [25] obtained better results, recording an average R2 of 0.94



Water 2021, 13, 837 24 of 28

though the loam sample contained higher content silt, and default equations tend to favor
the soils with more homogeneous particle size, like silt loam. Finally, for sandy soils, our
results showed an improvement during wetting of soils, i.e., field calibration—phase 2, and
the results were similar to Jia et al. [2], who recorded an R2 of 0.92 and also concluded that
accuracy of the model improved under laboratory conditions by applying a soil specific
calibration method. Morgan et al. [17] performed linear and exponential models in fine
sands (R2 = 0.83) and concluded that default calibration equations—yielded 22% lower
estimates than data regression.

Table 11. Summary of statistical metrics associated with coefficients of both field and laboratory calibration equations.

Soil Type Calibration Name R2 p-Value RMSE (%)

Clay

Sentek default equation - - 13.77

Best fitting manufacturer’s algorithm (0.58) - 3.56

Regression results of field measurements 0.79 0.001 13.74

Lab calibration results 0.92 1.96 × 10−5 3.85

Loam

Sentek default equation - - 17.81

Best fitting manufacturer’s algorithm (0.82) - 1.89

Regression results of field measurements 0.4 0.07 14.01

Lab calibration results 0.83 0.01 2.27

Sand

Sentek default equation - - 5.77

Best fitting manufacturer’s algorithm (0.97) - 2.05

Regression results of field measurements Phase 1 0.84 0.003 5.82

Regression results of field measurements Phase 2 0.91 1.25 × 10−8 1.86

R2 values in brackets are taken from the manufacturer’s records.

5.2. Evaluation of the Manufacturer’s Equations

In terms of estimated VWC, comparing results in Table 11 to literature, the default
calibration equations are considered valid as found by Provenzano et al. [31]. However,
it is noted that further refinement of results is necessary to achieve the best possible
estimated VWC. As much as the EnviroScan manufacturer equations are valid, the major
critique observed is that they tend to underestimate VWC, which is in agreement with
Paltineanu and Starr, [13], Burgess et al. [27], and Zettl et al. [30], but also overestimates
VWC as reported in Gabriel et al. [20] and Paraskevas et al. [29]. We found that over and
underestimation are related to the equation rather than SM condition related. The default
Sentek equation tends to severely overestimate SM in the dry soils and underestimate it for
the wet ones. It shrinks the natural variation into a smaller range.

Several papers suggest field calibration [20,22,27,30–32], but it is only feasible when
data is used afterward because any bulk sampling for gravimetric SM measurements
would disturb the soil around the sensor. An alternative approach tested here was to
sample the sensor’s larger neighborhood, at least 1 m apart from the sensor several times,
expecting different SM conditions. The results have not shown much improvement over
using the default Sentek manufacturers sensor equation, mainly due to limited SM changes
observed within the period. The artificial extension of the SM conditions- like field wetting—
improved the estimation a lot, and better performance was achieved compared to the best
fitting manufacturer’s algorithm. However, this approach was feasible only for the sand
texture with a high infiltration rate.

Laboratory calibration was tested by collecting disturbed soil samples from the plow
layers of clayey and loamy soils and applying different amounts of water for wetting the
soil until saturation. Bulk sampling and sensor readings were done in several SM stages,
and these data pairs were used to derive the calibration equation. This approach provided
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the best results but still could not outperform the best fitting equation results. Furthermore,
when the equation was reapplied for another dataset from the same area with the same
soils but in field conditions, the performance had dropped much below the regular best
fitting equations. This can be explained by the soil samples’ significant structural changes
due to sampling and processing that change the major characteristics of the soils compared
to field conditions.

