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Abstract: This paper studies the air pressurization problem caused by a partially pressurized transient
flow in a reservoir-pipe system. The purpose of this study is to analyze the performance of the
rigid column model in predicting the attenuation of the air pressure distribution. In this regard, an
analytic formula for the amplitude and frequency will be derived, in which the influential parameters,
particularly, the driving pressure and the air and water lengths, on the damping can be seen. The
direct effect of the driving pressure and inverse effect of the product of the air and water lengths on the
damping will be numerically examined. In addition, these numerical observations will be examined
by solving different test cases and by comparing to available experimental data to show that the rigid
column model is able to predict the damping. However, due to simplified assumptions associated
with the rigid column model, the energy dissipation, as well as the damping, is underestimated.
In this regard, using the backward Euler implicit time integration scheme, instead of the classical
fourth order explicit Runge–Kutta scheme, will be proposed so that the numerical dissipation of the
backward Euler implicit scheme represents the physical dissipation. In addition, a formula will be
derived to calculate the appropriate time step size, by which the dissipation of the heat transfer can
be compensated.

Keywords: sewer network systems; surge pressure distribution; air pocket entrapment; rigid column
model; implicit scheme

1. Introduction

The operational problems in sewer network systems, either due to overflowing or
blockage at pipeline ends, disturb the boundary conditions and result in the transition of the
gravity flow to a partially pressurized flow, and then the high pressurized air pocket could
be released to the atmosphere either at upstream or downstream boundaries. For numerical
simulation, among various models, the rigid column (RC) model is less complicated, while
incorporates the fundamental features of this type of transient flows. The RC model has
been studied in extensive research exemplified by the following studies [1–10]: Cabrera
et al. [2], Liou and Hunt [3], Li and McCorquodale [4], Zhou et al. [5,6], Lee [7], Fuertes-
Miquel et al. [8], Coronado-Hernández et al. [9,10].

Li and McCorquodale [4] used the RC model proposed in [1] to calculate the transient
pressure which causes blowing off of storm manholes. In the proposed RC model, the water
column is assumed as an incompressible fluid with uniform but unsteady velocity. The
transition from free-surface flow to pressurized flow was described in six stages, and the
trapped air pocket was assumed to undergo pseudo adiabatic expansion and compression.
It was found that the numerical transient pressure overpredicts the experimental data by
a factor of two, and the attenuation of the pressure oscillation is underestimated, while
the frequency of pressure surge oscillations predicts the measured data accurately. Li and
McCorquodale [4] linked this poor behavior to the superposition of various air release
processes and the steady-state friction factor used in the mathematical model.
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Liou and Hunt [3] proposed an RC model to simulate the transient flow in an empty
pipeline with an undulating elevation profile. They found that the calculated velocity
distribution is comparable with the experimental data.

Lee [7] analytically and experimentally studied the behavior of air pressurization
in horizontal pipelines and derived a closed form of the solutions calculated by the RC
model, in which a vertical air-water interface is assumed. It was found that the maximum
pressure increases when the reservoir pressure increases, and the RC model overpredicts the
experimental data. In addition, Lee showed that the damping behavior of the air pressure
is contributed to the heat transfer between the air, water, and the pipe wall. Additionally,
he showed that the maximum pressure calculated by both variable and constant water
length assumptions is similar, while he indicated that these two assumptions lead to
calculating different times at which the maximum pressure occurs. Lee demonstrated that
the maximum pressure in a frictionless pipe is independent of initial air and water lengths.
Moreover, Lee, by using the small wave theory, linearized the governing equations and
provided a formula for the frequency of the air pressure oscillation. This formula showed
that the frequency depends on the reservoir pressure and the initial length of the air and
water phases.

Hou et al. [11] experimentally and numerically studied the rapid filling of a large-scale
pipeline. For the numerical calculation, they applied the RC model proposed in [3] along
with the modification proposed by Axworthy and Karney [12]. Note that the modification
is to eliminate the pressure head at junctions from the momentum equation. They showed
that the numerical result of the RC model is in good agreement with the experimental data.

