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Abstract: Accounting for secondary exhaustive variables (such as elevation) in modelling the spatial
distribution of precipitation can improve their estimate accuracy. However, elevation and precipita-
tion data are associated with different support sizes and it is necessary to define methods to combine
such different spatial data. The paper was aimed to compare block ordinary cokriging and block
kriging with an external drift in estimating the annual precipitation using elevation as covariate.
Block ordinary kriging was used as reference of a univariate geostatistical approach. In addition, the
different support sizes associated with precipitation and elevation data were also taken into account.
The study area was the Calabria region (southern Italy), which has a spatially variable Mediterranean
climate because of its high orographic variability. Block kriging with elevation as external drift,
compared to block ordinary kriging and block ordinary cokriging, was the most accurate approach
for modelling the spatial distribution of annual mean precipitation. The three measures of accuracy
(MAE, mean absolute error; RMSEP, root-mean-squared error of prediction; MRE, mean relative
error) have the lowest values (MAE = 112.80 mm; RMSEP = 144.89 mm, and MRE = 0.11), whereas
the goodness of prediction (G) has the highest value (75.67). The results clearly indicated that the use
of an exhaustive secondary variable always improves the precipitation estimate, but in the case of
areas with elevations below 120 m, block cokriging makes better use of secondary information in
precipitation estimation than block kriging with external drift. At higher elevations, the opposite is
always true: block kriging with external drift performs better than block cokriging. This approach
takes into account the support size associated with precipitation and elevation data. Accounting
for elevation allowed to obtain more detailed maps than using block ordinary kriging. However,
block kriging with external drift produced a map with more local details than that of block ordinary
cokriging because of the local re-evaluation of the linear regression of precipitation on block estimates.

Keywords: geostatistics; cokriging; kriging with external drift; change of support

1. Introduction

Assessing the spatial distribution of precipitation is crucial for water resource man-
agement and, in particular, for facing the challenges of agriculture and food production [1].
The accurate modelling of precipitation is a well-known topic and it essentially consists in
predicting the precipitation over more or less areas, depending on the objectives of such
modelling, from a few sparse measuring stations with good confidence [2–4].

The use of remote sensing data to indirectly obtain comprehensive precipitation
can be a feasible alternative to direct measurements, but the accuracy and resolution of
precipitation may not be adequate for the intended use [5].

Precipitation varies more or less continuously in the geographical space and is suit-
able to be modelled as an intrinsic stationary process by using the methods of geostatis-
tics [3,6,7]. Consequently, many different geostatistical methods have been developed for
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characterizing and modelling precipitation, both simple ones that only use precipitation
measurements at fixed points and more complex ones that also use extensive information
as covariates for spatial interpolation [3,8–10]. Choosing an interpolation method for a
given dataset and study area is a key issue in many cases. In areas with low relief and
abundant data from evenly distributed precipitation gauges, most interpolation methods
give similar results [11]. Unfortunately, such conditions are rarely found and, especially in
mountainous areas with sparse data, implicit or explicit assumptions about the variation
among measured points may differ significantly even at relatively small scales [11–13].
Furthermore, the interpolation of point data does not end with the production of a map,
but allows for inferences to be made and knowledge about the precipitation process to be
improved. Therefore, great caution is needed when using information from precipitation
atlases based only on statistical relationships [14]. There are different methods that may
combine regression analysis and distance-based weighted averages producing smooth
surfaces [15–18]. In these methods, the key difference among them is in the criteria used in
determining the weights of point data in relation to distance. These criteria may include
simple distance relations as in inverse distance weighting methods [19], variance mini-
mization as in different types of kriging algorithms [20], or curvature minimization and
the application of smoothness criteria as in splining [21,22].

Compared to using only precipitation measurements, it has been shown that the use
of exhaustive auxiliary variables as covariates in multivariate geostatistics can improve the
accuracy of precipitation estimation [23]. Such an improvement depends on the explanatory
relationship between precipitation and covariates. Therefore, interpolating point data may
allow to understand factors controlling the distribution of precipitation [7,14]. There are
many studies of multivariate geostatistics using covariates as radar imagery or topographic
attributes [23–27].

The precipitation–elevation relationship is perhaps the most widely used, and it has
been shown how elevation strongly controls the variability of precipitation at the small
scale of monthly, annual, or interannual precipitations [2,12,23–25,28–31]. Moreover, the
correlation between elevation and precipitation becomes stronger as the time aggregation
increases [31], and Goovaerts [23] reported that implementing the elevation as background
information can improve the interpolation performance on a monthly and yearly time scale.
However, it may not be possible to capture such a relationship because it also depends on
the spatial scale [32].

