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Abstract: Understanding how the design hyetographs and floods will change in the future is essential
for decision making in flood management plans. This study provides a methodology to quantify the
expected changes in future hydraulic risks at the catchment scale in the city of Pamplona. It considers
climate change projections supplied by 12 climate models, 7 return periods, 2 emission scenarios
(representative concentration pathway RCP 4.5 and RCP 8.5), and 3 time windows (2011-2040,
2041-2070, and 2070-2100). The Real-time Interactive Basin Simulator (RIBS) distributed hydrological
model is used to simulate rainfall-runoff processes at the catchment scale. The results point to a
decrease in design peak discharges for return periods smaller than 10 years and an increase for the
500- and 1000-year floods for both RCPs in the three time windows. The emission scenario RCP 8.5
usually provides the greatest increases in flood quantiles. The increase of design peak discharges is
almost 10-30% higher in RCP 8.5 than in RCP 4.5. Change magnitudes for the most extreme events
seem to be related to the greenhouse gas emission predictions in each RCP, as the greatest expected
changes are found in 2040 for the RCP 4.5 and in 2100 for the RCP 8.5.

Keywords: hydrological modeling; climate change; flood risk; climate models; flood change

1. Introduction

In recent years, several studies have focused on the impact of climate change on the
hydrological cycle. Understanding the impacts of future climate on river flood risks and
water resources is important to plan effective adaptation strategies to manage the expected
changes in extreme event risks [1]. Flood risks are generally connected to the intensity and
frequency of rainfall events in urban areas either located downstream of small catchments
or subject to pluvial floods. Several studies have shown an increase pattern in precipitation
intensities and the number of extreme events in a warmer climate [2—4]. Therefore, flood
risks can increase in urban areas in the future [5,6], imposing high costs to aquatic and
terrestrial ecosystems, human societies, and the economy [7]. The Intergovernmental Panel
on Climate Change (IPCC) [8] identified statistically significant increasing trends in the
number of heavy precipitation events in some regions, claiming that the frequency of
extreme precipitation events or the proportion of total rainfall of such events will likely
increase in the 21st century over many areas of the globe due to anthropogenic influences
that have contributed to the intensification of extreme precipitations at the global scale.

Nevertheless, such increasing frequency and magnitude of extreme rainfall events
do not imply that the long-term statistical trends of flood peaks will be also increasing [9].
The expected impact of climate change on the water cycle can be analyzed by using two
approaches. First, trend analyses of observations recorded in the past with a set of statistical
models can predict what will happen in the future. Second, rainfall-runoff models that use
climate projections as input data can extract the flood change signal predicted by climate
models [10]. Regarding the spatial scales, while the first approach is usually applied
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to large-scale studies, the second usually regards either large or small and finer spatial
resolutions, such as catchment scales.

The input data in the second approach consist in a combination of global climate
models (GCMs) and regional climate models (RCMs). GCMs simulate the climate behavior
under a set of given representative concentration pathways (RCPs). RCMs downscale such
climate projections on a finer spatial scale. Indeed, it is necessary to reproduce rainfall
projections with adequate spatial and temporal scales specially to force hydrological models
for small and medium catchment areas [11]. An ensemble of RCMs and GCMs is preferred
to a single climate model to remove potential biases in the outputs of RCMs or GCMs [12].
In climate change studies, the most usual emission scenarios are the RCP 4.5, with the peak
of greenhouse gas emissions around 2040 and a decline in the rest of the century, and the
RCP 8.5, with increasing greenhouse gas emissions throughout the 21st century [13].

Many studies have analyzed the expected changes in flood risks in Europe by using
both trend analyses and hydrological models as described above [14]. Recent studies to
identify large-scale trends in observed time series have shown that a changing climate
in the last decades both increases and decreases European river floods [15]. The results
depend mainly on the part of Europe that is considered. While southern and eastern
Europe show negative trends in river floods, the northern part of Europe has increasing
trends. Nevertheless, some studies that use climate projections in hydrological models
point out that, on average, flood peaks with return periods above 100 years can double
their frequency within three decades in Europe [16]. Other studies confirm the increasing
trend for the 100-year flood, particularly in western and eastern Europe, though they found
decreasing trends in northeastern Europe [17,18]. Several large-scale studies in Europe that
use hydrological models differ in their results, as they consider different climate models,
downscaling techniques, or bias-correction methods [19]. For instance, results regarding
the future design rainfalls of the Iberian Peninsula obtained from studies with larger scales
are conflicting. Indeed, some findings obtained at the European scale show an increase of
river flood risks in Spain [20], though global scale studies show the opposite in the same
area [21]. In addition, the results can be different for a given region even using the same
scale. Hence, at the European scale, the results obtained for Spain by Rojas et al. [18] are in
contrast with Alfieri et al. [16] and Roudier et al. [20]. This lack of agreement cannot be read
easily by decision makers. An additional source of uncertainty that could affect all these
studies is that RCMs cannot reproduce extreme rainfall events in the future adequately.
Indeed, Herrera et al. [22] show that RCMs have a good agreement with the observed mean
precipitation in Spain, though upper percentiles that represent the amount of total rainfall
from extreme events are underestimated. Furthermore, large-scale studies cannot provide
flood risk assessment under climate change conditions at the catchment scale, despite
that the quantification of flood quantile changes in urban areas would be interesting for
municipalities and urban planners. Moreover, large-scales studies are mainly conduct for
the 100-year flood, though other return periods are not usually considered.

