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Abstract: Timely maintenance of sewers is essential to preventing reduced functionality and break-
down of the systems. Due to the high costs associated with inspecting a sewer system, substantial
research has focused on sewer deterioration modeling and identification of the most useful features.
However, there is a lack of consensus in the findings. This study investigates how the feature im-
portance depends on the definition of bad pipes and how the feature importance changes between
utilities with similar data bases. A dataset containing 318,457 pipes from 35 utilities with a condition
state (CS) ranging from one to four was used. The dataset was cleaned, and a backward step analysis
(BSA) was applied to two ways of binarizing the CS. Additionally, a BSA was applied for each utility
with >100 pipes in CS four. The results showed that a selective definition of bad pipes reduced the
performance and changed the order of which features contributed the most. In each case, either
year of construction, age, groundwater, year of rehabilitation, or dimension was the most important
feature. On average 6.5 features contributed to the utility-specific models. The feature analysis was
sensitive to the inspection strategy, the size of the dataset, and interdependency between the features.

Keywords: sewer; feature analysis; parameter importance; ageing; deterioration model; inspec-
tion strategy

1. Introduction

A sewer system is a hidden but very expensive type of infrastructure to maintain [1].
Breakdown of a sewer can result in significant damage to roads and buildings. Furthermore,
reduced functionality of the sewers can lead to flooding and exfiltration, for example, which
can affect a number of externalities, such as property, traffic disruption, public health and
the environment [1,2]. For these reasons, the sewers’ operators need to replace them in a
timely manner, especially if the sewers are critical. However, sewers” underground location
makes them difficult to monitor. Today, monitoring of the sewers is typically done by
Closed Circuit Television inspection (CCTV inspection) [1]. CCTV inspection is done by
manually sending a TV-inspection robot into the sewer and annotating all observations.
As this is very time consuming, expensive, and imprecise due to a number of subjective
factors [3,4], much research has been put into automating these processes [1,5]. However,
full automatization of sewer inspection is not imminent. The high costs associated with
CCTV-inspection forces utilities to prioritize which sewers to inspect. In Denmark, the
paradigm for risk-based rehabilitation has been based on area. The areas which should be
subject to CCTV-inspection were prioritized based on age of the pipes and the experience
of the operators. Based on the findings in the CCTV-inspections, it was chosen whether
an area should be rehabilitated or not. This has resulted in rehabilitation of pipes which
could have been operational for several years as the inspection showed that the pipe might
not be operational for the whole period until the next time the area would be chosen for
rehabilitation. Today, for economical optimization and better use of the pipes lift time,
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there is a trend toward risk based CCTV-inspection planning and rehabilitation on a pipe
level.

Maintenance of sewer systems on pipe level entails new requirements for computer
systems to keep track of the individual pipes, as the utilities now need to keep track of
several tens of thousands of pipes instead of a limited number of areas. To assist the
utilities in choosing which sewers to inspect, several decision support systems have been
developed [6-9]. Usually these systems are risk models, consisting of a deterioration
model and a consequence model. The deterioration models predict the condition of the
sewers or the likelihood of a sewer’s condition. The consequence models describe the
severity of a potential sewer failure and can include economic, environmental, and social
consequences [1]. Generally, the deterioration models suffer from low accuracy.

Development of sewer deterioration models is complicated by a high uncertainty
in the data. This uncertainty is influenced, among other things, by subjectivity in the
annotation of CCTV inspections, lack of data, and subjective selection of which pipes to
inspect [3]. Dirksen et al. [4] found that defects with distinct features like roots were easy to
find, while the probability of getting a false negative for other defect types varied around
0.25. The probability of a false positive was found to be around 0.04 [4]. Another issue
often affecting the deterioration datasets is a lack of information [1], which results in low
quality data. Furthermore, the datasets are affected by the fact that they have typically
been collected for a specific purpose, such as quality assurance before asset handover or
road renovation, diagnosis of malfunctioning and random inspections. This introduces a
selective survival bias in the data [1]. Other factors that complicate deterioration modelling
are that the datasets in general are highly skewed, both according to the number of pipes
in the different classes and according to the predictor variables [10-12]. Furthermore, the
size of the natural variability between sewers is unknown.

A large number of deterioration models have been developed; however, a lack of
publicly available datasets due to privacy issues makes it difficult to compare the models [5].
Furthermore, the condition state (CS) is typically based on the local standard for CCTV
inspection, which can be based on, for example, the European standard [13], Pipeline
Assessment Certification Program [14], or a country specific standard [12,15-17]. Moreover,
in order to evaluate the deterioration models many authors tend to classify the multiclass or
regression problem as a binary problem [12,13,18-20]. However, the model performance is
very sensitive to how picky the evaluation is designed to be. For example, the performance
of the precision and recall will increase if considering both pipes in the worst CS and the
second worst CS as bad pipes, compared to considering only pipes in the worst CS to be in
bad condition.

In addition, when deciding how to define the target variable the developer of the
deterioration model needs to decide which predictor variables to use. Several methods have
previously been used for parameter selection and the feature importance test. O'Reilly [21]
in 1989 investigated the correlation between defects and individual parameters such as
age, material, diameter, location, depth, wastewater type, soil type etc. in 180 km of sewers.
Hansen et al. [11] investigated the potential benefits of developing deterioration models
based on data groups defined by experts but found no improvement in model performance.
Yin et al. [22] used a backward variable elimination process, through which they removed
a parameter at a time and examined how the performance changed. Davies et al. [23] used
a backward selection method and Laakso et al. [13] used the Boruta algorithm and found
eight features to be influential.