However, elevation (or any other topographic attribute) and precipitation data are
associated with different support sizes, which for precipitation can be considered punctual
(very small surface unit), while for elevation it depends on the resolution of the digital
elevation model and the support size can certainly not be considered punctual. Usually, in
multivariate geostatistics applications, different types of data are used without regard to
the original size of the support with which they are associated. Instead, to combine such
different spatial data, it is necessary to define methods to take into account the underlying
uncertainties and change of support [33]. Generally, when applying statistical methods
there is a tendency to overlook support problems, whereas in the application of geostatistics
this has been taken into account.

The use of elevation as covariate for estimating precipitation at annual temporal scale
has been described and, theoretically, it should move from the academic and research
domains to operational use. However, there are two geostatistical estimators that are
designed to incorporate exhaustively secondary information: cokriging and kriging with
external drift [34]. The main differences between them consists in how the covariate
(collocated) datum is handled: in cokriging that datum influences the primary cokriging
estimate, whereas in kriging with external drift (KED) the secondary datum provides
information only about the primary trend at a given location. In addition, in KED the
secondary information tends to influence strongly the estimate, whereas cokriging accounts
for the global linear correlation between primary and secondary variables as captured by
the cross variogram [34]. Assessing which of the two geostatistical methods best models
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mean annual precipitation is certainly an important research issue. Moreover, further
advance on the problem of the different support sizes associated with precipitation and
elevation data needs to be considered appropriately.

The main objective of this paper was comparing block ordinary cokriging and block
kriging with an external drift in estimating the mean annual precipitation using elevation
as covariate. As reference of a univariate geostatistical approach, block ordinary kriging
was used. The different support sizes associated with precipitation and elevation data were
also taken into account.

2. Materials and Methods
2.1. Study Area and Data

Calabria region is located at the southern part of the Italian peninsula (Figure 1)
and has a surface area of 15,080 km2. The mean elevation is 597 m above sea level (a.s.l.),
whereas its highest elevation is 2266 m a.s.l. Calabria region is one of the most mountainous
Italian areas, but it does not have many high peaks (Figure 1): 42% of the regional area is
classified as mountain (elevation greater than 500 m a.s.l.), 49% hills (elevation between 50
and 500 m a.s.l.), and only 9% plain (elevation less than 50 m a.s.l.).

Figure 1. Study area and precipitation gauges locations (coordinate system: Projection UTM, Zone
33N, Datum WGS84).

Calabria region, as a result of its geographic position within the Mediterranean sea
and its orography (Figure 1), has a climate typically Mediterranean [35], with warm air
currents coming from Africa and high temperatures affecting the Ionian side of Calabria,
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which leads to short and heavy precipitation. The Tyrrhenian side of Calabria is affected
by western air current, which causes temperatures to be milder and precipitation amount
to be higher on the mountains than on the Ionian side. The inner areas of the region have
cold and snowy winters, and fresh summers with some precipitation [36].

The data used in this study are a set of mean annual precipitation series relative to the
period 1921–2010 collected by the Multi-Risk Functional Centre of the Regional Agency
for Environment Protection. From a long-term database were selected 183 precipitation
series having more than 50 years of observations, and the mean annual precipitation was
calculated for each precipitation gauge.

The elevation data were obtained from a digital elevation model (DEM) with 80 m × 80 m
cell size.

2.2. Geostatistical Approach

Here, only a very brief introduction to the well-known estimators used in the study
case will be made, and for a detailed description of them, interested readers should refer to
Goovaerts [34], Chilès and Delfiner [20], Webster and Oliver [37], and Wackernagel [38],
among others.

The idea behind geostatistics is the correlation between pairs of sample values at differ-
ent distances and what Matheron [39] called regionalized variables, z(x), those phenomena
that are distributed in space and exhibit a certain spatial structure [39]. The observed
values, z(x), at each data point x (x is the location coordinates vector) are considered as
the outcome of a random variable Z(x). The set of spatially dependent random variables
forms the random function. The random variable is denoted with capital Z, whereas
its outcome (realization) is called a regionalized variable and is denoted with lowercase
z. At unsampled locations, the values z(x) are unknown but well defined and they can
also be considered as realizations (outcomes) of the same random variable Z(x) [40]. The
variogram is the basic tool for structural interpretation of the phenomenon and for estima-
tion [6,39]. The variogram is a function of the vector h (module and direction) (lag) and, for
a defined direction, it quantifies how different the values become as the distance increases.
The experimental variogram is a set of unconnected points, and being used to predict the
variable at unsampled locations, it needs to fit a continuous mathematical function (model)
to calculate variogram values for any distances and not give rise to negative variances for
any combination of random variables [37,40]. In addition to the model type, the variogram
model is defined by its parameters (range and sill). The range is the distance over which
pairs of precipitation (or elevation) values are spatially correlated, while the sill is the
variogram value corresponding to the range. The optimal fitting will be chosen on the basis
of cross-validation, which checks the compatibility between the data and the structural
model by considering each data point in turn, removing it temporarily from the dataset and
using its neighboring information to predict the value of the variable at its location. The
goodness of fit was evaluated using the mean error (ME) and the mean squared deviation
ratio (MSDR) [37].

