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Abstract: The water level forecasting system represented by the hydrodynamic model relies too much
on the input data and the forecast value of the boundary, therefore introducing uncertainty in the
prediction results. Tide tables ignore the effect of the residual water level, which is usually significant.
Therefore, to solve this problem, a water level forecasting method for the regional short-term (3 h) is
proposed in this study. First, a simplified MIKE21 flow model (FM) was established to construct the
regional major astronomical tides after subdividing the model residuals into stationary constituents
(surplus astronomical tides, simulation deviation) and nonstationary constituents (residual water
level). Harmonic analysis (HA) and long short-term memory (LSTM) were adopted to forecast these
model residuals, respectively. Finally, according to different spatial background information, the
prediction for each composition was corrected by the inverse distance weighting (IDW) algorithm and
its improved IDW interpolation algorithm based on signal energy and the spatial distance (IDWSE)
from adjacent observation stations to nonmeasured locations. The developed method was applied to
Narragansett Bay in Rhode Island. Compared with the assimilation model, the root-mean-square
error (RMSE) of the proposed method decreased from 12.3 to 5.0 cm, and R2 increased from 0.932 to
0.988. The possibility of adding meteorological features into the LSTM network was further explored
as an extension of the prediction of the residual water level. The results show that the accuracy was
limited to a moderate level, which is related to the difficulty presented by using only wind features
to completely characterize the regional dynamic energy equilibrium process.

Keywords: water level forecast; LSTM network; Narragansett Bay; hydrodynamic model

1. Introduction

As one of the most widely used approaches for tidal prediction, the tide tables based
on harmonic analysis (HA) [1] can accurately predict astronomical tides. However, tide
tables cannot predict the residual water level caused by wind, barometric pressure, and
discharge, which are quite significant. With the development of numerical simulation
technology, the effect of environmental factors on water level changes has become a concern.
As a result, a series of hydrodynamic models have been proposed [2,3]. Relying on a
hydrodynamic model and the Physical Oceanographic Real-Time System (PORTS®) [4], the
United States built a 48 h tidal forecast system in ports, estuaries, great lakes, and coastal
waters [5–7], such as the Gulf of Maine Operational Forecast System (GOMOFS). In this
system, the Regional Ocean Modeling System (ROMs) [8] is used as the core prediction
model, and meteorological and hydrological prediction products are also assimilated.
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When evaluating the performance of GOMOFS, Peng et al. [9] found that the root-mean-
square error (RMSE) between the prediction and the observation was larger than the RMSE
between the observation and the astronomical tides prediction, indicating an unsatisfactory
precision of prediction. The findings were the same in the Chesapeake Bay Operational
Forecast System (CBOFS) [7].

Assimilation and correction of the Singapore regional model (SRM) [10] may be the
work most similar to the research regional forecasting of water level. In these studies,
prediction results from the model residuals are divided into two categories. One category
is represented by chaos theory, in which the error is maintained at a medium level and
does not change significantly [11]. For the second category, the error gradually diverges
with lead time, such as in ensemble Kalman filters [12], neural networks [13], and other
combined models [14]. Of note, as a product of numerical simulation, the forecast error
always contains two tidal components [15]: The residuals of the simulated tides (simulation
deviation) and the partial astronomical tides (surplus astronomical tides). The former is
caused by the errors of bathymetry, coastline, parameters, open boundary, and so on, which
will affect the total water depth and, in turn, affect the tide. The latter is caused by the
number of tidal constituents at the open boundary, which are usually incomplete. For
the prediction of nonstationary time series data, LSTM is considered to have excellent
performance. Due to the dedicated “gate mechanism” [16], LSTM can remember variable
lengths of time and has been successfully applied in the field of water level forecast,
especially in marine disaster prevention (such as storm surges, floods) [17–19]. In fact, the
short-time water level forecast under normal circumstances is also important for avoiding
ship groundings, aiding in navigation and oil spill response. However, the related research
is generally used for the whole water level at a single station, such as Yang et al. [20], and it
may be unable to give the real forecasting skill of the LSTM for the residual water level.