Carvalho et al. [10] used eight different methods to investigate the feature importance
and found that the different methods showed very different results. For example, if analyz-
ing the features by removing the most significant features step by step, the importance of
the other features will change, as there is often redundancy in the signal from the different
predictor variables. This is not encountered when using the build-in feature analysis in
Random Forest [10], however. Due to the uncertainty in the data, Roghani et al. [3] found
that using the two or three most informative predictor variables was sufficient to build the
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deterioration model. However, using a deterioration model was better than just basing it
on the inspection age.

Mohammadi et al. [24] reviewed 24 statistical and Al based papers on sewer deterio-
ration. Nineteen of the reviewed papers provided information on whether a parameter
was relevant. Nineteen features were considered, and none of the features were used in all
the papers. Furthermore, none of the features considered relevant in more than three of
the papers were considered relevant in all the papers. This illustrates a high variability in
feature importance. Likewise, none of the features whose significance level was specified
in more than one case were irrelevant in all the studies they were used in [24]. Finding
the most significant features is important as accessing, extracting, and preprocessing each
feature is very time demanding. In a review of deterioration models Hawari et al. [25]
concluded that more work needs to be done to identify which data municipalities should
collect in order to develop reliable deterioration models [25].

As described above, the performance of the deterioration models is affected by many
conditions and a number of choices needs to be made for each model. This makes it
possible to develop well performing models within academia. However, to create value,
the models must meet the utilities’ needs. For example, Guzman-Fierro et al. [26] worked
with a target variable ranging from 1 to 5 but developed a model that encountered only the
pipes in CS 1 and CS 5. In reality, it is not possible to leave out the pipes in between, at
least during the preliminary inspection.

In summary, sewer deterioration modeling has been a hot topic for the last two decades
and myriad factors influence the performance of the models. Finding the optimal model
cannot necessarily be done by selecting the model with the highest performance according
to the literature. Likewise, there is a great deal of disagreement about which predictor
variables are significant. The existing sewer deterioration models presented in the literature
are characterized by large deviations in data, methodology, etc. Today researchers tend to
perform feature analyses on single datasets. However, a rarely touched perspective is the
statistical variation in the features influencing the results when using similar datasets.

The contributions of this study are investigations of:

e The overall feature importance in a dataset containing information from several
different utilities, including identification of potential drawbacks

e  How the performance and feature importance of the models are affected by how the
model developer has distinguished between good and bad pipes

e How the feature importance varies between utilities when the parameters in the
datasets have been found in the same way for all utilities.

To the best of the authors” knowledge, this study provides the most comprehensive
analysis of feature importance in sewer deterioration modeling and the first investigation
of feature importance across several utilities with similar data bases. This information adds
value to the process of developing deterioration models for utilities, which have a limited
budget.

The following section of the paper, Section 2, provides a description of the data
available, preprocessing, model selection, and the method used for feature importance.
Section 3 contains three subsections, one for each of the contributions, while Section 4
contains a discussion of the key findings and comparisons to the literature. Section 5
contains a summary of the most important conclusions covered by the paper.

2. Materials and Methods

A dataset containing pipes from 35 utilities across Denmark was extracted from a
common database for CCTV inspections. Pipes with suspicious values were not extracted.
Examples of suspicious data points included those in which the following criteria were not
met: 63 mm < dimension < 3000 mm, 0 years < age < 169 years and 0.6 m < depth <10 m.
Most of the inspections were performed from the start of the 1990s until today. The full
dataset contains CCTV inspection from 318,457 pipes. For each pipe access to 24 different
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predictor variables was attempted; however, all predictor variables were only available for
196,174 pipes. An overview of the predictor variables can be seen in Table 1.

Table 1. Overview of predictor variables and the corresponding data types as well as distribution or units. For continuous
and numeric data types, the mean and std are presented. For categorical data types, the percentage of pipes in each category
is presented and for binary data types, the percentage of true values is presented.

Predictor Variable (Abbreviation) Data Type Distribution and Units
Length Continuous 43.59 + 26.54 m
Age Numeric 25.7 + 21.1 Years

Concrete (61.22%), plastic (33.77%), clay (1.50%), full reline

Material Categorical (2.23%), other (1.22%)

Dimension Continuous 306.6 £ 198.9 mm

Wastewater type (Wastewater) Categorical Sewage (38.18%), rain (31.66%), combined (29.54%)
Slope Continuous 12.22 +11.61 mm/m

Year of construction (YoConst) Numeric Year 1982.2 + 21.1

Year of rehabilitation (YoRehab) Numeric Year 1983.7 £ 21.6. This is set to YoConst if not rehabilitated
Type of rehabilitation (Rehab) Categorical materia (:23%), Punctuate (0.04%, unknoven (0070
X coordinate (X) Continuous Adjusted UTM (m)

Y coordinate (Y) Continuous Adjusted UTM (m)

Utility ID Numeric

Ground level Continues 32.07 £24.57 m

Depth Continuous 243 £0.89 m

Groundwater level according to pipe

(Groundwater) Continuous —4.48 £3.88m

ML ! (44.15%), MS 2 (19.38%), OPS 3 (9.79%), FDS * (6.53%),
Soil type Categorical MaS 5 (4.28%), MoS © (4.15%), OMS 7 (3.45%), FS & (2.77%),
MC ? (1.00%), MG 10 (0.46%), Marsk (0.25%), Lake (0.004%)