Ordinary kriging (OK) is one of the most basic kriging methods and uses primary
information only and also provides an error variance σ2

OK(x0) . The values of the vari-
able(s) of interest z(x0) at the unsampled location x0 are computed as a weighted linear
combination of the neighboring observations z(xα) (α = 1, . . . , n). The weights are obtained
by solving a system of linear equations so as to minimize the estimation or error variance
under the constraint of unbiasedness of the estimator [34]. Here, the map obtained by OK
will be used as reference to discuss the results of multivariate methods.

When a secondary variable is both less expensive to be measured than the variable
of interest and densely sampled, information from an auxiliary variable might be used
to improve the precision of prediction of the variable of interest. In this case, if two or
more variables are considered, the theory of regionalized variables applies to them and
the variogram can be easily extended to multiple variables by considering two variables
at a time: both variables are considered at one location and both separated by a lag
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vector h. The same method of variogram calculation applies, and there are only more
variograms to calculate and fit to quantify the spatial structure of all considered variables.
The cross-variogram between two variables allows their shared features to be disclosed
and, on the case that the relationship is direct, the higher the correlation between the
two variables, the more similar the direct variograms of the two variables are. However,
the direct and cross-variograms cannot be considered independently and form a linear
model of coregionalization (LMC) to be jointly fitted so to be definite negative for variance
constrains and to be physically plausible [41]. The relationships between the variables
are controlled by weighting of factors, and the LMC assumes that the N variables are
a linear combination of L underlying independent factors l = 1, . . . , L. The n(n + 1)/2
simple and cross-variograms of the n variables are modelled by a linear combination of
NS standardized variograms to unit sill gu(h). Using the matrix notation, the LMC can be
written as:

Γ(h) =
NS

∑
u=1

Bugu(h) (1)

where Γ(h) =
[
γij(h)

]
is a symmetric matrix of order n × n, whose diagonal and non-

diagonal elements represent simple and cross-variograms for lag h; Bu =
[
bu

ij

]
is called

coregionalization matrix and is a symmetric semidefinite positive matrix of order n× n
with real elements bu

ij at a specific spatial scale u.
The multivariate extension of kriging formalism is called cokriging [41].
An alternative way to incorporate a secondary variable s(x) in the estimation of the

primary variable z(x) is kriging with external drift (KED). The condition for its application
is that the relation between primary z(x) and secondary variable s(x) must be linear and
make physical sense [34]. The smooth variability of the secondary (external) variable s(x)
is deemed related to that of the primary variable z(x) to be estimated [42]. The regionalized
variable z(x) is considered as a realization of a random function Z(x) consisting of a mean
function m(x) and a second-order stationarity random function Y(x) with a mean equal to
zero [38]:

Z(x) = m(x) + Y(x) (2)

The basic hypothesis of KED is that the expected value (or mean) E[Z(x)] of the
variable z(x), known only at a small set of points in the study area, can be written as a
linear transformation of secondary variables s(x), exhaustively known in the same area
(external drift):

E[Z(x)] = b0 + b1s(x) (3)

where b0 and b1 are unknown coefficients, which are implicitly estimated through the
kriging system within each search neighborhood. Moreover, the secondary variable s(x)
must vary smoothly in space, otherwise the resulting kriging system may be unstable; and
the external variable must be known at all locations x of the primary data values and at all
locations x to be estimated.

Cokriging and kriging with external drift are designed to incorporate exhaustively
sampled secondary variables, but they differ in how such data are handled. In cokriging
estimate, the secondary variables are spatial random variable with expected values and
variograms, which directly influence the estimation of the primary variable, whereas in
KED, they provide information only about the primary trend at location x. Especially when
the estimated slope b1 (Equation (3)) is large, the secondary information tends to influence
strongly the KED estimation. Instead, in cokriging the cross-variogram describes the global
linear correlation between primary and secondary variables. Finally, modelling direct and
cross-variograms in cokriging is more straightforward than the inference of the residual
covariance required by kriging with an external drift [34,43].