Furthermore, the spatial distribution of the model residuals is also a crucial step
for regional water level prediction. Clearly, a key ingredient in the successful spatial
distribution is a realistic estimation of the background error distribution [21]. Wang et al.
developed an approximate ordinary kriging method by hypothesizing that the spatial
distribution of the model residuals is the same as that of the SRM output [11]. However,
this assumption ignores the error caused by the simplified input and inaccurate parameters
of the model itself, which change the spatial distribution of the model residuals. In the
field of hydrology and meteorology, interpolation methods including inverse distance
weighting (IDW) [22], kriging [23], and spline are commonly used. Considering the
number of observation stations and the computational cost, it is more appropriate to use
IDW to perform classic three-point interpolation (3PM) [24]. However, in some cases, the
interpolation is amplified or diminished.

Therefore, we proposed a novel regional short-term (3 h) water level forecast method,
which takes into account both the prediction accuracy of the residual water level at the
observation station and the spatial distribution of water level components. A major
astronomical tides model is constructed using the MIKE21 flow model (FM), and three
constituents of model residuals are obtained by HA at the observation stations. The
difficulty in model residual prediction lies in the residual water level. The LSTM is first
used to forecast the residual water level under normal circumstances rather than extreme
weather conditions, and its forecasting skill is comprehensively analyzed. As an extension
of the prediction for residual water level, the possibility of adding meteorological features
into the LSTM network for the prediction of residual water level is further explored. In
addition, to solve the problem of weight anomalies when using the 3PM algorithm, the
IDW interpolation method based on the signal energy and spatial distance (IDWSE) is
proposed to improve the interpolation accuracy of the simulation deviation. Finally, to
evaluate the performance of the proposed method, this method is applied to Narragansett
Bay and the prediction results are compared with the assimilation model, which absorbs
wind forcing and pressure.
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2. Methods

The method used in this study is shown in Figure 1. The entire study can be divided
into three parts: Construct a model of 8 major astronomical tides using the MIKE21 FM,
forecast the model residuals at the observation stations, and distribute the forecasts at
nonmeasured locations.
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2.1. Numerical Model

MIKE 21 FM is a two-dimensional numerical model developed by the Danish Hy-
draulic Institute (DHI) for simulating tides, currents, waves, water quality, and other
processes. The model has been successfully applied in rivers, lakes, estuaries, bays, and
coastal areas [25–28]. The hydrodynamic module (HD) is based on the numerical solution
of incompressible Reynolds averaged Navier-Stokes equations invoking the assumptions of
Boussinesq and hydrostatic pressure and consists of continuity, momentum, temperature,
salinity, and density equations [29]. In this study, MIKE21 FM is used to construct a model
of major astronomical tides. Therefore, only the major astronomical tides are input at the
open boundary.

2.2. Tidal Harmonic Analysis and Water Level Constituents

Decomposition and prediction of stationary constituents are realized by the HA, which
determines the astronomical tide of a priori known frequencies (derived from astronomical
and hydrodynamic theory):

H(t) = S0 +
J

∑
j = 1

f jhj cos[σjt + (V0 + u)j − gj] + R(t) (1)

where S0 is the mean sea level (MSL) and R(t) is the residual water level. σj, hj, gj, f, and
u are the angular velocity, amplitude, phase lag, amplitude, and phase correction factors
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corresponding to the jth tidal constituent, respectively. Of these, hj and gj are known to be
the tidal harmonic constants. Equation (1) is linearized as:

H(t) = S0 +
J

∑
j = 1

[aj cos(σjt) + bj sin(σjt)] (2)

where hj =
√

Aj
2 + Bj

2/ f j, gj = (V0 + u)j + arctan(bj/aj). The vectors aj and bj can be
obtained by using least squares regression under the Rayleigh separation equation [30].
After obtaining the tidal harmonic constants (hj, gj), the stationary constituents can be
hindcasted or forecasted according to Equation (2).

The definition and properties of each water level constituent in this study are shown
in Table 1.

Table 1. Definition and properties of the water level constituents.