Consequently, several studies have considered the impact of climate change in smaller
river catchments, avoiding the extrapolation of the results from large-scale studies. They
evaluate the climate change impact on the water cycle with different objectives, as climate
change can have implications in sustainable management of ecosystem services [23], daily,
monthly, and yearly streamflow patterns [24], seasonal precipitation [25], or engineering
hydraulic design [10]. Indeed, the use of RCMs in the Mediterranean area at the river
basin scale also demonstrated that different parts of southern Europe could have problems
related to water scarcity in the future, as precipitation will decrease by the end of the 21st
century in the central part of Greece [25], and a reduction of water yield mainly forced by
decreasing precipitations has been detected in the Taro river basin (Italy) [23]. In Spain,
similar results have been found for the time period 2021-2050. In this case, they are mainly
due to the increase in both maximum and minimum temperatures at the national scale [26].

Findings in flood quantile changes in small-scale studies either can differ from the
results obtained in the same zone by large-scale studies or can have different change signals
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for all the considered climate models. For instance, Ducharne et al. [27] found that low-flow
quantiles could decrease, and high-flow quantiles could not significantly change in the
Seine and Somme catchments (France), where European scale studies found an increase of
design discharge. Statistically significant changes could be neglected when the mean of
the results of the different trends in the ensemble of regional climate models is used [28].
The uncertainty associated with the results is not due only to the downscaling techniques
but also on hydrological models. There are several studies that analyze the ensemble of
climate models with an ensemble simulation approach [27,29-31].

This study aims to quantify expected flood quantile variations under climate change
conditions in Pamplona (Spain) using climate change projections and a distributed rainfall-
runoff model. Expected variations in precipitation quantiles extracted from climate change
projections in the Iberian Peninsula in a recent study [32] are used as input data of the Real-
time Interactive Basin Simulator (RIBS) model [33,34]. The Arga River catchment located
in northern Spain is considered as case study, as it is the main driver of the largest floods
observed in recent years in the River Ebro [35]. In addition, Pamplona has suffered frequent
fluvial floods in last decades. This study focuses on a single medium-sized basin and on
a single distributed hydrological model, trying to minimize the uncertainties associated
with the results. Rather than using an ensemble simulation approach, a part of the work is
dedicated to conducting a statistical calibration of the RIBS distributed hydrological model
to reduce the model uncertainty. Furthermore, this region has been also chosen because it
shows low biases associated with the climate models in reproducing the annual maxima
series in the control period. This study also aims to analyze the results of the 12 climate
models to identify given climate models that always provide the greatest or smallest flood
quantile changes in the future.

2. Methodology

The methodology, proposed to identify flood quantile modifications driven by climate
change, is divided into five parts: description of the RIBS hydrological model (Section 2.1),
calibration methodology of the RIBS model (Section 2.2), hydrological modeling to quantify
flood peaks in the current scenario (Section 2.3), spatial distribution of the future design
storms (Section 2.4), and flood quantile change quantification (Section 2.5).

2.1. RIBS Model

The Real-time Interactive Basin Simulator (RIBS) is a distributed hydrological rainfall-
runoff model that is typically used for real-time application on medium-size river basins.
RIBS requires the information in a raster format, in this case with a cell size of 50 m. A digital
elevation model (DEM) is used to determine the flow direction and flow accumulation
in each cell of the domain. The soil information is used to estimate the parameters in the
Brooks—-Corey equation (Equation (1)) to calculate the part of the rainfall depth that is
transformed into runoff in each cell.

_ 0—0,\°
o) = e (5 =) W

where K;(y) is the saturated hydraulic conductivity (mm/h); Ko, is the saturated hydraulic
conductivity at the soil surface in normal direction (mm/h); f is he saturated hydraulic
conductivity decay in depth (mm™1), y is the soil depth (mm); 6 is the soil moisture content,
8, is the residual soil moisture content; i.e., the minimum value under which the humidity
cannot be extracted by capillary forces; 0; is the saturated moisture content; and ¢ is the
index of soil porosity [36]. The Brooks-Corey equation assumes that Ks(y) has a maximum
value at the soil surface (Ko, ) and then exponentially decrease in the normal direction in
the soil depth y with the parameter f.

When rainfall intensity exceeds the infiltration capacity of the soil, surface runoff
is generated. Runoff is propagated in the domain through Equations (2) and (3). The
catchment is divided into two parts based on a given flow accumulation threshold. Cells
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with flow accumulation values under such a threshold represent hillslopes in the model
and have a runoff velocity equal to v;. Cells with flow accumulation values over the
threshold represent streams and have a water velocity equal to vs. It is assumed that v;
depends on the discharge in the catchment outlet with respect to a reference flow rate Q¢

(Equation (2)).
Q(f)] 2

Qre f

where v is the water velocity in streams (m/s); Cy, is a model parameter (m/s); Q(¢) is the
discharge at the catchment outlet in time step ¢ (m3/s); Qe risa reference discharge (m3/s);
and 7 is a model parameter. If 7 equals 0, v; equals C,, remaining constant throughout the
simulation. If r is greater than 0, vs is greater than the parameter C, when the discharge at
the catchment outlet is higher than Q,.;. At a given time step, the velocity in hillslopes, vy,
is related to the velocity in streams, v, with the dimensionless parameter K, (Equation (3)).

vs(t) = Cy

K, = 21 ©

Both velocities can be considered uniform in all the stream and hillslope cells at a given
time step, as v; depends only on the discharge at the catchment outlet. More information
about the RIBS model can be found in Mediero et al. [37] and Garrote and Bras [33,34]. The
parameter r in Equation (4) has been set equal to 0 to reduce the computational cost of
the model, as the number of simulations with climate change scenarios is high. Therefore,
velocity in streams (v;) is always equal to C, in all the time steps. The model parameters
that are considered during the calibration procedure are reduced to three: f (Equation (1)),
Cy (Equation (2)), and K, (Equation (3)).