Block kriging is the traditional geostatistical interpolation method used in solving a
change of support problem [20,40], and it is used to predict the mean values of a block
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from the observations at locations with point support, accounting for the block’s attributes
(size, shape, and orientation):

z(x0) =
1

V0

∫
V0

z(x)dx (4)

where V0 is centered at the x0 point and the block can be a line, an area, or a volume,
depending on whether z is defined in one, two, or three dimensions. The main difference
between point and block kriging consists in the calculation of the point-to-block covariances
(variograms), and since “block support” covariances (variograms) can be expressed in
terms of “point support” covariances (variograms), the change of support problem can be
solved by computing the average of the variogram on the block γ(xi, V0), discretizing the
block V0 into points

{
uβ

}
and approximated by a summation:

γ(xα, V0) ≈
1
N

N

∑
β=1

γ
(
xα, xβ

)
(5)

Consequently, from point observations, block kriging can be used to predict the
average value at a larger scale, taking into account not only the size but also the shape and
orientation of the blocks.

Cokriging can estimate accurately the values at unsampled point locations or aver-
ages over blocks [40], but taking into account the different supports in the calculation of
variograms and cross-variograms is crucial to obtain valid inference [44]. More details of
cokriging theory can be found in Wackernagel [38] or Chilès and Delfiner [20].

Even though the geostatistical approach does not require that the data follow a normal
distribution, variogram modelling is sensitive to strong departures from normality because
a few exceptionally large values may contribute to many very large squared differences. A
normal transformation is suggested when skewness is greater than 0.5 [37], and Gaussian
anamorphosis is a suitable procedure to transform skew data into a Gaussian-shaped
variable with zero mean and unit variance [20,38]. Moreover, in multivariate approaches,
normalization and standardization of data may be requested when the variables have
different units of measurement and orders of magnitude.

In this study case, precipitation data were associated with a point support whereas the
secondary exhaustively measured variable (elevation) was associated with a support equal
to the digital elevation model (DEM) resolution (80 m × 80 m). Then, it was required to
transform the variograms of KED and LMC established on points into the corresponding
variograms on the given block support (80 m × 80 m). For such a transformation (called
regularization), the variogram was calculated using a discretization of the blocks into equal
cells, then a pseudo-experimental variogram was calculated in the fictitious cell centers,
and finally the point variograms were averaged over the block [20].

Finally, all Gaussian estimates were produced on a block support 80 m × 80 m using
the three geostatistical methods and later back-transformed into precipitation raw data.

An overview of the three geostatistical approaches is shown in Figure 2.
All geostatistical analyses were performed using the software package ISATIS, release

2018.3 [45].
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Figure 2. A schematic overview of three approaches: (a) block ordinary kriging, (b) block ordinary cokriging, and (c) block
kriging with external drift.

2.3. Validation Procedure

The whole dataset (n = 183) was randomly split into a calculation set including 146 pre-
cipitation gauge (80% of the whole dataset) and a validation set including 37 precipitation
gauges (20% of the whole dataset). Figure 1 shows the locations of the calculation and vali-
dation sets. The calculation set was used both to apply the three geostatistical approaches
(block ordinary kriging, block ordinary cokriging, and block kriging with external drift)
following the schematic overview summarized in Figure 2 and to estimate the mean annual
precipitation values at the validation set locations to provide an independent assessment of
the prediction quality. Since it is unlikely that one method will produce the best estimate at
all locations, the predictions were compared using three classical measures of accuracy (see
for example [46,47], among others): (1) the mean absolute error (MAE), (2) the root mean
squared error of prediction (RMSEP), and (3) the mean relative error (MRE). In addition,
the goodness of prediction (G), as a measure of effectiveness, was calculated. The MAE is
the average of the absolute residuals (e.g., predicted minus observed) [48]:

MAE =
1
n

nVal

∑
α=1
|z∗(xα)− z(xα)| (6)

where nVal is the number of observations in the independent validation set (here n = 37),
z∗(xα) is the estimated value at location α, and z(xα) is the observed value at location α.
MAE should be close to zero. The mean squared error of prediction (RMSEP) is the root
of the averaged squared difference between the observed value z(xα) and the estimated
value z∗(xα),