Tertiary (38.99%), secondary (13.54%), primary (13.00%),

Road type Categorical traffic (3.99%), other (1.88%), no road (28.60%)
Distance to road center (DistRoad) Continuous 191 :I: .1'93 n for pipes less tha.n 10'm from road center. The
remaining pipes have been assigned the value 99 m
Distance to nearest trees (Trees) Categorical <4 (6.51%), <12 (25.50%), >12 (74.50%)
Number of road grate (NoGrates) Numeric 3.46 £ 3.56 grates
. . City zone (79% incl. city center and industrial area) city
City type Categorical center (18.43%), industrial area (15.22%)
Number of buildings (NoBuildings) Numeric 6.09 +£ 5.22 buildings
Area with tall buildings (BuildingHigh)  Binary 9.44% True
Area with low buildings (BuildingLow) Binary 77.06% True

1 Morain clay, 2 Meltwater sand, 3 Outwash plain sand, 4 Freshwater deposit of sand, 5 Marine sand, ® Morain sand, 7 Old marine sand, 8
Fly sand, 9 Meltwater clay, 10 Marine gravel.

All CCTV-inspections followed the Danish standard for CCTV inspections [27]. The
inspections contained information on several observation types and corresponding severity
of each. Based on the type of defect and its severity, the observations were categorized as
CS 1-4. The way in which each observation should contribute to the CS was based on input
from a Danish utility. The CS of a given pipe was then set to the worst of the observations.
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An overview of how the different defect types and severities contribute to the CS can be
seen in Table 2.

Table 2. Overview of how a CCTV-observation of a defect with severity zero to four entails the condition state to be in state

one to four.
"
: z .
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Severity 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Severity 1 1 2 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 1
Severity 2 2 3 2 3 2 3 3 2 2 2 2 2 2 2 2 2 2 2
Severity 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3
Severity 4 4 4 3 4 4 3 4 4 4 3 4 4 4 4 4 4 4 3

! Connection with lining defection or intruding connection, > Connection through cut hole in reline pipe, > Connection through drill hole in
pipe, 4 Connection through chop hole in pipe. The color indicates the CS and goes from green to red.

2.1. Preprocessing of Data

Thirty-five datasets were included in this study: one containing data from all the pipes
and one for each of the utilities that had more than 100 bad pipes.

The preprocessing of the datasets was done by first removing features represented in
less than 20% of the cases and then removing data points containing NaNs. An overview
of the number of pipes available before and after data cleaning, the number of features
removed from the dataset, and the number of pipes in bad condition can be seen in Table 3.

Table 3. Overview of the datasets containing more than 100 bad pipes before and after cleaning, as
well as the number of features removed in the cleaning process and the number of pipes in condition
state (CS) three and four after cleaning.

Number of Number of Number of No. Pipesin  No. of Pipes

Dataset Pipes in Pipes after Features CS 3 after in CS 4 after
Total Cleaning Removed Cleaning Cleaning
All pipes 318,457 196,174 0 64,969 (33%) 20,542 (10%)
Utility 1 20,379 17,730 0 5992 (34%) 1758 (10%)
Utility 2 10,062 8270 0 3138 (38%) 872 (11%)
Utility 3 9904 8469 1 3666 (43%) 1103 (13%)
Utility 4 10,116 7913 0 2166 (27%) 615 (8%)
Utility 5 18,745 15,830 0 4477 (28%) 1162 (7%)
Utility 6 17,109 13,867 0 5290 (38%) 1141 (8%)
Utility 7 4669 3108 6 687 (22%) 280 (9%)
Utility 8 4522 3315 0 892 (27%) 790 (24%)
Utility 9 12,163 9451 1 2759 (29%) 1708 (18%)
Utility 10 734 640 1 135 (21%) 103 (16%)
Utility 11 6355 5686 1 1899 (33%) 469 (8%)
Utility 12 20,945 16,453 0 5128 (31%) 987 (6%)
Utility 13 1779 1268 0 312 (25%) 120 (9%)
Utility 14 18,154 14,587 0 6214 (43%) 2063 (14%)
Utility 15 2757 2027 0 580 (29%) 231 (11%)
Utility 16 18,025 15,812 4 4700 (30%) 1560 (10%)
Utility 17 3855 3252 0 1145 (35%) 311 (10%)
Utility 18 9655 7128 0 2516 (35%) 880 (12%)
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Table 3. Cont.

Number of Number of Number of No. Pipesin  No. of Pipes

Dataset Pipes in Pipes after Features CS 3 after in CS 4 after
Total Cleaning Removed Cleaning Cleaning
Utility 19 9253 7006 0 2092 (30%) 806 (12%)
Utility 20 10,520 8370 0 1870 (22%) 893 (11%)
Utility 21 7959 6914 1 1868 (27%) 668 (10%)
Utility 22 4458 4040 7 1685 (42%) 381 (9%)
Utility 23 2974 2427 0 1048 (43%) 492 (20%)
Utility 24 14,300 11,942 1 5953 (50%) 1720 (14%)
Utility 25 18,879 13,978 0 2348 (17%) 1360 (10%)
Utility 26 3864 2812 0 611 (22%) 274 (10%)
Utility 27 7171 6033 1 1956 (32%) 990 (16%)
Utility 28 16,672 14,064 1 4442 (32%) 1673 (12%)
Utility 29 10,939 9428 0 4068 (43%) 761 (8%)
Utility 30 5750 4540 6 1940 (43%) 431 (9%)
Utility 31 4213 3944 1 1765 (45%) 560 (14%)
Utility 32 4877 4073 0 1451 (36%) 253 (6%)
Utility 33 6164 5661 8 1092 (19%) 251 (4%)

All datasets were randomly split with 90% for training and 10% for testing. Due
to the high imbalance between good and bad pipes, the training sets were randomly
downsampled to contain an equal number of good and bad pipes.