2.2. Calibration of the RIBS Model

The calibration procedure aims to find the model parameter values that minimize
the errors between the model results and the observations of the real system that it is
intended to represent [38]. Such errors in model simulations can be represented with
Equation (4) [39].

Q(x, t)= M(6, x, t)+ €(6, x, t) 4)

where Q(x, t) is the measured discharge in a given location x at the time step t; M(0, x, t)
is the modeled discharge that is obtained using a set of parameters 60; and ¢ (6, x, t) is the
error in the same location and time step with a set of parameters 6.

The model calibration can be based on optimization methods, seeking to minimize
model errors. Model errors can be quantified by using different objective functions. A set
of objective functions are needed to consider a set of aspects in the hydrograph, such as the
hydrograph shape, the timing and magnitude of the peak and the magnitude of errors in
low flows, among others.

In this study, five objective functions are used to calibrate the RIBS model. Three of
them quantify the errors considering the complete hydrograph duration: mean absolute
error (MAE), root mean square error (RMSE), and the Nash—Sutcliffe efficiency coefficient
(NSE) (Equations (5)—(7)). Two additional parameters are considered to assess the fitting in
the upper part of the hydrograph: time to peak (TP) and the magnitude of the peak (MP)
(Equations (8) and (9)).

1 N
MAE(9) = ; k_Zl\qt —4:(0))| ®)
N
RMSE(6) = J zlvsz‘“ —q,(6))° ©)



Water 2021, 13, 792 50f 20

Yl (g — q1(6))°
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TP(8) = [t(max(q:)) — t(max (4}(6)) ®
MP(0) = ‘max(qt) — max(qé(@))’ 9)

where g; is the measured discharge at a given time step £; q;(6) is the simulated dis-
charge with a set of model parameters 6 at the time step t; and 7 is the mean value of the
observed discharges.

The NSE objective function [40] quantifies the improvement of using the simulated
hydrograph compared with the average discharge of the observed hydrograph. The best
value of all the objective functions is 0, except for NSE that supplies a value equal to one
in a perfect match between the simulated and measured hydrographs. Indeed, MAE and
RMSE values equal 0 and NSE values equal to 1 mean that there are not biases between the
measured and the simulated discharge. A TP value equal to 0 means that the peak discharge
of the simulated hydrograph occurs in the same time step as in the observed hydrograph. A
MP value equal to 0 means that there is no difference between the magnitude of simulated
and observed peaks.

2.3. Current Scenario

The design floods in the current scenario have been obtained by using the RIBS
hydrological model with a set of design hyetographs as input data, obtained through an
extreme frequency analysis. Daily observations at eight rain gauge stations have been
considered. Both the GEV and the Gumbel distribution functions have been used to fit
a frequency curve to annual maximum series. The return periods of 2, 5, 10, 50, 100, 500,
and 1000 years are considered. An Areal Reduction Factor (ARF) is considered to reduce
the mean areal precipitation in the catchment obtained from the precipitation quantiles
estimated at rain gauge locations, as annual maximum rainfalls in the eight rain gauge
stations are unlikely to occur on the same day in all the years.

The mean rainfall intensity for a given subdaily duration is obtained from the intensity—
duration—frequency curve in the region. A storm duration of 24 h is considered. The 24 h
design rainfall for a given return period is obtained by scaling a dimensionless hyetograph
by the T-year daily rainfall multiplied by ARF. Therefore, the design hyetographs in the
Arga River catchment have a fixed shape with the peak intensity in the central part of the
event regardless the return period.

Finally, at-site rainfall precipitations at each time step given by the design hyetographs
in the eight gauging sites are spatially distributed in the catchment, by using a grid with
the cell size used by the RIBS model. The Thiessen polygon technique is used to obtain the
precipitation fields in each time step. Therefore, 24 precipitation fields in the catchment are
obtained for each design event, one for each time step of the hyetograph.

2.4. Climate Change Scenario

Expected changes in daily precipitation quantiles in the future under climate change
conditions were extracted from rainfall climate projections supplied by 12 combinations
of GCMs and RCMs (Table 1) of the EURO-CORDEX program [32]. Delta changes in
daily precipitation quantiles are supplied for seven return periods (RP =2, 5, 10, 50, 100,
500, and 1000 years), two representative concentration pathways (RCP 4.5 and RCP 8.5),
and three time windows in the future (2011-2040, 2041-2070, and 2071-2100). A delta
change represents the expected variation in rainfall quantiles for each combination of
return period, climate model, time window, and RCP scenario. The delta changes are
provided in a grid with a cell resolution of 0.11°. Hence, the Arga River catchment is
covered mainly by three points that have the greatest influence on the design rainfall
variation, though additional seven points are also considered, as they cover smaller parts
of the river catchment (Figure 1). Therefore, 504 values of delta changes are considered in
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each cell that are the possible combinations with the 7 return periods, 2 emission scenarios,
3 time windows, and 12 climate models considered in the study.

Table 1. Ensemble of the 12 climate models considered in the analysis.