Constituent Definition Property

Astronomical tides: Hast Significant astronomical tide Stationary
Simulated values of the major astronomical tides: Hsimu M2, S2, N2, K2, K1, O1, P1, Q1 Stationary

Actual values of the major astronomical tides: Hmain M2, S2, N2, K2, K1, O1, P1, Q1 Stationary
Simulation deviation: εmodel Hmain − Hsimu Stationary

Surplus astronomical tides: Hrt Hast − Hmain Stationary
Residual water level: R Observation (H) − Hast Nonstationary

2.3. Residual Water Level Forecast Based on the LSTM Network

Unlike feed-forward networks, recurrent neural networks (RNNs) utilize the internal
memory to process arbitrary time sequences of inputs, for which there are both internal
feedback and feed-forward connections between RNN cells [31]. LSTM is a modified
version of RNN that can optionally add or remove information from the cell state (Ct) via
the forget gate (ft), input gate (it), and output gate (ot) (Equations (3)–(8)). Thus, to some
extent, LSTM solves the vanishing or exploding gradient problem of RNNs [6].

ft = σ(W f xt + U f ht−1 + b f ) (3)

it = σ(Wixt + Uiht−1 + bi) (4)

Ct = tanh(Wcxt + Ucht−1 + bc) (5)

Ct = ft ⊗ Ct−1 + it ⊗ Ct (6)

ot = σ(Woxt + Uoht−1 + bo) (7)

ht = ot ⊗ tanh(Ct) (8)

where W is the input weight matrix of the hidden element, U is the output weight matrix, b
is the bias vector, ‘⊗’ denotes the Hadamard product, and σ(·) is the activation function.

In this study, the previous time step of length m is used to forecast the residual water
level for the n-hour lead time. Next, the sample data set is generated by a single-step
sliding window. In this way, the time sequences of the residual water level are reorganized
and transformed into a supervised learning forecast problem. The LSTM structure is
implemented in Keras with the TensorFlow backend [32], and the design concept of the
network follows the principle of “simple to fine,” that is, the hyperparameters are adjusted
for the validation set so that the basic model with a simple structure can be updated to
achieve an ideal outcome. The structure of the single-feature forecast model (SFFM) based
on the LSTM network is shown in Figure 2.
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2.4. Spatial Distribution Using IDW and IDWSE

IDW interpolation is commonly used in the geosciences and is usually applicable in
situations with spatial distribution ambiguity. For IDW, it is assumed that weight depends
only on spatial distance rather than other physical processes. The expression is:

ẑc(t) =
q

∑
i = 1

wizi(t) (9)

wi = (1/di)
−p/

n

∑
i = 1

(1/di)
−p (10)

where ẑc(t) denotes the prediction at a nonmeasured location c; zi(t) denotes the prediction
at the ith observation station; q is the number of observation stations; di and wi are the
Euclidean distance and weights between the nonmeasured location and ith observation
station, respectively; and p is the power exponent, which is 2 in the calculations.

3PM is an interpolation using three adjacent observation stations to estimate the
value of nonmeasured locations. Thus, it is a fast and cost-effective method in tide-station-
insufficient water areas. The simulation deviation always increases from the open boundary
to the bay in the semiclosed hydrodynamic model. Therefore, when the 3PM is used for
interpolation, the values of interpolation points are likely to be amplified or diminished, as
shown in Figure 3.

To address the abovementioned limitations, an interpolation method based on the
signal energy and spatial distance (IDWSE) is proposed that is suitable for harmonic
signals with linear spatial variation. The key idea of IDWSE is to correct the weak or
strong weighting caused by 3PM through the signal energy ratio. First, the signal energy
of the simulation deviation is calculated at each observation station (Equation (11)). Next,
we identify station b with the minimum (or maximum) signal energy and calculate the
signal energy multiple ki (at station b, ki = 1) of the residual observation stations relative to
station b:

Ei =
n

∑
i = 1

ε2
model,i(t) , n = 3 (11)

ki = Ei/Eb (12)

where εmodel,i(t) and Ei denote the value and energy of the simulation deviation at the
ith observation station, respectively. The values of the weights w11, w12, and w13 can be
expressed as:

wi = (1/di/ki)
−p/

n

∑
1
(1/di/ki)

−p (13)
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Finally, to prevent ki from being too large due to Ei approaching zero, the following
criteria are adopted to select the interpolation method:{

ki ≤ 3 IDWSE
ki > 3 IDW

(14)

2.5. Evaluation Index

To evaluate the accuracy of the forecast method, the following metrics are used in
this study:

1. Root-Mean-Square Error (RMSE)

RMSE is one of the most widely used criteria for evaluating the accuracy of models.
RMSE is very sensitive to a large forecast error, so it can measure the forecast performance
of the high and low water levels well.