Fuertes-Miquel et al. [8], using the RC model, analyzed the effects of isothermal and
adiabatic behaviors of the air pocket, which is expelled from a pipe through an air valve
by admitting water flow. It was found that numerical results can be significantly different
depending on the heat transfer mechanism. In particular, in contrary to the isothermal
assumption, the adiabatic assumption results in smaller air pressure and larger water
velocity so that the induced water hammer is greater.

Coronado-Hernández et al. [9] studied the sub-atmospheric pressure occurring during
an emptying process in a pipeline with irregular elevation. They proposed an RC model
to simulate the water flow, while the air pocket was simulated using the thermodynamic
formulation. By comparing to experimental data, they showed that the RC model can
predict the flow variables (water velocity and air pressure) accurately.

The air entrapment following rapidly filling storm water systems (SWSs) has great
complexity and challenges. This complexity, for example, includes the transition from grav-
ity to pressurized flow and their interaction and significant head loss at the interface, the
turbulent nature of the flow, lumped nature of the air pocket [5], and the heat transfer be-
tween water, air, and the pipe wall [7]. It is known that the available mathematical models,
which practitioners are interested in, including the RC model, do not take the effects of all
of these parameters into account so that these models overestimate the numerical solutions
including the maximum pressure. This overestimation implies that these mathematical
models, due to their assumptions, are not able to sufficiently predict the dissipation of
the driving energy. Thus, to dissipate this energy, or in other words, to compensate for
the effects of the aforementioned neglected terms, considering a numerical dissipation
term seems to be useful. Note that in the literature, the classical fourth order Runge–Kutta
explicit scheme has mostly been employed for the time integration of the governing equa-
tions. Recently, the backward Euler implicit scheme has been used in [13] to simulate
the dynamics of the entrapped air pocket using the 3D Navier–Stokes equation and the
volume of fluid (VOF) method. In addition, Rokhzadi and Fuamba [14] proposed using
the backward Euler implicit scheme to solve a similar problem by a shock-fitting approach.

In this paper, the damping and frequency of the pressure distribution of an entrapped
air caused by a rapid filling of a horizontal reservoir-pipe system will be studied using
some available experimental data as well as the numerical results of the RC model. In
this regard, the effects of reservoir pressure and the air and water initial lengths will be
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discussed. To analytically show the relation between these parameters and the damping
and frequency, the governing equations are linearized around a point, in which the air
pressure is equal to the reservoir pressure. This linearization implies that the air pressure
does not significantly deviate from the reservoir pressure. Although this assumption is
not valid for every case, it can provide insightful information about the damping and
frequency. In addition, using the backward Euler implicit scheme will be introduced to
discuss the numerical dissipation as a representative for the physical dissipation, which the
RC model cannot predict properly for many reasons. In this regard, the modified equation
will be derived to provide a formula, by which the size of the time step and the amount of
numerical dissipation can be controlled so that excessive numerical dissipation imposed
on the solutions is avoided. It will be shown that this formula adjusts the time step in
proportion to the values of the effective physical parameters on the damping behavior.

It is worth mentioning that for problems with large initial air pocket sizes, the elasticity
of entrapped air pocket is much higher than the elasticity of the water [15]. Thus, it can
be expected that for these cases, which are more problematic in SWSs, the RC model can
calculate the solutions appropriately. However, as indicated in the literature, e.g., [16], the
RC model cannot capture the interactions between different waves exist in pipelines.

2. Numerical Analysis
2.1. Governing Equation

In this paper, the air entrapment caused by transient flow in a horizontal reservoir-
pipe system is studied. As shown in Figure 1, a pipe segment, with the diameter D and
length Lt, is connected at upstream to a reservoir, in which the absolute pressure is pR, and
is blocked at downstream by a valve. The water in a stationary pressurized flow regime
occupies an upstream part of the pipe with the initial length L. The entrapped air occupies
the rest of the pipe at downstream, which is separated by a valve from the water column,
with the initial length La, which La = Lt − L. Note that the interface of air–water phases is
assumed vertical so that the gravity flow forming during the transient flow is neglected.
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Figure 1. The schematic of a horizontal reservoir-pipe system with constant driving pressure.