RMSEP =

√√√√ 1
nVal

nVal

∑
α=1

[z∗(xα)− z(xα)]
2 (7)
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The RMSEP measures the precision of the prediction and it should be as small as
possible. To reduce the impact of large values on the computation of the MAE, the mean
relative error (MRE) has been also computed:

MRE =
1
n

nVal

∑
α=1

∣∣∣∣ z∗(xα)− z(xα)

z(xα)

∣∣∣∣ (8)

The fourth comparative measure is a goodness of prediction used by Agterberg [49]
and is given by:

G =

1−


nVal
∑

α=1
[z(xα)− z∗(xα)]

2

nVal
∑

α=1
[z(xα)− z]2


100 (9)

where z is the sample mean. The measure G gives an indication of how effective a pre-
diction might be, relative to that which could have been derived from using the sample

mean alone [49]. If
nVal
∑

α=1
[z(xα)− z∗(xα)]

2 is less than
nVal
∑

α=1
[z(xα)− z]2, it indicates that the

predictions made using z∗(xα) are more accurate on average than those made using z and G

will be positive, whereas if
nVal
∑

α=1
[z(xα)− z∗(xα)]

2 is greater than
nVal
∑

α=1
[z(xα)− z]2, it indicates

that the predictions made using z∗(xi) are less accurate on average than those made using
z and G will be negative. The magnitude of G gives the accuracy: a value equal to 100%
indicates perfect prediction.

Moreover, to analyze the effect of elevation in the validation procedure and to assure
that the results were confirmed in different classes of elevation, a solution could be to
split the validation set into elevation class functions representing plain, hill, and mountain.
However, in order to have more or less the same number of data in the different elevation
classes, it was preferred to use the quartiles of the elevation data distribution of the
validation set. According to this criterion, the lower quartile, the median, and the upper
quartile were used to split the data into four elevation classes, roughly ranging from
lowland through hill to mountain:

Class 1 (10 precipitation data): elevation between 3 and 120 m a.s.l.
Class 2 (9 precipitation data): elevation between 160 and 286 m a.s.l.
Class 3 (9 precipitation data): elevation between 304 and 498 m a.s.l.
Class 4 (9 precipitation data): elevation between 550 and 1358 m a.s.l.

Then, the three accuracy measures (MAE, RMSEP and MRE), and the effectiveness
measure (G) were calculated for the estimated precipitation values of each elevation class.

Moreover, a scatterplot of measured versus predicted values provided additional
evidence on how well an estimation method has performed. The best possible estimates
would match the measured values, and therefore the slope of the scatterplot should be close
to 1. A good index for summarizing how close the points on a scatterplot come to falling on
a straight line is the Pearson correlation coefficient. However, because highly mismatched
pairs on the scatterplot influence the linear correlation coefficient, the Spearman rank
correlation coefficient as measure of the strength of the relationship was also used.

Finally, as a measure of the strength of the relationship between the measured and
estimates of precipitation values for each elevation class, the Pearson correlation coefficient
and the Spearman rank correlation coefficient were calculated.

3. Results

The mean annual precipitation and elevation data both show asymmetric distributions
(Figure 3). The distribution of the mean annual precipitation is slightly positive skewed be-
cause mean (1089.3 mm) and median (1059.8 mm) are a little different (skewness coefficient
= 0.51). In addition, the upper whisker (maximum precipitation value = 2081.8 mm) is
longer than the lower whisker (minimum precipitation value = 502.7 mm). Both calculation
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(C) and validation (V) sets for the mean annual precipitation (Figure 3) have similar means
and medians.

Figure 3. Box plots of the whole (W), calculation (C), and validation (V) sets for the mean annual
precipitation and elevation data.

The distribution of elevation data is moderately skewed with a more marked difference
between the mean (434.5 m) and the median (367.0 m) (skewness coefficient = 0.75) than the
one of precipitation data (Figure 3). The difference between the upper whisker (maximum
elevation value = 1358 m) and the lower whisker (minimum elevation value = 3 m) is also
greater than for the average annual precipitation. The calculation set of elevation data has
a similar distribution and main statistics to the whole set, whereas the validation set has a
greater asymmetry (Figure 3).

However, all data were transformed into Gaussian-shaped variables using the above-
mentioned Gaussian anamorphosis. Moreover, a standardization to zero mean and unit
variance is however required in a multivariate analysis when the variables are expressed in
different units and have different magnitudes, as in the present study case. Therefore, all
geostatistical procedures were performed in the Gaussian domain, and finally the estimates
were back-transformed to the original units.