Code Acronym GCM RCM
1 ICH-CCL ICHEC-EC-EARTH CCLM4-8-17
2 MPI-CCL MPI-ESM-LR CCLM4-8-17
3 MOH-RAC MOHC-HadGEM2-ES RACMO22E
4 CNR-CCL CNRM-CM5 CCLM4-8-17
5 ICH-RAC ICHEC-EC-EARTH RACMO22E
6 MOH-CCL MOHC-HadGEM2-ES CCLM4-8-17
7 IPS-WRF IPSL-CM5A-MR WRE331F
8 IPS-RCA IPSL-CM5A-MR RCA4
9 MOH-RCA MOHC-HadGEM2-ES RCA4
10 ICH-RCA ICHEC-EC-EARTH RCA4
11 CNR-RCA CNRM-CM5 RCA4
12 MPI-RCA MPI-ESM-LR RCA4

* CNR-CCL
W o
0.005
0.03
0.05

Il 007

A~

. ; . - o T
current scenario L. 7w | climate change scenario % ™"

20112040 RCP4S_tr2_raster ~ °

Figure 1. Combination of the delta changes with the design rainfall to obtain the rainfall spatial
distribution in the future.

The delta changes are spatially distributed with the 50 m grid cell size that is used in
the RIBS hydrological model simulations. Though the best geostatistical method depends
on each case characteristics, ordinary kriging has been proved to provide better results than
the inverse distance weighting (IDW) method in several studies regarding precipitation
fields [41]. Nevertheless, in this case study the IDW technique has been used with a high
exponent to maintain the same original squared shape of the delta changes. Furthermore,
the use of the kriging method is not possible with these data as a fitting model cannot be
determined for the semivariogram. Indeed, all the points have a fixed reciprocal distance.
Therefore, for the same distance in the x-axis, there are several semivariance values in
the y-axis that prevent any model from being able to converge (gaussian, exponential,
and spherical).

The spatial distributions of the future design precipitations are obtained combining
the spatial distributions of both the current design rainfalls and the delta changes. Figure 1
shows the spatial distribution of the peak intensity in the 2 year hyetograph and the delta
changes for the CNR-CCL climate model for the same return period in the 2040 time
window. Considering the 504 combinations in each cell described above and the 24 time
steps of the design hyetographs, a total of 12.096 rainfall spatial distributions have been
considered as input data in the RIBS model.

2.5. Quantification of Expected Changes in Flood Quantiles

The expected changes in flood quantiles in the future are obtained from the com-
parison between flood quantiles in the future periods and the current period for each
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climate model. The flood quantile change supplied by a given climate model and return
period (AQr) are obtained using the ratio between the hydrograph peak discharge in the
climate change scenario (Q,) Fut and the hydrograph peak discharge in the current scenario

(Qp)mm (Equation (10)). AQr quantifies the change between a future time window and
the current period, extracting the signal change supplied by a climate model forced with a
given emission scenario, regardless the flood frequency curve obtained from observations.
Therefore, the potential biases between the model simulations and observations do not
have influence in the results.

(Qp,T) fut

(QP/T) curr

where (Qp, )5+ is the hydrograph peak magnitude for the return period T in the future
period; (Qp,1)curr is the hydrograph peak magnitude for the return period T in the current
period; and AQr is the expected change in the flood quantile for the return period T.

If AQr7 is greater than one, flood quantiles are expected to increase in the future. If
AQr is smaller than one, flood quantiles are expected to decrease in the future. A value of
one means that no changes in flood quantiles are expected in the future.

AQp = (10)

3. Data and Case Study

Pamplona is crossed by the Arga River that has a catchment area of 510 km2. The
Arga River is in the Navarre region and rises in the Urquiaga pass, located in the Paleozoic
Quinto Real massif, one of the rainiest areas in Northern Spain. It is a tributary of Aragén
River that has a total drainage area of 2759 km?. In this study, the catchment outlet is
located in the Pamplona city, where the A323 streamflow gauging station is placed, as
shown in Figure 2.

9229E
A

Figure 2. (a) Digital elevation model (DEM) and location of streamflow gauges. (b) Soil types and
location of rain gauges.

Two types of rain-gauge stations are used in the study. For the RIBS model calibration
procedure, six 15 min rain-gauge stations are used (purple circles in Figure 2). For estimat-
ing the design rainfall hyetographs, daily rain-gauge stations with longer time series are
used (green triangles in Figure 2). Therefore, a time step of 15 min has been considered in
the RIBS model simulations for both the calibration and the calculation with current and
future design rainfalls. Table 2 contains a summary about the streamflow- and rain-gauge
station network.
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Table 2. Summary about the rain- and streamflow-gauge stations considered in the study.

Code Name Instrument Use x (UTM) y (UTM) z (m asl)
A067 ULZAMA in OLAVE Rain Gauge and Hydrometer calibration 613,772 4,749,604 468
A159 ARGA in HUARTE Rain Gauge and Hydrometer calibration 615,717 4,745,302 454
A323 ARGA in PAMPLONA Hydrometer calibration 609,434 4,741,851 413
EM25 EMA DE EUGUI Rain Gauge calibration 621,072 4,758,771 628
P012 BERUETE Rain Gauge calibration 595,526 4,764,847 752
P078 LANTZ Rain Gauge calibration 612,505 4,761,016 645
P113 VALLE DE BAZTAN Rain Gauge calibration 625,416 4,768,978 906
9229E ESPINAL-AUZPERRI Rain Gauge design 633,099 4,759,795 870
9231E ERRO Rain Gauge design 626,428 4,755,379 688
9257E EUGUI ESTERIBAR Rain Gauge design 620,494 4,757,618 615
9258 ZUBIRI Rain Gauge design 621,945 4,753,786 536
9261E OLAGUE Rain Gauge design 613,259 4,757,216 545
9262 Ogggﬁg&?gﬁ o Rain Gauge design 611,315 4,741,479 442
9262A PAMPLONA INSTITUTO Rain Gauge design 610,148 4,741,399 441
92631 ILUNDAIN Rain Gauge design 620,048 4,736,998 572
The soil data were supplied by the Spanish National Geographic Institute IGN
(Madrid, Spain), “Instituto Geografico Nacional” in Spanish, in a shapefile format. The
DEM was also supplied by IGN in a raster format. All the data in the RIBS model are
provided in a raster format with a cell size of 50 m. Therefore, the soil raster in Figure 3
was obtained sampling the shapefile with a 50 m grid. Table 3 reports the Brooks—Corey
parameter values (see Section 2.1) for each soil class.
] I ]
—A323
500 = — Threshold]]
400 — 4
a2 300
E
a
200 -
i M&ﬂh
0 M L Al 1 " Ll i L (AT ul L l "
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Time [min]