2.2. Model Selection

As shown in Table 1, the predictor variables available for this study have different
data types, which is well handled by forest based models. Forest based models can be
used to solve either regression or classification problems. They consist of several decision
trees, which evaluate the data points according to a treelike structure. The construction
of each decision tree is based on statistical variations in the datasets and an introduced
randomness. Each decision tree votes for a specific outcome and based on these votes the
forest makes a prediction. Two forest based model types were considered for classification:
XGBoost [28] and Random Forest [29].

The Random Forest model was implemented using the Python library scikit-learn [30].
The number of decision trees was set to 177 and the max depth was set to 26 based on
Hansen et al. [12]. The remaining hyperparameters were set to the default value.

The number of estimators and max depth for the XGBoost model was first defined
with inspiration from the settings of the random forest model. Hereafter different ways of
setting these parameters were tested. For classification multiclass softmax was used. For
the remaining parameters, the default values were used.

XGBoost benefitted from the ability to handle missing data; however, a XGBoost
model takes much more time to train than a Random Forest model. XGBoost did not
show better results than Random Forest. Furthermore, Random Forest is often used for
deterioration modeling in sewer [12,13,19,31] and in water pipes [32]. For this reason,
Random Forest was used for this study.

2.3. Feature Importance

In order to make the feature analysis, three methods were considered: (1) The Random
Forest built-in feature importance measure [30], (2) Clustering the features in groups of
features, training all combinations of the feature clusters, and investigating which feature
clusters are most present in the best models and which feature clusters are most present in
the bad models and (3) Making a backward step analysis by training a model on all but
one feature for all features represented and removing the least contributing feature. This
should then be repeated until only one feature is left.
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Before selecting which method to use, it is worth considering the redundancy of the
features. This has been handled previously by ensuring high heterogeneity between the
features [15]. This approach entails removing a large number of features, which might
be similar in most cases but could vary in essential cases. An example of this is year of
construction and year of rehabilitation. If the pipe has not been rehabilitated, the year of
rehabilitation is equal to year of construction, inducing a high redundancy between the
two features. However, as rehabilitation is directly related to the condition of the pipe,
the feature should be included in the analysis. Moreover, by including all the predictor
variables in the analysis it is possible to account for the variations between utilities and
obtain knowledge about features otherwise removed from the dataset.

As the built-in Random Forest method calculates the feature importance by number of
splits for each feature, it is sensitive to redundancy between features. Clustering the features
and training a model for all combinations of the feature clusters was tested initially, but it
showed a high variance between the different utilities and did not contribute information
on the individual features. The benefit of using the step analysis is that it encounters all the
features; however, in the cases where many features are irrelevant it will be random if a
feature is the 10th or the 20th least contributing feature. Like the built-in Random Forest
method, this approach is sensitive to redundancy in the features, but the influence is of
a more transparent character. Based on the above, the decision was made to conduct a
backward step analysis.

Backward Step Analysis

To conduct the backward feature step analysis, the dataset was split randomly, and a
model was trained for each of the features that was left out. This was repeated 10 times,
and the predictor variable, which on average contributed the least to the performance, was
removed. This was repeated until only one feature was left. Furthermore, the average per-
formance of a model trained on all the features 10 times was found. For the feature analysis
it was necessary to get a single performance measure. For this reason, the performance
was calculated as the f1-score which is a balanced evaluation of the precision and recall.
The fl-score was calculated using the Python library Scikit-lean [30] and the formula for
calculating the f1-score can be seen in Equation (1).

flscore = 2-(precision-recall) / (precision + recall) 1)

A challenge using the fl-score is that it only encounters precision and recall. Thereby
it does not encounter that the test set has a skewed distribution. For example, by randomly
selecting 50% of the pipes a higher f1-score will be obtained than by selecting a number
of pipes corresponding to the number of bad pipes in the dataset. Therefore, to evaluate
how well the models performed according to a random selection strategy, the performance
was calculated when randomly selecting 50% of the pipes and when randomly selecting a
number of pipes corresponding to the number of bad pipes in the dataset. Due to variations
in the distribution of bad pipes in the datasets, the F1-score cannot be used to give a fair
evaluation of performance between utilities.

An overview of the method used for making the backward step analysis, calculating
the performance when using all features were encountered, calculating the performance
when randomly selecting 50% of the pipes, and calculating the performance when randomly
selecting the same number of bad pipes as present in the dataset can be seen in Figure 1.
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Figure 1. Feature step analysis when removing the features with the smallest contribution one by one. Block 1 shows the
backward step analysis, block 2 shows the method for calculating the performance using all features, block 3 shows the
method for calculating the performance when randomly selecting 50% of the pipes, and block 4 shows the method for
calculating the performance when randomly selecting the same number of bad pipes as present in the dataset.

2.4. Experiments

Three experiments were carried out. The purpose of the first experiment was to
identify potential drawbacks of the approach used and take these into account in the
remaining experiments. This experiment is referred to as the baseline. The purpose of the
second experiment was to investigate how the performance and the feature importance
changed when changing the definition of the target variable. The purpose of the last
experiment was to investigate how the feature analysis changed between different utilities.

2.4.1. Baseline

This experiment was carried out on the full dataset. The condition of pipes in CS one
and two was considered good while that of the pipes in CS three and four was considered
bad. In this experiment, the backward step analysis was run for all features and relevant
adjustments were incorporated.

2.4.2. Target Variable

In this experiment two backward step analyses were made: in the first analysis both
pipes in CS three and four were considered bad pipes. In the second analysis only pipes in
CS four were considered bad pipes. To ensure a fair comparison between the two analyses,
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the amount of training data in the first analysis was downsampled to the amount of training
data available for the second analysis.