In the scope of identifying possible anisotropic behaviors, a map of the 2D variograms
(not shown) of precipitation data was computed, but no relevant difference as a function of
direction (anisotropy) was found. Therefore, an experimental variogram was computed and
modelled by a bounded isotropic nested variogram model (Figure 4), which included three
basic structures: a nugget effect, a K-Bessel model [20] with a scale (distance parameter)
of about 29.8 km and a parameter equal to 1, and a spherical model [37] with range of
54.6 km.

The goodness of fit was tested through cross-validation with mean errors equal to
0.025 and a standardized error variance of 0.80. The standardized error variance is within
the tolerance interval 0.7–1.3 [20].

The fitted variogram and the Gaussian precipitation data were used with block or-
dinary kriging to estimate the values of the square blocks centered on the 80 m × 80 m
grid nodes. The estimated values were back-transformed to raw precipitation using the
previously determined anamorphosis function (Figure 5a).
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Figure 4. Variogram of the Gaussian precipitation data. The filled points are the experimental
semivariance values, and the red solid line is the fitted model of variogram. The black dashed line is
the experimental variance.

Figure 5. Maps of the mean annual precipitation obtained using block ordinary kriging (a), block ordinary cokriging (b),
and block kriging with external drift (c).

A point linear model of coregionalization (LMC) of the Gaussian-transformed vari-
ables of precipitation and elevation was computed to apply block ordinary cokriging. The
LMC included three variograms (Figure 6a): one auto-variogram for each variable and one
cross-variogram for the two variables.
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Figure 6. Point (a) and regularized (b) auto- and cross-variograms of the Gaussian-transformed variables of precipitation and
elevation. The experimental values are the plotted black points, and the red solid lines are of the model of coregionalization.
The red dash-dotted lines are the hull of perfect correlation, and the black dashed lines are the experimental variances.

The point LMC was fitted including the following basic structures (Figure 6a): a
nugget effect, a K-Bessel model with a scale of about 29.8 km and parameter equal to
1, and a spherical model [19] with a range of about 54.6 km. The goodness of fit was
tested through cross-validation with mean errors equal to 0.032 for Gaussian precipitation
and 0.045 for Gaussian elevation, whereas the standardized error variances were 0.90 for
Gaussian precipitation and 1.07 for Gaussian elevation. Both standardized error variances
are within the tolerance interval 0.7–1.3 [20].

The experimental variograms of the Gaussian data were regularized over the
80 m × 80 m block, and the fitted block LMC included the following three basic spatial
structures: a nugget effect, a K-Bessel model with a scale of about 32.4 km and parameter
equal to 1, and a spherical model with a range of about 60.2 km (Figure 6b).

Finally, the Gaussian precipitation values were estimated at the square blocks centered
on the 80 m × 80 m grid nodes, and then they were back-transformed to raw precipitation
data using the previously determined anamorphosis function (Figure 5b).

To apply kriging with external drift, Gaussian data of elevation were used as external
drift. The mean annual precipitation and elevation are linearly and positively correlated
with a coefficient of 0.61 for raw data that increases to 0.66 for Gaussian values. That
confirms the applicability condition of KED. The same variogram model fitted for the
univariate case was used for kriging with elevation as external drift, but was regularized
over the 80 m × 80 m block. Finally, at the square blocks centered on the 80 m × 80 m
grid nodes, the Gaussian precipitation values were estimated and back-transformed to raw
precipitation data (Figure 5c).

Finally, the calculation set was used to apply the three methods and re-estimate
the precipitation values at the validation set locations. The measures of accuracy and
effectiveness of the estimates obtained by the three interpolation techniques are reported in
Table 1.
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Table 1. Measures of accuracy (MAE, mean absolute error; RMSEP, root-mean-squared error of
prediction; MRE, mean relative error) and effectiveness (G, goodness of prediction) of the estimates
obtained by the three interpolation techniques for the whole validation set and the four validation
subsets. The first column in parentheses shows the number of used data for the whole set and
sub-sets (Elevation classes 1, 2, 3, and 4).