Figure 3. Floods selected in the A323 hydrometer by using a peak-over-threshold (POT) analysis with a threshold of

300 m3/s.

Table 3. Hydraulic characteristics of the soil classes belonging to the soil raster.

Soil Class Ky, (mm/h) 0 0, £
1 50 0.5 0.04 3.5
2 1 0.35 0.04 35
3 25 0.25 0.03 35
4 15 0.3 0.03 3.5
5 30 0.25 0.01 6
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The greatest flood events of the Arga River in Pamplona in the last decade have been
selected for the calibration of the RIBS hydrological model. A peak-over-threshold (POT)
analysis has been applied to the streamflow time series recorded at the A323 hydrom-
eter located at the catchment outlet. A threshold of 300 m?/s has been considered, as
floods that exceed such a threshold usually drive significant direct losses in the Pamplona
city (Figure 3). Eight flood events have been selected for the calibration and validation
methodology of the RIBS hydrological model. They are named from EPIO1 to EPI08 in
chronological order.

However, EPI0O1 has been removed from the calibration process, as two rain-gauge
stations were out of service for this event. Hence, five events were used in the calibration
procedure (EPI02, EPI03, EPI04, EPI05, and EPI06) and two in the validation (EPI07 and
EPI08). A summary of the selected flood events is included in Table 4.

Table 4. Summary of the flood events considered in the calibration process of the Real-time Interactive Basin Simulator

(RIBS) model. Maximum intensity refers to the mean rainfall intensity in the catchment.

Code Flood Duration (h) Maximum Intensity (mm/15 min) Peak Flow (m3/s)
EPI02 12-17 January 2013 105 7.2 464.5
EPI03 7-10 June 2013 53 13.2 507.9
EPI04 29 January-3 February 2015 110 54 359.3
EPI05 23-27 February 2015 95 49 434.2
EPI06 12-17 January 2017 101 6.0 351.1
EPIO7 10-12 April 2018 53 6.1 388.3
EPI08 11-13 December 2019 64 6.9 444.3

4. Results

In this section, the results of the hydrological simulation with the RIBS model are
shown. First, the results of the calibration and validation methodology are reported.
Second, the expected changes in flood quantiles in the future are compared with the design
peak discharges in the current scenario.

4.1. RIBS Model Calibration and Validation

A set of 100 parameter value combinations generated randomly with a uniform
distribution in the range of parameter values shown in Table 5 has been considered in the
calibration procedure.

Table 5. Ranges of the RIBS model parameter values used in the calibration procedure.

Parameter Lower Limit Upper Limit
f (mm™1) 1074 1.5 x 1073
Co (m/s) 1.0 2.0

Ky 0.5 12

The five objective functions selected in Section 2.2 have been calculated for the five
flood events considered in the calibration process in the three hydrometers located in the
Arga River catchment (A067, A159, and A323).

The model errors in the three streamflow-gauge stations have been combined using a
weighted mean, to summarize the results of the calibration with a unique value for each
flood event in the catchment. The results of the calibration process are shown in Figure 4.
The 100 black circles in each subplot represent the simulations with the 100 combinations of
parameter values. The red filled circle shows the model error of the best set of parameters
used after the calibration in the flood quantile calculation.

Figure 4 shows that the parameter value combinations with the smallest values of the
MAE and RMSE objective functions agree with the greatest values of the NSE objective
function. However, a higher variability can be found in terms of the MP objective function,
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indicating that a good fit for the flood peak magnitude does not imply a good fit in the
flood hydrographs shape. The results of the TP objective function indicate that it is not able

to identify the best model parameter value combinations.
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Figure 4. Objective function results for the five flood events considered in the calibration process. Columns show flood
events. Rows show the relationship between each objective function and Nash-Sutcliffe efficiency coefficient (NSE). Red

circles represent the combination of parameter values selected for the validation procedure.

Nevertheless, the best combination of parameter values that minimize errors has been
selected from the results of all the five objective functions. The set of parameter values that
minimize the error has been identified for each flood event and each objective function. The
best combination of parameter values has been selected analyzing the 25 parameter values.
The objective function results for both the calibration and validation flood events with the
combination of parameter values selected as calibration results are shown in Table 6.

Table 6. Weighted values of the objective function values in the three hydrometers considered in
the study for the events used in the calibration and validation phases. The results correspond to

simulations with the RIBS model parameter values obtained in the calibration process.