RMSE =

√
∑n

i = 1 (yt − ŷt)
2

n
(15)

2. Mean Absolute Error (MAE)

MAE is a measure to evaluate the absolute deviation between the prediction and
observation. The significance for the lower and higher water level forecasts is the same,
and the deviation is not magnified by the square.

MAE =
∑n

i = 1|yt − ŷt|2

n
(16)

3. R-Squared (R2)

R2 describes the proportion of the total variance in the observation that can be ex-
plained by the forecast model. The closer R2 is to 1, the better the regression results are.

R2 = 1− ∑n
i = 1 (yt − ŷt)

2

∑n
i = 1 (yt − ymean)

2 (17)
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In these equations, yt, ŷt, and ymean are the actual water level, predicted water level,
and mean actual water level, respectively.

3. Experiments and Results
3.1. Experiment Area

The Narragansett Bay drainage basin covers an area of 4714 km2 and is located on
Rhode Island, USA. A total of 370 km2 of this area is in Narragansett Bay (40◦21′–41◦51′ N,
71◦9′–71◦30′ W), which is the largest semiclosed estuary in the northeastern United States [33].
Fresh water flowing into the bay comes mainly from the Taunton, Blackstone, and Pawtuxet
Rivers. However, compared with the tide, the magnitude of river discharge (combined yearly
average of 105 m3 s–1) is very small [34]. Seawater enters Narragansett Bay through three
routes: The East Passage, West Passage, and Sakonnet River. The water depth in the East
Passage is 16–48 m, while the West Passage is shallower (6–16 m) [35]. The diurnal range at
Newport is 1.1 m and increases to 1.5 m at Providence.

3.2. Data Collection

The bathymetry and coastline data used by MIKE21 FM are derived from the products
of Estuarine Bathymetry and Shoreline/Coastline Resources published by the National
Oceanographic and Atmospheric Administration (NOAA), and the bathymetry datum
is the mean lowest low water (MLLW). The tidal harmonic constant of the input water
level at the open boundary is derived from the TPXO8_atlas tidal model published by
the University of Oregon, USA [36]. The location of the five observation stations in
the experimental area is shown in Figure 4. The hourly water level and meteorological
observation from each station from 2013 to 2015 were selected for the experiment. To avoid
introducing unnecessary errors in the datum transformation, the datum of the water level
was vertically referenced to MSL in this paper.
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Due to the limited number of observation stations, an experiment was designed to test
the proposed method, in which Providence, Quonset Point (QP), and Fall River (FR) were
used as observation stations, while Conimicut Light (CL) was regarded as the nonmeasured
station to evaluate the experimental results. In addition, because of the absence of the water
level at QP, six months (from April to September) of water level in 2015 were forecasted.
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3.3. Forecast Results for Stationary Constituents

A triangular irregular network (TIN) was used to construct the bathymetric mesh.
To fit the coastline better, the resolution was increased along the coastline. The value
of each mesh node was interpolated using high-resolution bathymetric data, as shown
in Figure 5. The spatially varying bed roughness coefficient (Manning coefficient) and
eddy viscosity coefficient (Smagorinsky coefficient) were typically adjusted as important
initial parameters. In the absence of empirical parameters, these two constant coefficients
were tested using an iterative approach using the major astronomical tides of Newport
as the calibration target. Finally, the major astronomical tidal model of Narragansett Bay
(MATNB) was constructed by using the parameters in Table 2, and it will be used in
subsequent forecasting work.
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gansett Bay (MATNB).

Table 2. Main parameters of MANTB.