Data Set Estimation
Method

MAE
(mm)

RMSEP
(mm)

MRE
(-)

G
(-)

Whole
validation set

(37)

BOK 1 135.11 173.68 0.13 54.92
BcoK 1 130.72 165.77 0.12 62.41
BKED 1 112.80 144.89 0.11 75.67

Elevation
class 1

(10)

BOK 1 120.09 142.44 0.18 97.73
BcoK 1 62.10 67.55 0.08 99.35
BKED 1 73.30 81.52 0.10 99.17

Elevation
class 2

(9)

BOK 1 137.49 162.35 0.14 97.42
BcoK 1 133.12 150.11 0.14 97.78
BKED 1 133.64 149.67 0.14 97.83

Elevation
class 3

(9)

BOK 1 213.46 251.01 0.17 94.79
BcoK 1 223.32 253.14 0.18 95.18
BKED 1 197.90 227.08 0.17 96.37

Elevation
class 4

(9)

BOK 1 84.40 119.82 0.07 99.18
BcoK 1 118.88 147.62 0.10 98.63
BKED 1 58.89 75.50 0.04 99.69

1 Block ordinary kriging (BOK), block ordinary cokriging (BcoK), and block kriging with external drift (BKED).

All measures of accuracy and effectiveness of the estimates show that block kriging
with external drift (BKED) performs better than block ordinary kriging (BOK) and block
ordinary cokriging (BcoK). In fact, using BKED, the three accuracy measures (MAE, RMSEP,
and MRE) have the lowest values, while the effectiveness measure (G) has the highest
value (Table 1).

Finally, the scatterplots of estimated versus measured precipitation of the validation set
(Figure 7) also show the best performance for block kriging with external drift (Figure 7c).

Figure 7. Scatterplots of estimated versus measured precipitation for block ordinary kriging (a), block ordinary cokriging
(b), and block kriging with external drift (c). The values of the Pearson correlation coefficient (r) and of the Spearman rank
correlation coefficient (Rho) are also reported.

The largest values of the Pearson correlation coefficient r (0.89) and Spearman rank
correlation coefficient Rho (0.87) for block kriging with external drift (Figure 7c) confirm
the good performance of this approach.
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Similarly to what was obtained from the results of the measures of accuracy and
effectiveness of the estimates obtained by the three interpolation techniques, the Pearson
correlation coefficient r and Spearman rank correlation coefficient Rho are higher for block
kriging with external drift (BKED) than for the other methods for the validation subsets of
elevation classes 2 (160–286 m a.s.l.), 3 (304–498 m a.s.l.), and 4 (550–1358 m a.s.l.), although
for class 2, the Spearman rank correlation coefficient Rho of BcoK is slightly higher (0.45)
than that of BKED (0.42) (Table 2).

Table 2. Values of Pearson correlation coefficient (r) and Spearman rank correlation coefficient (Rho)
for the measured mean annual precipitation and that estimated using block ordinary kriging, block
ordinary cokriging, and block kriging with external drift for the four validation subsets (Elevation
classes 1, 2, 3, and 4). The first column in parentheses shows the number of used data for the subsets.

Data Set Estimation Method r
(-)

Rho
(-)

Elevation class 1
(10)

BOK 1 0.89 0.79
BcoK 1 0.97 0.89
BKED 1 0.96 0.81

Elevation class 2
(9)

BOK 1 0.52 0.57
BcoK 1 0.42 0.45
BKED 1 0.45 0.42

Elevation class 3
(9)

BOK 1 0.74 0.57
BcoK 1 0.64 0.52
BKED 1 0.72 0.60

Elevation class 4
(9)

BOK 1 0.81 0.58
BcoK 1 0.86 0.82
BKED 1 0.91 0.90

1 Block ordinary kriging (BOK), block ordinary cokriging (BcoK), and block kriging with external drift (BKED).

In accordance with what happened with the measures of accuracy and effectiveness of
the estimates, for the validation subset of the elevation class 1 (3–120 m a.s.l.), the Pearson
correlation coefficient r and Spearman rank correlation coefficient Rho are higher for block
cokriging (BcoK) than for the other methods (Table 2).

4. Discussion

As explained before, elevation and precipitation data are associated with different
support sizes, which for precipitation can be considered punctual, whereas for elevation
it is equal to the resolution of the digital elevation model (80 m × 80 m). Taking this
difference in support into account required the regularization of variograms (Figure 6). The
regularized variograms differ from the point support variograms by a constant term that
measures within-block variance and is related to the size and geometry of the support [40]
(Figure 6). The block LMC (Figure 6b), compared to point LMC (Figure 6a), shows that
as block size increases, the sills decrease whereas the ranges increase. The nugget should
also decrease because the proportion of noise in the data decreases and the nugget should
be filtered. However, in this particular case, there is little apparent decrease in the nugget
because it was already very small in the point LMC.