Objective Functions ~ EPIO2  EPI03  EPIo4  EPIO5  EPI06  EPI07  EPIOS
RMSE (m3/s) 457 404 27.0 346 322 37.0 372
MAE (m3/s) 33.0 327 19.1 242 28.1 24.8 30.6
TP (min) 75 90 330 60 90 195 75
MP (m3/s) 108.9 61.3 472 68.9 19.3 67.4 434
NSE 0.60 0.85 0.87 0.86 0.74 0.82 0.87

Most of flood events show an NSE result higher than 0.8 that is a good fitting. The

RMSE and MAE objective functions have small values when the NSE objective functions
has high values, indicating that the three objective functions can identify the best parameter
values. In terms of the TP objective function, most of flood events show values below
1.5 h that can be considered a good fit. The mean value of the observed flood peaks in the
calibration is 420 m3/s, and the mean value of the MP objective function is 50 m?/s that
corresponds to an error of 12%.



Water 2021, 13, 792 11 of 20

Figure 5 shows the relationship between the NSE objective function and the RIBS
parameter values. The parameter values selected in the calibration and used for model
validation is shown in red. NSE shows a higher sensitivity to the parameter f. Indeed,
different values of f can correspond to different values of flood volume, and there is only
one value that is optimal for the model. The RIBS model is less sensitive to the parameters
Ky and Cy, as the catchment time of response depend on water velocities in hills and
streams that can be obtained with several combinations of K, and C,. Nevertheless, the
best set of parameter values identified in the calibration process is always in the upper
part of the graphs, indicating its goodness of fit. The parameter values selected in the
calibration process are included in Table 7.
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Figure 5. NSE objective function results for the five flood events considered in the calibration process. Columns show flood
events. Rows show the three parameters used to calibrate the model: f, Ky, C,. Red circles represent the combination of best
combination of parameter values identified in the calibration process.

Table 7. RIBS parameter values for the best combination identified in the calibration process.

Parameter f (mm~1) C, (m/s) Ky

Optimal value 14 x 1073 1.17 11.9

Figure 6 shows the comparison between the observed and simulated hydrographs,
considering the set of model parameter values selected in the calibration process. The
results of the calibration show that the simulated hydrographs are closer to the observed
hydrographs at the A067 streamflow-gauging station rather than in the other hydrometers.
The location of such a hydrometer pointed to a higher reliability in discharge estimations
from water level measurements. Therefore, the results of the calibration process confirm
the higher reliability of the A067 streamflow-gauging site. Errors in the A159 hydrometer
can be driven by flood control processes in the Eugui reservoir located upstream in the
Arga River. Underestimation in the RIBS model simulations in the EPI07 event could be
explained by flood control processes and flow releases in such a reservoir, as the second
rising limb of the observed hydrograph seems not to be forced by rainfall.
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Figure 6. Comparison between observed (black) and simulated (red) hydrographs for the calibration and validation flood

events with the parameter values selected in the calibration process. Columns show flood events. Rows show streamflow

gauging-sites.

In the two validation flood events (EPI07 and EPIO8), a good fitting between the
observed and simulated hydrographs can be seen, mainly in the A067 hydrometer and in
the A159 and A323 streamflow-gauging stations for the EPI08 flood event. In the EPI07
flood event, the simulated hydrograph underestimates the observed hydrograph in the
A159 gauging site that could be due to the Eugui dam. Therefore, the simulation also
underestimates the observed hydrograph in the A323 gauging stations which is located
downstream the A159.

4.2. Flood Quantile Changes Expected in the Future

Flood quantile changes are quantified in the streamflow-gauging site A323 located
at the river basin outlet of the Arga River catchment in the Pamplona city. The flood
quantiles in the current scenario agree with the flood frequency curve obtained in the A323
hydrometer in the CAUMAX study [42], confirming the goodness of the model calibration.
A comparison between flood quantiles in the future periods and the current period for each
climate model has been carried out. Figure 7 shows the results for the CNR-CCL climate
model. The figures for the rest of climate models are provided in the Supplementary
Materials (Figures S1-5S11).

The results for the CNR-CLL show a general increase of the flood quantiles in all the
return periods, time windows and emission scenarios. Nevertheless, the results for all the
climate models considered in the study are summarized to reduce potential biases in the
future flood quantile estimates.

Expected changes in flood quantiles (AQr) are quantified for each climate model and
return period with Equation (10). The results of the 12 climate models are summarized
in a box plot for each return period, emission scenario, and future period (Figure 8). In
the boxplots, the median value for the 12 climate models is highlighted by a red line, the
horizontal black dashed line represents a value of one for AQr that separates the figure
between the upper part with increasing flood quantiles and the lower part with decreasing
flood quantiles.
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Figure 7. Hydrographs for the current (dashed black) and climate change (colored) scenarios for the CNR-CCL climate
model in the three periods. Columns show return periods. The upper row shows results for the representative concentration
pathways RCP 4.5 and the lower row for the RCP 8.5.
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Figure 8. Boxplots of AQT values for the 12 climate models considered in the study. The upper row shows the results for the
RCP 4.5 and the lower row for the RCP 8.5. The first column shows the results for the 2011-2040 period, the second for the
2041-2070 period, and the third for the 2071-2100 period.
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Figure 8 uses the same vertical scale in each subplot. Therefore, the results for the
three time windows and two RCPs can be compared. In RCP 4.5, a clear decrease in flood
quantiles for the most frequent floods (2-, 5-, and 10-year return periods) is found for the
three time windows in the future. The same signal of change for the most frequent floods
is also visible in RCP 8.5 (lower boxplots of Figure 8). The dispersion of the results for the
12 climate models increases with the return period, showing the increasing uncertainty
associated with the highest return periods. Nevertheless, in the RCP 8.5 the uncertainty
for return periods greater than 50 years is smaller in the 2041-2070 and 2071-2100 time
windows than in the period 2011-2040, with an evident increase of the design discharges.
For return periods higher than 100 years, increasing flood quantiles are only found in the
time window 2011-2040 for RCP 4.5. For RCP 8.5, higher positive changes are expected in
the three time windows with flood quantiles increases higher than 25% for the 500- and
1000-year return period in the three time windows.