2.4.3. Difference between Ultilities

A backward step analysis was performed for each of the utilities. This experiment was
initially conducted solely considering pipes in CS 4 as being in bad condition; however,
there was a relatively high variance in the features found relevant at the different utilities.
This was particularly evident for utilities with few bad pipes entailing smaller datasets.
For this reason, both pipes in CS three and four were considered bad pipes.

Each of the analyses was manually inspected to determine which parameters were
significant for each utility. This would preferably have been an automatic process, but as
the results did not show a smoothly decreasing curve in all cases, an automatic approach
would have required several assumptions.

An overview of the significant features for the different utilities was made, and the
performance of the models was compared to the size of the dataset and the number of
significant features.

3. Results
3.1. Baseline

The results of the baseline step analysis can be seen in Figure 2a. The f1-score of the
model using all the features is 0.75.

— o~ m <
1.0 L
1 0.03 0.6
g 0.5
3 ]
o 821 0.07
= 0.4 Allfeatures g 0.4
————— Random selection of 50 % of the pipes £
0.2 Random selection using same distribution %S 0.3
of bad pipes as in the data set 0 3 0.12
B Features left out QO .
0.0° CVZIVNCYVTVOCVAV NG VESXE cg> 0 0.2
© [%)
583225852852 52E688 538 <
3" 5582528038228 353 Puv o1
52500z $°83> S¥ TES 44 031 :
=<3 =) «< <] o8 oo
3 3 z s = 5
o 3 C]
0.0

Featuresiettiout CS of the upstream pipe

(@) (b)

Figure 2. (a) Backward feature step analysis for the baseline. Each chart shows the performance before the least contributing

feature remaining has been removed, starting from the left to the right. The dashed and solid lines shows the performance if

utilizing a random selection of respectively 50% of the pipes and a percentage corresponding to the distribution of bad

pipes in the dataset. (b) Normalized confusion matrix for a pipe and the upstream connected pipe.

From Figure 2a, it can be seen that both Y and X coordinates contribute to the pre-
dictions. This could indicate that when these parameters are included, the model learns
the position of the pipes rather than that the actual parameters influence the condition
state. In other words, this would correspond to using a nearest neighbor approach, which
is problematic if applying the method to areas where training data is not available.

To clarify this suspicion, the probability of an upstream pipe present in a certain CS
and given the pipe’s condition was investigated. The normalized confusion matrix for
this can be seen in Figure 2b, and it shows a clear correlation between the CSs of adjacent
frames. Calculating the fl-score for pipes in CS three and four gives a f1-score of 0.69. As
can be seen in the figure, the confusion matrix is not symmetric, which might be due to
systematically occurring changes in the sewers. For example, it is common for an upstream
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pipe to be smaller than the downstream pipe but rarely the other way around. It should
be noted that the figure is made from the same dataset as used for the feature analysis;
however, not all pipes in the dataset have an inspected upstream pipe while others have
more than one inspected upstream pipe.

Sewer inspections are not usually performed by taking representative samples from the
whole sewer system but rather in subjectively selected areas. Therefore, the performance
might be lower when applied to a part of the network that has not previously been
inspected. To clarify this, another backward step analysis was applied but, instead of using
arandom split between training and test data, all pipes from four randomly selected utilities
were used for testing and the remaining pipes for training. In so doing, the performance
of the model based on all the predictor variable dropped by 10%. Furthermore, when
performing the feature analysis, the utility ID and the X and Y coordinates were among
the four worst predictor variables. For this reason, features related to location were not
included in the remaining experiments. The new baseline can be seen in Figure 3.
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Figure 3. Backward feature step analysis for the new baseline where the geographical information
has been removed. Each chart shows the performance when the least contributing feature remaining
has been removed starting from the left and progressing to the right. The dashed black line shows the
performance when randomly classifying 50% of the pipes as bad pipes and the solid black line shows
the performance when randomly classifying a percentage of pipes, corresponding to the number of
bad pipes in the dataset, as bad.

3.2. Target Variable

Figure 4a shows the feature step analysis when considering pipes in both CS three
and four to be in bad condition when using the same amount of training data as when
considering only pipes in class four as being in bad condition. This model obtains a f1-score
of 0.73 when using all features. Figure 4b shows the feature step analysis when only
considering pipes in CS 4 to be in bad condition. This model obtains a f1-score of 0.35.
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Figure 4. (a) Same as baseline but with the same amount of training data as available when solely considering pipes in CS 4

as being in bad condition. (b) Feature step analysis when solely considering pipes in CS 4 as bad.

Figure 4a shows that the year of construction alone performs better than when com-
bined with the relative groundwater level and ground level. This indicates that the relative
groundwater level and ground level contributed positively to a group of features but
introduced noise when included individually.

A smaller number of features are found to contribute when solely considering pipes
in CS 4 as being in bad condition than when pipes in CS 3 also are considered as being in
bad condition. All the parameters that contribute to the model performance in the first case
mentioned, aside from wastewater type, also contribute in the second case.

3.3. Difference between Utilities

For each of the utilities in Table 1 a backward step analysis was performed and
manually inspected. Some of the utilities were observed to perform better when removing
features up to a certain point. This was clearest for utility 10, which is the utility with the
smallest number of bad pipes, but the phenomenon could also be observed in some of the
other utilities. The feature analysis for utility 10 can be seen in Figure 5a. In most cases, the
feature analysis shows a decrease in performance when features are removed. However,
for some utilities the performance increases when the second-to-last feature is removed.
This most often occurs if the second-to-last feature remaining is ground level or depth, but
it has also been observed for groundwater to a smaller extent. An example of this can be
seen in Figure 5b, which shows the feature analysis for the utility with the largest number
of bad pipes.