The sphere of influence of the capacitance probe is small, with a main radial sensitivity
range of 10 cm (Paltineanu and Starr 1997) from the access tubes. As such, the core
samples for the laboratory analysis and the post-calibration for the loam reapplication in
the present study were intentionally taken within this range. The small-range heterogeneity
of soil texture and soil moisture can be a significant source of measurement variation, both
in natural and agricultural field conditions. The relatively small volume of the sensed
soil makes this problem of representativity even more serious. Therefore, the use of
core sampling data collected beyond the main sensitivity sphere is a potential source of
uncertainty, even if taken with the largest care. The success of off-site sampling from
the vicinity of the access tube depends on two assumptions. The first is that the soil
moisture content at a distance of <100 cm is believed to be spatially dependent. The second
assumption is that all spatial discontinuity caused by short-term fluctuations and sampling
errors are random. In reality, neither of them are necessarily true in this small volume,
where even one large root can make a difference. We found that this spatial heterogeneity is
reflected in the bulk sampling results and highlighted by Geesing et al., 2004. This impact
is even more expressed when disturbed soil samples are used to fill the ring, as it happened
in the laboratory exercise.

Despite concerns about different zones of influence and the effect of small-range
changes in soil water content, especially in heterogeneous soils, the findings show that
the calibration approach proposed provides appropriate calibration equations for portable
capacitance sensors in heterogeneous fields. Simple off-site field calibration provides an R2

around 0.7–0.8 for sand and clay, which is a fair performance for practical use, of which
Geesing et al. (2004) reported similar values. However, for better refinement of results,
laboratory measurements should cover a full range of SM values and achieve a better
match. Geesing et al. (2004) used a similar off-site sampling approach to run the calibration
with over 280 samples. In our study, similar performance was achieved using much less
sample, averaging around 10 for a site, which means that fair performance can be achieved
with fewer samples, but the covered range of SM values is rather crucial. Individual labo-
ratory experiments should be performed with special care for field representativity—most
importantly, the bulk density—because the reapplication of the precisely fitted laboratory
curve in the field performs much less than the laboratory one.

6. Conclusions

Calibration and validation of the operational soil moisture sensors deployed to as-
sist agricultural production and irrigation control are difficult. The field conditions are
changing annually and defined by the applied tillage methods. Reliable measurements can
be achieved only if the sensors are deployed into the same soil environment, condition as
of the rest of the field, so they should be deployed after seedbed creation. The deployed
sensors are expected to provide data from deployment time, so there is no long field cali-
bration time. Disturbance of the sensor neighborhood should be avoided as well, which
makes the traditional calibrations difficult.

This study aimed to compare several potential solutions for calibrating an EnviroScan
sensor. The results show that the default calibration equations in all three classes have
relatively low performances; however, significant refinement was achieved by selecting
texture-specific equations from the manufacturer’s libraries. The soil-specific equations
of the EnviroScan often yielded quite satisfactory results with improvements in R2 values
and lowered RMSE’s ranging between 2 and 4.
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Both field (phase 2) and laboratory calibration approaches can be used to calibrate En-
viroScan sensors. Field calibration using bulk samples taken from the larger neighborhood
to keep the measuring site undisturbed is a feasible approach. However, it may introduce
significant uncertainty due to the large soil structural variability. It is also difficult to rep-
resent the full range of SM conditions, limiting the model development. Complementing
the natural field samples/conditions with laboratory measurements of extreme dry and
wet soil conditions significantly improved the field sampling. Laboratory measurements
can only be done using disturbed samples. The results of the laboratory calibration are
often very good, but the reapplication of these equations in the field do not perform as
well, even if applied in the same area where the sample was taken. The disturbed samples
have a different structure, bulk density, and porosity, making a difference compared to
the actual field conditions. Despite the limitations, both approaches improved the model
performance and reduced models’ errors in all three soil textures. The sand and clay texture
equations perform more consistently; any selection of texture-specific algorithms improve
the estimation at a more or less equal level. They may not even need to be calibrated; the
manufacturer’s equation can be used for operational use. The loam texture—by definition—
is not as homogeneous class as the other two. There is a significant variation among the
loam equations’ performances; therefore, the different kinds of loams may require a specific
selection of the best fitting, most adequate algorithm.

Overall, the SM sensing technology is proved to work when site-specific calibra-
tion is applied. A very good fit of observed and estimated SM values can be achieved
by a thorough calibration exercise, improving the estimation accuracy. Existing texture-
based algorithms are always better than any default and suggested to be used. Sampling
from a larger neighborhood for comparison and calibration can help select the best fit-
ting algorithm, especially when laboratory measurements of extreme SM conditions can
complement the field data.
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