In addition, Figure 9 shows the results for the two RCP scenarios together reporting
only the median values of the boxplots of Figure 8. A given color is used for each time
window: cyan for 2011-2040, blue for 2041-2070, and black for 2070-2100. Dotted lines
represent the results for RCP 4.5 scenario and solid lines for the emission scenario RCP 8.5.

-©-2040 RCP 4.5
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Figure 9. Median values of expected flood changes in the three time windows and two emission scenarios.

Figure 9 shows the results for the median values of AQr values for each return
period. The decrease in flood quantiles for the most frequent flood peaks (return periods
smaller than 10 years) is also clear in this figure in the three time windows and both RCPs.
Nevertheless, in this case a slight increase in the higher return periods (500 and 1000 years)
is also evident for the RCP 4.5 in the three time windows, especially for the 2011-2040
period. For the highest return periods, RCP 8.5 leads to an increase in the 1000-year flood
quantile 35% greater than in the RCP 4.5. In addition, RCP 8.5 points to 1000-year flood
quantile increases of 40% compared with the current period.

However, the most interesting findings in Figure 9 are:

e  The 100-year flood quantiles are expected to increase 10% in the RCP 8.5 already in
the 2011-2040 time window;

e Flood quantile increases are generally greater in the scenario with higher emissions
(RCP 8.5) than in the scenario with smaller emissions (RCP 4.5), except for the most
frequent floods (2, 5, and 10 years) in the time window 2011-2040;
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GCMs

e Flood quantile increases of the most extreme events (500 and 1000 years) seem to
be correlated with the greenhouse gas emission trend, as flood quantile increases in
the RCP 4.5 scenario are expected to have their peak around 2040 with a subsequent
decline, similar to the emission temporal evolution, and flood quantiles increase
throughout the century with highest values in the 2100 in RCP 8.5, similar to the
emission temporal evolution.

4.3. Influence of the GCMs and RCMs in the Flood Quantile Determination

Figure 10 shows the median values of AQt considering the three periods in the future,
grouped by return periods and both GCMs and RCMs, to understand how given global or
regional climate models have influence in the results. Therefore, the three time windows
and two RCP scenarios are combined in a unique plot and each climate model has at least
six values of AQr values for a given return period. The plot for GCMs does not show
information about RCMs used to downscale their results. In addition, the plot for RCMs
does not show information about the GCM from which they downscale the results.

RCMs
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Figure 10. Median values of AQT for the three periods in the future and two RCPs. The results are shown for each return
period grouped by global climate models (GCMs) (left) and regional climate models (RCMs) (right).

While the ICH and MOH GCMs have been used three times, the rest of GCMs have
been used twice. Therefore, in the left part of Figure 10 ICH and MOH medians are
calculated with 18 values and the rest with 12 values. Regarding the RCMs, RCA points
represent 30 values, CCL 24 values, RAC 12 values, and WREF just 6 values.

Figure 10 shows that climate models show differing influences on the results. GCMs
may have a greater impact on the results compared with RCMs. While the CNR and IPS
climate models point to a clear general increase of peak flow quantiles in the future, a
similar tendency is shown only by the CCL RCM. Though the results of WRF seems to lead
to a clear increase in the higher return periods, it is used only once to downscale the IPS
climate model. Therefore, the increase is driven by the IPS GCM. On the contrary, CCL has
a clear increasing tendency of peak flow quantiles for large return periods, and the results
are more reliable than for the WRF RCM. In this case, the increasing trend is not driven by
a given climate model, as it is used to downscale four different GCMs.

The RAC RCM is the only model that shows a slightly declining trend. Nevertheless,
the influence of the GCMs that are combined with RAC seems to have a great influence on
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the results also in this case, as RAC is combined with MOH and ICH, which are the GCMs
with milder slopes in the left part of Figure 10.

Figure 11 shows the median value of AQ7 for each combination of GCM and RCM,
considering the three future time windows and the two RCPs. Therefore, also in this case
each climate model has six values. The variability around the median values increase
with the return periods, as was also shown in the boxplots of Figure 8. Nevertheless,
variability patterns differ among climate models, and they seem to be driven by the GCMs.
For instance, Figure 11 shows that the greatest increases are obtained with the CNR-RCA
climate model, though RCA RCM does not show an increasing trend in Figure 10. Moreover,
the influence of GCMs in the results can be seen analyzing the 1000-year flood results for
the combinations that use the RCA RCM. The results vary depending on the GCM that is
downscaled: CNR-RCA has a large variability and increase (red squares), MPI-RCA shows
no significant changes (purple squares), and ICH-RCA presents an evident decrease in
flood quantiles (blue squares).

GCM-RCM
I

ICH-CCL
MPI-CCL
MOH-RAC
CNR-CCL
ICH-RAC
MOH-CCL
IPS-WRF
IPS-RCA
8 MOH-RCA
o ICH-RCA
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= MPI-RCA

* D> ok D> ok ¥

Figure 11. Median values of AQr for each combination of GCM and RCM.

5. Discussion and Conclusions

An analysis of the expected changes in flood quantiles in the future for Arga River
in the city of Pamplona has been carried out using precipitation projections supplied
by 12 climate models of the EURO-CORDEX program. Delta changes in daily rainfall
quantiles obtained in a previous study have been used as input data in the RIBS distributed
hydrological model to transform the expected changes in precipitation quantiles into
changes in flood quantiles.