An overview of the predictor variables considered relevant for the different utilities
can be seen in Table 3. In the table the performance is given as the fl-score when using the
optimal number of features. The table also shows how many times a feature is found to be
the most important feature.

On average 6.5 features were found to contribute to the performance. The table shows
that year of rehabilitation and year of construction contain redundant information, and
at least one of them is found to be significant in 24 of the utilities. For this reason, year of
construction is considered more relevant than shown in the table if year of rehabilitation
is not available and vice versa. Likewise, there might be some redundancy in number of
buildings, buildings low, buildings high, and number of grids.
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Figure 5. Feature analysis for (a) the utility with the lowest number of bad pipes (utility 10), (b) the utility with the highest
number of bad pipes (utility 14).

Table 4 shows that year of construction is the most important feature in 13 of the
utilities followed by age (8), groundwater (6), year of rehabilitation (5), and dimension (1).
In general, there is a tendency for the continuous variables to be found relevant more often
than categorical and binary variables.

To identify general trends between the performance, the size of dataset and the number
of relevant features, the relation between the number of bad pipes, the performance, and
the number of features contributing to the performance is shown in Figure 6.
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Figure 6. Plot of the relation between the number of bad pipes (first axis), the performance (second
axis) and the number of relevant features.

In Figure 6, the number of bad pipes is shown along the first axis, the f1 score is
shown along the second axis and the number of relevant features is shown in a color scale
ranging from blue to red. For utilities with more than 6000 bad pipes the number of features
contributing to the performance staggered at six to nine.

As stated in Section 2.4.3, only pipes in CS four were initially considered as being in
bad condition. In that analysis the performance and number of relevant features staggered
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for datasets with more than 1000-1500 bad pipes, which indicates that it is not solely the
number of bad pipes that influences the results but also the total number of pipes inspected.

Table 4. Overview of which predictor variables contribute to the model performance for each utility. A “e” shows that the
predictor variable contributes to the performance, a “o” shows that the predictor variable was included in the analysis but
did not contribute to the model performance. The features are sorted in descending order, according to how often they
contribute to the performance, and the utilities are sorted in descending order, according to number of pipes in CS 4. In
addition, this table includes an overview of the most important feature and the best performance obtained for each utility.
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Utility 1 e e e 0O e ¢ 0 O ¢ O O O o e 0o o o o o o o 8 0.71
Utility 24 e e e 0 O e O O e ° o e e 0o o o o o o o 8 0.76
Utility 6 e o e o 0O O ¢ 0O O O o o o o o o o o o 0 7 0.71
Utility 16 e e o o 0O e e 0 O o o o . o o o o o o 9 0.71
Utility 12 e O e e e e O e e O O o o o o o o o o o o 9 0.69
Utility 28 e o o 0O e o e 0 O o o o o o o o o o o o 6 0.77
Utility 5 e e e o 0O e e 0 e e O . o o o o . o o o o 10 078
Utility 29 ¢ O e o o o o o o ¢ 0O O ® e O e O O O o o0 12 076
Utility 3 e O ® 0 O e e 0 O o o o o o o o o o o o 4 0.77
Utility 9 e o e o o 0 © 0 O O o o o o o o o o o o 6 0.77
Utility 2 O e e e 0O O O ® O O O o o o o o o o o o o 4 0.82
Utility 25 e e e 0 O e 0O e 0 e O o o o o o o o o o o 6 0.77
Utility 18 e e 0 e e o 0O O © O o o o . o o o o o o o 9 0.79
Utility 27 O O e e e 0 O & O o o o o o o . o o o o 5 0.66
Utility 19 O O ® O e 0O e e 0 O O . . o o . o o o o o 7 0.71
Utility 4 e e O e 0O ¢ 0 O ¢ ¢ 0 O e 0o O ® o o o0 o o 8 0.65
Utility 20 e o 0 e o o o o O o o o o o o o o o o o 8 0.76
Utility 21 e e 0 e e e e O O o o o o o o o o o o o 6 0.73
Utility 30 e o O e e 0 O O O O o o o o o 5 0.70
Utility 11 O e e e e O e 0 O o o o o o o o o o o o 7 0.69
Utility 31 e e e 0 e 0 O O e o o o . . o o o o o o 7 0.77
Utility 22 e e e 0O e e 0 O O . o o o o 6 0.84
Utility 32 O O e e¢ 0 O O ¢ 00O 0O O O O O O o o o o o 3 0.71
Utility 8 e 0O O ¢ 0O e O e e O O ° o o o o o o o o o 7 0.74
Utility 23 e e e e o 0 0O O o o o o o o o o o e o o o 9 0.80
Utility 17 0O 0O O O O O € 0 O O O o o o o o o o o o o 1 0.81
Utility 33 e o e 0 0 O e O o o o o o 5 0.56
Utility 7 O ®© e e e 0O O o e e O . o o o 8 0.71
Utility 26 O e 0 O O O 0O O e 0 O o o o o o o o o o o 3 0.75
Utility 15 O O O e O e ¢ 0 0 O O O O O . o o o . o o 5 0.80
Utility 13 O 0O O e 0 O ¢ ¢ 0 0O ¢ e o0 O O O o o o o o 5 0.86
Utility 10 e O 0 O e 0 ® 0 O o o o o o o e o o o o 4 0.85
Total 2222 2020181716 13127 9 6 6 6 5 5 5 3 2 0 0
Times best o 8 6 001 35000 0 0 o 0 O o0 0 0 o0 O

The smaller variation in performance and number of relevant features for utilities with
a higher number of inspected pipes in bad condition, could indicate that these datasets
contain a more representative segment of the pipes. Thereby they are less sensitive to a
high or low occurrence of defects in an inspected area.
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4. Discussion

Sewer deterioration modeling is complicated by several influencing factors. In this
section the most prominent factors influencing the results are discussed, and the results are
compared to previous findings in the literature.