Parameters Value

Time From 1 January 2015 to 31 December 2015; time step: 3600 s
Eddy viscosity Smagorinsky formulation, constant value: 0.28

Density Barotropic
Bed resistance Manning coefficient: 45

Boundary conditions Water level including M2, S2, N2, K2, K1, O1, P1, Q1

Unlike the residual water level, the simulation deviation is still harmonic and gradu-
ally increases from the open boundary (Newport) to the inner bay, and reaches its maximum
at the head of the bay, as shown in Table 3. The M2 constituent is the main component of the
simulation deviation, which means that the amplitude of M2 is underestimated in MATNB.
Table 4 presents the main components of the surplus astronomical tide. Two significant
constituents are SA (long-period constituent) and M4 (shallow water constituent). Due to
the large spatial scale, the SA is relatively close at each station. However, the amplitude of
M4 is related to the bathymetry and tends to be larger in shallow water. The hindcast of the
simulation deviation and the surplus astronomical tides account for 100% of the original
signal variation. The results indicate that the variations in both the simulation deviation
and surplus astronomical tides at any time can be forecasted by HA.
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Table 3. Harmonic constants of the simulation deviation at each station.

Tidal
Constituent

Providence
(100%) 1

QP
(100%)

Newport
(100%)

FR
(100%)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

Q1 0.1 236.3 0.1 232.2 0.6 174.7 0.1 224.1
O1 0.7 28.1 0.7 24.2 0.1 47.9 0.7 21.6
P1 0.3 92.1 0.4 78.7 0.7 85.4 0.4 101.4
K1 1.7 48.3 1.6 43.1 1.4 38.0 1.5 46.3
N2 1.3 40.4 0.9 32.2 0.9 355.8 1.5 46.0
M2 7.8 46.6 5.3 39.1 4.3 44.1 8.3 49.7
S2 2.1 56.5 1.6 43.0 1.5 46.8 2.0 56.1
K2 0.8 253.1 1.0 257.0 1.0 261.0 1.0 254.9

1 Hindcast of the simulation deviation accounting for 100% of the original signal variation.

Table 4. Harmonic constants of the surplus astronomical tides at each station.

Tidal
Constituent

Providence
(100%) 1

QP
(100%)

Newport
(100%)

FR
(100%)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

Amplitude
(cm)

Phase
(deg)

SA 9.9 219.1 8.8 224.2 8.9 230.1 9.1 224.0
M4 9.1 60.5 6.1 48.1 5.1 37.2 9.0 64.4

MN4 3.9 12.4 2.6 0.8 2.2 351.6 3.8 17.4
S1 3.4 333.1 2.3 341.2 1.8 335.4 3.1 344.3

MU2 2.7 1.6 2.5 354.8 2.4 349.0 2.7 3.4
M6 2.5 307.3 0.7 267.0 0.5 218.1 1.9 333.3

MS4 2.4 142.2 1.6 121.9 1.3 107.5 2.5 145.6
NU2 2.4 352.0 2.2 348.4 2.4 349.0 2.4 353.2

1 Hindcast of the surplus astronomical tides accounting for 100% of the original signal variation.

3.4. Forecast Results for the Nonstationary Constituents

Before training the LSTM network, the sample was standardized by the z-score. Then,
the two-year dataset (2013–2014) was divided into training and validation sets at a ratio
of 7:3, and the next year’s residual water level was used as the testing set to verify the
prediction skill of the network. The hyperparameters of the network were adjusted for the
validation set. To prevent overfitting, the training stopped when the loss stopped falling.
The size of each dataset and hyperparameters are shown in Tables 5 and 6, respectively.

Table 5. Dataset size, units: Group.

Dataset Providence Quonset Point Fall River

Training 12,122 9338 12,148
Validation 5196 4003 5207

Testing 8733 7461 8733

Table 6. The hyperparameters of the LSTM network.

Hyperparameters Number of
LSTM Layer

Neuron
Numbers

Drop
Out Epoch Gradient Descent

Optimizer
Learning

Rate
Activity Function

of Dense Layer

Value 1 64 0.2 100 RMSprop 0.001 ReLu

The RMSE and MAE statistics of the LSTM when the lead time (n) was equal to 3
are shown in Figure 6. The error was concentrated in the 10 cm range, with the lowest
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median prediction error in QP. Figure 7 further shows the performance of the LSTM
network in the water level fluctuation period. The prediction at Providence does not fit
the actual value well locally, showing slight underprediction of the high water level and
slight overprediction of the low water level. By contrast, the performance at FR shows a
moderate effect. However, the prediction performance is excellent at QP, which means that
the high-frequency noise in shallow water interferes with the training and subsequently
impacts the generalizability of the network. Regarding the overall forecast performance,
the LSTM network still shows good stability and accuracy.
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3.5. Spatial Distribution Results