In the linear model of coregionalization of the Gaussian-transformed variables of
precipitation and elevation (both point and block LMC), all variogram models (Figure 6)
show a great continuity at the origin, which is an evidence of very regular processes.
Moreover, the variograms also show a nested spatial structure that includes two different
variogram models at short and long spatial scales. That leads to the suggestion that the
variability of precipitation and elevation is due to two different processes acting at short
and long range. This variability at two different spatial scales has been reported to be
probably due to the orographic effect for the shorter range of spatial variation and to
large-scale factors of variation as global atmospheric circulation for the longer range [7].
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The visual inspection of the cross-variograms (Figure 6) allows also to check the
correlation between the two variables: the proximity of the variogram model to the dotted
curve (called hull) represents the maximum correlation between the two variables (intrinsic
correlation) [38].

Accounting for secondary information, as in BcoK and BKED, results in maps with
more details (Figure 5b,c) than that obtained by univariate block ordinary kriging (Figure 5a).
Block ordinary cokriging and block kriging with external drift (Figure 5b,c) share the
secondary information from elevation and their maps show similar features. It is interesting
to compare the box plots of the map values obtained with the three geostatistical methods
and that of the mean annual precipitation data (Figure 8).

Figure 8. Box plots of the measured precipitation data (Meas.) and predicted precipitation using
block ordinary kriging (BOK), block ordinary cokriging (BcoK), and block kriging with external
drift (BKED).

The first thing one can observe is the smoothing effect, typical of ordinary kriging,
which reduces both the interquartile range (difference between the upper and lower quar-
tile) and the maximum value. On the contrary, both block ordinary cokriging and block
kriging with external drift reproduce the statistics of the measured data better than block
ordinary kriging (Figure 8).

However, Figure 5c shows that block kriging with external drift produces more local
details than block ordinary kriging and block ordinary cokriging. Such “short-range”
variation is due to the local re-evaluation of the linear regression of precipitation on
block estimates.

These results are confirmed by other studies. For example, Lloyd [25] studied the effect
of elevation on estimation of monthly precipitation in Great Britain comparing moving
window regression, inverse distance weighted, ordinary kriging, simple kriging with a
locally varying mean, and kriging with external drift, and has concluded that kriging with
external drift provided the most accurate estimates of precipitation. In another study on
the spatio-temporal analysis of daily precipitation and temperature in the Mexico basin,
Carrera-Hernandez and Gaskin [50] compared OK, KED, block kriging with external drift,
OK in a local neighborhood, and KED in a local neighborhood (KEDL), and the latter
(KEDL), using elevation as an auxiliary variable to define the drift, performed best.

Block kriging with external drift (BKED) also clearly performs better than the other
methods for the validation subsets of elevation classes 2 (160–286 m a.s.l.), 3 (304–498 m
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a.s.l.), and 4 (550–1358 m a.s.l.), although for class 2, the MAE of BKED (133.64 mm) is
slightly higher than that of BcoK (133.12 mm). On the contrary, for the validation subset
of the elevation class 1 (3–120 m a.s.l.), all measures of accuracy and effectiveness of the
estimates show that block cokriging (BcoK) performs better than block ordinary kriging
(BOK) and block kriging with external drift (BKED) (Table 1). However, these results clearly
indicate that the use of an exhaustive secondary variable always improves the precipitation
estimate. In the case of areas with elevations below 120 m, block cokriging makes better
use of secondary information in precipitation estimation than block kriging with external
drift. At higher elevations, however, the opposite is always true: BKED performs better
than BcoK (Table 1).

5. Conclusions

The results of the study showed that block kriging with external drift, compared to
block ordinary kriging and block ordinary cokriging, was the most accurate approach for
modelling the spatial distribution of mean annual precipitation. The approach used eleva-
tion as external drift and took into account the support size associated with precipitation
and elevation data.

However, although the results clearly indicated that the use of an exhaustive secondary
variable always improves the precipitation estimate, in the case of areas with elevations
below 120 m, block cokriging makes better use of secondary information in precipitation
estimation than block kriging with external drift. Instead, at higher elevations, the opposite
is always true: block kriging with external drift performs better than block cokriging.

The maps obtained by geostatistical approaches accounting for secondary information
(such as elevation) showed to be more detailed than the one obtained by the univariate
block ordinary kriging. Particularly, the maps obtained by block ordinary cokriging and
block kriging with external drift, which shared the secondary information from elevation,
showed similar features, but block kriging with external drift produced more local details
than block ordinary cokriging because of the local re-evaluation of the linear regression
of precipitation on block estimates. Moreover, both block ordinary cokriging and block
kriging with external drift reproduced the statistics of the measured precipitation data
better than block ordinary kriging.

The results of this study are a contribution in modelling and understanding natural
processes such as precipitation at an annual time scale.
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