4.1. Representativeness of Data

The results from the baseline experiment underlined the challenges of using historical
data for sewer deterioration modeling, as the CCTV-inspections generally have been
performed with a specific purpose, introducing a selective survival bias in the data [1].
However, as the datasets are comprehensive, most utilities do not have the finances to
create a new dataset. Instead, the model developers must account for this by excluding
the features in which the bias is most prominent, such as features related to geographical
position. In the long term, utilities should include some spatial randomness in their strategy
for CCTV-inspection.

4.2. Definition of Target Variable

Lack of publicly available data [5], numerous different standards for CCTV-inspections
and different methods for evaluation of sewer deterioration models complicate the compar-
ison of deterioration models. This also applies to the performance obtained in experiment
two, where the fl-score drops from 0.73 to 0.35 when solely considering pipes in CS four as
being in bad condition instead of considering pipes in both CS three and four. However,
although the performance was affected, there was a high correlation in the predictor vari-
ables relevant for prediction of pipes in CS four and pipes in either CS three or four, which
indicates that it is fair to make a binary evaluation of the feature importance.

Today CCTV inspections are performed by an operator who manually annotate the
observations found in the sewers according to a given standard for tv inspections. These
observations are often transformed into a general measure of the sewers condition. This
condition measure can either be based on general standards or they can be utility specific.
The benefit of utilizing the general standards are increased comparability between utilities
whereas the benefit of utilizing a utility specific performance measure is that it can be
adjusted to prioritize the types of defects relevant for the utility. For instance, a utility with
limited capacity at the wastewater treatment plant might increase weight on infiltration.
Weighting some defects higher can cause the features related to these defects to become
more important in a feature analysis. In the CS used in this study a higher weight has been
put on attached deposit and infiltration according to other observation types as shown
in Table 2. This is consistent with the results showing a high importance of the relative
groundwater level. As the groundwater maps available for this study were based on
measurements every 500 m, the actual groundwater level can change significantly between
the data points. It is likely that the ground level can compensate for these changes, which
will induce a higher weight on this feature in the feature analysis.

4.3. Size of Datasets

When considering pipes in both CS three and CS four as being in bad condition, the
performance and the number of features relevant staggered for datasets with more than
6000 pipes in bad condition. In the initial analysis only pipes in CS four were considered
bad. In that analysis the performance and number of relevant features staggered for
datasets with more than 1000-1500 pipes in bad condition. This indicates that the number
of bad pipes required for optimal performance is correlated with how the target variable is
defined and the total number of pipes inspected.

Furthermore, it is worth noticing that if solely considering the utilities with more than
1000 bad pipes, there is more consensus on which features contribute to the performance.
For ground level the percentage of time it is found to be relevant increases from 69% to
78%. Similar tendencies are present for age (67% to 71%) and relative groundwater level
(65% to 73%). A full overview is presented in Table 5.
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Table 5. Overview of how often a feature contributes to the performance when considering all the
utilities and when considering only utilities with more than 1000 bad pipes.

Utilities with More Than 1000

Predictor Variables All Utilities Bad Pipes
. Percent of . Percent of
Times . Times .
Present Times Found Present Times Found
Relevant Relevant
Ground level 32 69 27 78
Age 33 67 28 71
Groundwater 31 65 26 73
Wastewater 33 61 28 61
Length 33 55 28 57
Dimension 33 52 28 57
Year of construction 33 48 28 46
Year of rehabilitation 33 39 28 39
Soil type 33 36 28 36
Slope 23 30 19 32
Depth 31 29 26 31
No. buildings 29 21 25 20
No. grates 29 21 25 24
Material 33 18 28 21
Dist. to road center 29 17 25 16
Dist. to trees 33 15 28 18
Road types 33 15 28 14
Rehabilitation type 33 9 28 7
City type 30 7 26 4
Building low 29 0 25 0
Buildings high 29 0 25 0

4.4. Irreqularities in the Step Analysis

For some utilities, the performance improved when predictor variables were removed,
indicating overfitting of the model. This was clearest for utility 10, which is also the utility
with the smallest amount of training data. For datasets with more than 10,000 pipes, the
tendency could still be observed in some cases after cleaning but removing features did
not lead to an increase in performance of more than two to three percent.

In a few cases, the performance suddenly increased when removing one parameter.
This could not be explained by stochasticity in the performance or overfitting. An example
of this can be seen in Figure 5b. This is most likely because some predictor variables
perform well when combined but introduce noise when considered individually.

4.5. Comparison to the Literature

Mohammadi et al. [24] reviewed 24 papers, of which 19 had investigated which
features were significant. In Table 6 the results of this study are compared to the findings
by Mohammadi et al.
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Table 6. Comparison of how often the different features contribute to the performance in this study
and in the review by Mohammadi et al.