As the main constituent in the simulation deviation, the amplitude of M2 at Provi-
dence and FR is greater than that at QP, which causes weight anomalies when using 3PM
interpolation. According to Table 7, the weights calculated using IDW and IDWSE have
different biases. The performance of the two interpolation methods is shown in Figure 8.
The curves show that the value at CL is amplified using IDW interpolation, while IDWSE
interpolation solves this problem by increasing the weak weighting (QP). Furthermore, the
interpolation accuracy is less sensitive to the interpolation method, which may be due to
highly correlated components within the region. Despite this, IDWSE still improves the
IDW interpolation accuracy slightly and proves its effectiveness.

Table 7. The weight calculated by IDW and IDWSE.

Method Providence
(11 km) 1

QP
(15 km)

FR
(15 km)

IDW 0.48 0.26 0.26
IDWSE 0.26 0.61 0.13

1 Distance measured from CL, and the same is true for the other stations.
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In addition to the simulation deviation, the spatial backgrounds of other constituents
were not clear, so IDW was still used for spatial correction. To better illustrate the sources
of error in the water level forecasting, Figure 9 shows a time series of the astronomical tides
and residual water level at different lead times at CL. The astronomical tides prediction
was highly correlated with the actual values, indicating that the stationary constituent was
well predicted and corrected (Figure 9a). The prediction of the residual water level was
closely associated with the lead times (n). When n was equal to 1, the error was essentially
distributed around zero (Figure 9b), and when n was equal to 3, the errors oscillated slightly
(Figure 9c). The above results demonstrate that the accuracy of the water level forecasting
at CL depends mainly on the accuracy of the residual water level forecasting at observation
stations.
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3.6. Comparison with Assimilation Model

To verify the superiority of the proposed method, we have developed an assimilation
model based on MATNB for comparison. Just like the GOMOFS, this regional water level
forecasting model assimilated the hourly variation in wind and barometric field. These
data are obtained from ERA5 datasets [37] provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF), which are available at a spatial resolution of 0.25◦ in
longitude and latitude. Besides, eight major astronomical constituents (same as MATNB),
as well as two shallow water overtides (M4 and MS4), were input at the open boundary.

The output of the assimilation model is shown in Figure 10a. Excluding the simulation
start time, the prediction accuracy of the assimilation model for the high-water level was
better than that of the low water level. In estuaries, the hazards of incorrectly estimated
low water levels were more significant, which can cause the vessel groundings. Due
to the limitations of the hydrodynamic model, this model cannot take into account all
environmental factors. In other words, the forecasting error might be further magnified
under extreme conditions. However, the proposed method captured the large oscillation
process during the period of fluctuation, and the prediction errors were maintained at a low
level during the stationary period despite the occasional outliers (Figure 10b). According
to the statistical analysis (Table 8), the RMSE was reduced from 12.3 to 5.0 cm, the MAE
was reduced from 9.7 to 3.8 cm, and the R2 was increased to 0.988, indicating ideal forecast
performance.
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Table 8. Comparison of the evaluation metrics between the two methods.

Method RMSE (cm) MAE (cm) R2

Assimilation model 12.3 9.7 93.2%
Proposed 5.0 3.8 98.8%

Improvement 59.3% 60.8% 5.6%

4. Discussion
4.1. Relationship between the Lead Time and Accuracy

As described previously, the residual water level is the primary component of pre-
diction error. Thus, it is necessary to analyze the relationship between the lead time and
accuracy in the LSTM network. Considering the moderate efficacy of the prediction per-
formance at FR, we predicted the hourly residual water level at FR for 3, 6, 12, and 24 h
lead time. The RMSE and R2 of the prediction are illustrated in Figure 11. With increasing
lead times, the overall performance of LSTM decreased slightly. Based on observations of
the lth forecast time in each group, the RMSE entered the first significant growth interval
with an increase of approximately 5 cm. Subsequently, the RMSE was basically unchanged
when the stationary interval was 3 < l ≤ 6. The RMSE then entered a second significant
growth interval at 6 < l ≤ 9, with an increase of approximately 3.5 cm. Thereafter, the
RMSE increased slowly and remained near 13 cm, indicating that the prediction gradually
converges. Using another precision index (R2), its prediction was highly reliable (0.91)
at the first forecast time. When l = 6, the predictions could still explain over 50% of the
variation in the residual water level. Of note, R2 became negative when l = 15, indicating a
failure of the LSTM network.
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4.2. Comparison with the Multi-Feature Forecast Model Based on the LSTM Network