For this reason, the RIBS hydrological model has been calibrated with the seven
greatest flood events in the city of Pamplona in the last decade. The results of calibration
and validation show that the simulated hydrographs have a good fit with the observations,
obtaining acceptable residual model errors both in terms of hydrograph shape (RMSE,
MAE, NSE) and flood peak (TP, MP).

The results point to a decrease of the design peak discharges for both RCPs in the
three time windows for return periods below 10 years. On the contrary, flood quantiles for
return periods greater than 50 years are expected to increase for the three time windows
in the RCP 8.5 scenario. In addition, the 100-year flood quantile will not change in the
future if environmental policies cut greenhouse gasses emission (RCP 4.5). On the contrary,
design peak discharges above 50 years are expected to increase 10-40% in the emission
scenario RCP 8.5, especially for the time windows 2041-2070 and 2071-2100. GCMs seem
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to have more influence on the results than RCMs. The greatest increases are predicted
by the results obtained with climate models that downscale from the CNRM-CM5 and
IPSL-CM5A-MR GCMs.

The results of this work agree with Alfieri et al. [16] that show an increase of 100-year
floods across Europe in the RCP 8.5 on average. The variation of flood quantiles in the
Arga River could also be a signal for northern Spain, where a downtrend of the annual
maximum flows has been found by Mediero et al. [43] and Bloesch et al. [15]. All these
findings could be summarized together pointing that without a greenhouse gas emission
abatement a generalized increase of the hydraulic risk for greater return periods could be
expected also in the areas where the mean annual precipitation is decreasing.

Garijo and Medjiero (2018) [35] found a slight decreasing trend in flood quantiles in
Pamplona for RCP 4.5 and a slight increasing trend in flood quantiles for RCP 8.5 with the
EURO-CORDEX climate models. In this study, clear increasing trends were obtained mainly
for the RCP 8.5. The differences between both studies can be attributed to differences in
the methodological approach. Garijo and Mediero (2018) used the continuous HBV model
with climate projections using a daily scale, while in this study a distributed hydrological
model was used with subdaily precipitations estimated with an approach based on design
hyetographs and delta changes obtained from climate projections. Furthermore, the spatial
distribution of the future design storms has been considered. Indeed, flood quantile delta
changes have not been directly applied to the nearest rain gauges, though they have been
interpolated spatially and then combined with design rainfall fields for the current scenario.
This methodological approach generated 12,096 spatial distribution of rainfall for the future
design storms that were used to force the RIBS hydrological model.

Comparing the results of this paper with similar studies carried out in other parts of
Europe, they agree with Hennegriff et al. [30] who obtained a 15% increase in 100-year flood
in Bavaria (Germany), though differing the results about the most frequent floods, as they
found an increase up to 75% in the two-year floods. The results also agree with Hattermann
et al. [31] who found a stronger significant increasing trend in flood frequency quantiles,
reaching up to 60% increases in the 50-year floods. In addition, Sharma et al. [44] found
similar increases in the most extreme floods, though analyzing climatic areas completely
different from the Mediterranean area.

The most interesting result obtained in this study consist in the clear relationship
between the flood hazards expected in the future the city of Pamplona and the temporal
evolution of emission scenarios. Indeed, the greatest expected changes in the flood quantiles
coincide with the peak of the greenhouse gasses emission in both emission scenarios: 2040
for the RCP 4.5 and in 2100 for the RCP 8.5. Therefore, results show how policies that aim
to reduce greenhouse gases emissions in the future could lead to a reduction in the future
flood risks. This could reduce costs related to flood damages of more extreme events and
costs related to the oversized defense infrastructures.

However, the results and considerations of this study cannot be easily extrapolated to
other geographical contexts. Nonetheless, they show the importance of the future hydraulic
risk assessment for small and medium river basins. Indeed, small river catchments could
have differing results from those obtained in large-scale studies that can only analyses the
largest river basins in which they are contained.

The results also underline how important it would be to consider the increase of the
future hydraulic risks due to climate change as soon as possible, especially for higher
return periods and emission scenarios in which environmental policies do not aim to
reduce emissions. Considering the expected increases in hydraulic risks for the 1000-year
return period, decision makers could design structures such as dams avoiding spillway
underestimation in the future. Similarly, the use of flood risk maps with underestimated
100-year floods could also underestimate the areas prone to flooding in urban cities.
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Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2073-444
1/13/6/792/s1, Figure S1: Hydrographs for the current (dashed black) and climate change (colored)
scenarios for the CNR-RCA climate model in the three periods, Figure S2: Hydrographs for the
current (dashed black) and climate change (colored) scenarios for the ICH-CCL climate model in the
three periods, Figure S3: Hydrographs for the current (dashed black) and climate change (colored)
scenarios for the ICH-RAC climate model in the three periods, Figure S4: Hydrographs for the
current (dashed black) and climate change (colored) scenarios for the ICH-RCA climate model in the
three periods, Figure S5: Hydrographs for the current (dashed black) and climate change (colored)
scenarios for the IPS-RCA climate model in the three periods, Figure S6: Hydrographs for the
current (dashed black) and climate change (colored) scenarios for the IPS-WRF climate model in the
three periods, Figure S7: Hydrographs for the current (dashed black) and climate change (colored)
scenarios for the MOH-CCL climate model in the three periods, Figure S8: Hydrographs for the
current (dashed black) and climate change (colored) scenarios for the MOH-RAC climate model in
the three periods, Figure S9: Hydrographs for the current (dashed black) and climate change (colored)
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