Predictor Variables Results Mohammadi et al.
. Percent of . Percent of
Times . Times .
Present Times Found Present Times Found
Relevant Relevant
Ground level 27 78 - -
Age 28 71 18 78
Groundwater 26 73 3 100
Wastewater 28 61 6 83
Length 28 57 11 91
Dimension 28 57 17 71
Year of construction 28 46 - -
Year of rehabilitation 28 39 - -
Soil type 28 36 5 20
Slope 19 32 12 42
Depth 26 31 16 44
No. buildings 25 20 - -
No. grates 25 24 - -
Material 28 21 15 67
Dist. to road center 25 16 - -
Dist. to trees 28 18 - -
Road types 28 14 5 40
Rehabilitation type 28 7 - -
City type 26 4 - -
Building low 25 0 - -
Buildings high 25 0 - -
Location - - 5 40
Up-invert - - 1 0
Down-invert - - 1 0
Bedding type - - 2 100
Corrosivity - - 2 50
Number of trees - - 5 60
Traffic - - 1 1
Flow - - 3 67
Hydrohalic - - 2 100
Location - - 5 40
Up-invert - - 1 0

In the review by Mohammadi, there is a higher consensus about which predictor
variables are significant. The most probable reason for this is that Mohammadi et al.
reviewed studies whose authors selected a number of predictor variables. For example,
four of the papers investigated between two and eight predictor variables and did not find
any insignificant variables. In general, there is a consensus that length, age, dimension,
ground water, and wastewater type are often important predictor variables. However, the
model developer should consider the specific case when selecting predictor variables as
there is no “gold standard”.

4.6. CCTV-Inspection Planning

The still increasing access to pipe specific data and the increasing awareness of the
benefits related to risk based pipe inspection and rehabilitation on pipe level are essentials
when optimizing the management of sewer systems to save costs and resources. Sewer
deterioration modeling is an essential element in this; however, the scientific literature
dealing with the underlaying parameters influencing the deterioration models is sparse.
The findings of this study enlighten some of these shortcomings, and the findings can be
incorporated in future model development.
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Generally, deterioration models can be used to give a snapshot of the sewer system
and is used when no CCTV-inspection has been made or when the CCTV inspection is
outdated. Typically, the deterioration models are based on datasets which have been
collected over several years. Therefore, users of deterioration models should be aware
that the predictions of the CSs are evaluated on historical data and thereby cannot give
a fair prediction of future condition states. For example, plastic pipes were rarely used
50 years ago, and plastic pipes older than 50 years have limited representation in the
data. Furthermore, the surrounding environment, material quality etc. change over time.
Future predictions of CSs are further complicated by variations in the degradation profile
of different defect types. Some defect types occur stochastically and do not degrade over
time such as defects related to pipe connections or installation of the pipes. Other defects
degrade over time such as surface damage. Surface damage is often seen in concrete pipes
due to the presence of hydrogen sulphide which erode the surface over time. Hydrogen
sulphide is typically formed in pump pipes. Likewise, the degradation profile for defects
related to roots in the pipes depends on the surrounding trees and their growth.

5. Conclusions

The primary contribution of this paper is a comprehensive analysis of the feature
importance in sewer deterioration modeling. The paper addresses factors that influence
sewer deterioration modeling and acknowledges weak or missing information in the
literature, such as handling of biased datasets, the impact of how bad pipes are defined,
and the variations in feature importance between utilities.

Deterioration models are usually based on CCTV-inspections performed over several
years with a specific purpose in mind. This is problematic due to a selective survival bias in
the data whereby the models do not perform as well on noninspected areas as they do on
inspected areas. Ideally the datasets should be random in character, but due to economic
constraints this is often infeasible. Instead, model developers should avoid utilization of
geographically related parameters. Moreover, utilities should include randomness in their
strategy for CCTV inspection.

Changing the definition of when a pipe is in bad condition produced large deviations
in model performance. However, in the feature analysis it was the same features that
contributed to the performance, although more features contributed when both pipes in
CS three and four were considered bad than when only pipes in CS four were considered
bad. This indicates that it is fair to use an advantageous split between good and bad pipes
when making a feature analysis.

Comparison of feature analysis from 33 different utilities showed a relatively high
variance in the number of features contributing to the performance, which features con-
tributed, and the performance obtained by the models. These variations were especially
high for utilities with fewer than 6000 pipes in bad condition. It is worth noting that the
number of bad pipes depends on the definition of bad pipes. When solely considering
pipes in CS four as “bad”, the high variations were primarily present for utilities with
fewer than 1000-1500 pipes in bad condition.

No feature was considered relevant in more than 69% of the utility specific models;
however, when only considering utilities with more than 1000 bad pipes there was a higher
consensus on which features were relevant (up to 78%). For these utilities, the features
that contributed to the performance most of the time were ground level (78%), age (71%),
groundwater level (73%), wastewater type (61%), length (57%), dimension (57%), year of
construction (46%), and year of rehabilitation (39%). As there is a high redundancy between
year of construction, year of rehabilitation, and age, removing one of these as a possible
predictor variable would most likely induce the others to contribute to the performance in
more cases. In 26 out of 33 cases the most important feature was related to either age, year
of construction, or year of rehabilitation. On average 6.5 features contributed to the utility
specific models.
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The overall trends in feature importance found in this work showed consensus with
the findings in a review by Mohammadi et al. [24]; however, due to variations in study
design of the articles reviewed by Mohammadi et al. the two papers are not comparable on
a detailed level.

The added value of this paper is a better understanding of the underlying parameters
influencing sewer deterioration modeling and knowledge of feature importance when
encountering the statistical variations between utilities. The exact results related to feature
importance are specific to the condition measure used in the study, however, the overall
trends are comparable to findings in the literature and can be used to assist the feature
selection for sewer deterioration modeling, which is important because feature extraction
is a labor intensive process.
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