Wind and barometric pressure are generally considered significant factors that cause
disturbances in the water level in the coastal ocean [38]. Therefore, we evaluated the possi-
bility of using wind and barometric pressure as features (from NOAA at the observation
stations) for residual water level prediction. To this end, the above features were entered
into the LSTM along with the residual water level to build a multi-feature forecast model
(MFFM). The dataset construction result is shown in Table 9.

Table 9. Converting features to a dataset for the LSTM network.

Feat1 (t −m)
~Feat1 (t − 1) 1

Feat2 (t −m)
~Feat2 (t − 1)

Feat3 (t −m)
~Feat3 (t − 1)

Feat4 (t −m)
~Feat4 (t − 1)

Feat1(t)~ Feat1
(t + n − 1)

Residual water level Wind speed Wind direction Barometric pressure Residual water level
1 Feat1 (t −m) ~ Feat1 (t − 1) refers to feature 1 from time t −m to t − 1, and the same is true for the other features.

Figure 12 shows the forecast performance of these two models with a lead time of
12 h at FR. According to the variation in the RMSE and R2 curves, the interval l can be
roughly divided into three parts: 0–3, 4–8, and 9–12 h. During the first interval [0, 3 h],
meteorological features have a negative effect on the forecast. The RMSE of the MFFM at
l = 1 reaches 6 cm, which is significantly larger than that of SFFM. During the second interval
[4, 8 h], the forecast performance of these two models is almost equal. An interesting
phenomenon is that the RMSE curve of MFFM does not continue to rise, but a “dent”
occurs when l = 4 and 5. During the third interval [9, 12 h], the R2 of the MFFM is greater
than that of SFFM by approximately 0.1, indicating that the meteorological features improve
the performance of the MFFM during this period.

It is well established that a component of water level variability is due to the inverted
barometer effect [39]. To further analyze the error source of MFFM, we subtracted the
barometric pressure effect from the residual water level using the following hydrostatic
equation [40]:

∆η(t) =
−1
ρg

∆P(t) (18)

where η(t) is the residual water level produced by barometric pressure (P(t)). ρ and g
are the seawater density and acceleration due to gravity, respectively. Once the η(t) is
determined, the remaining components of residual water level (ψ(t)) are assumed to be
produced by wind.
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We took the predicted value of l = 1 as a sequence and then used Equation (18) to
obtain the 2 days’ ψ(t) of MFFM at FR (Figure 13a). As a reference, we also provided
the wind speed and direction, as shown in Figure 13b. The contrasts showed that MFFM
could sometimes not accurately predict the direction and magnitude of the water level
variability (within the dashed frame). In fact, due to the gravity and inertia, the water level
is constantly changing to maintain a dynamic balance of the regional energy. Thus, it is
difficult to fully characterize this process only by using wind features, and the accuracy of
the MFFM is limited to a moderate level.
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5. Conclusions

To improve the accuracy of the regional water level prediction, prediction and distri-
bution of model residuals were carried out based on the simplified hydrodynamic model
output (MATNB). Experimental results at Narragansett Bay showed that the SFFM can
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effectively predict the residual water level in the short-term (3 h). In terms of the spatial
distribution, IDWSE improved the issue of amplitude the simulation deviation at CL using
three-station IDW interpolation. Compared with the assimilation model, the RMSE of this
method decreased from 12.3 to 5.0 cm, and R2 increased from 0.932 to 0.988. Therefore, this
method could be a viable alternative for predicting the water level in the water area with
few observation stations, and it does not require additional inputs of meteorological or
hydrological prediction products.

Furthermore, we considered the influence of wind and barometric pressure on the
LSTM network. The results showed that the accuracy of the MFFM was limited to a
moderate level. This limitation arises because it is difficult to fully characterize the dynamic
equilibrium process using only wind features. Therefore, we plan to design a reasonable
feature quantification scheme to improve the prediction time and accuracy of the water
level in future work.
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