The momentum equation for a horizontal water column is,

dV
dt

=
(pR − p)
ρL

− f
2D

V|V|, (1)

where t is the time variable, ρ and V are the water density and velocity, respectively,
and g is the gravitational constant (g = 9.81 ms−2), p is the air absolute pressure, and
f is the friction factor. Note that the length of the water column is assumed constant as
Lee [7] demonstrated that the variable length does not provide significantly different results
compared to the constant length assumption.

The continuity equation gives a relationship between the air volume rate and the
water flow rate as,

d∀
dt

= −VA, (2)
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where A is the pipe cross-section area and ∀ is the air volume. Note that the velocity
is assumed positive in the downstream direction. Following Lee [7], applying the first
thermodynamic law to the air pocket and assuming the air as a perfect gas yield,

dp∀
dt

= −(k− 1)p
d∀
dt

, (3)

where k is the polytropic exponent. Note that Equation (3) implies a balance between the
internal energy and the work done through the air compression and expansion. However,
Lee [7] attributed the damping of the air pressure distribution to the heat transfer. Thus,
to consider the effect of heat transfer, the term (k− 1)q must be added to the right hand
side (RHS) of Equation (3). In addition, in the present study, the polytropic exponent is
set to k = 1.4, as indicated in [7], meaning that this value gives more appropriate results.
Substituting Equation (2) into Equation (3) yields,

dp∀
dt

= (k− 1)pVA. (4)

2.2. Linearized Governing Equations

As indicated in [7], the variable water column length does not have significant effects
on the solutions. Thus, the only nonlinearities in the governing equations are related to the
friction force in the momentum equation and the polytropic process equation

(
pk = cte

)
.

As shown in [7], for small ranges of reservoir pressure (pR < 2.0pa), in which pa is
the atmospheric absolute pressure (pa = 101 kPa), the maximum air pressure, so as the
minimum air pressure, slightly changes with the friction loss coefficient (fLa/D) and it
is almost constant for both polytropic coefficients (k = 1.2 and 1.4). Thus, for simplicity
of the discussion presented only in Sections 2.2 and 2.3, the friction and local loss terms
are neglected, meanwhile, the contributions of these terms to the damping behavior of the
entrapped air pressure have been discussed in the literature.

Thus, the linearized governing equations are expected to appropriately approximate
the solutions of the nonlinear equations when pR/pa < 2.0. Therefore, the governing
equations are linearized around a point, in which p = pR, so that the effects of different
variables on the damping and frequency of the air pressure distribution can be analyzed.

A continuous function of two variables f(u, v), in which u and v denote the depen-
dent variables, could be linearized using the Taylor series expansion around any point
(uR, vR) as,

f(u, v) = f(uR, vR) +
∂f
∂u

∣∣∣∣
(uR)

(u− uR) +
∂f
∂v

∣∣∣∣
(vR)

(v− vR). (5)

Note that the momentum equation, Equation (1), and the continuity equation, Equa-
tion (2), for a frictionless horizontal pipe are already linear. The energy conservation
equation, Equation (4), can be linearized using Equation (5) as,

dp
dt

= kA
pR
∀R

V + (k− 1)
AVR

∀R
(p− pR), (6)

where the subscript (R) implies the value of a variable when the air pressure equals to the
reservoir pressure.

2.3. Pressure Distribution Analysis

The linearized governing equations, Equations (1) and (6), can be rearranged in a
vector form as,

d
→
F

dt
= G

→
F , (7)
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where,
→
F =

{
V
p∗

}
,G =

(
0 −1/ρL

kApR/∀R (k− 1)AVR/∀R

)
, (8)

where p∗ = p− pR. Two time-dependent decoupled equations can be derived using the
Eigen-decomposition method, by which the numerical solutions, which have an expo-
nential form in terms of the time, can be found. The amplitude and the frequency of the
solutions are related to the eigenvalues of the matrix G, which can be calculated as,

λ1,2 =
1
2

−(k− 1)
(

pR
pa

)1/k VR

La
± i

√√√√4k
1

LaL
pR
ρ

(
pR
pa

)1/k
−
(
(k− 1)

(
pR
pa

)1/k VR

La

)2
 (9)

where i denotes the complex unit number. Note that the polytropic process relationship,
i.e., pk = cte, and the definition of = ALa were used to further rearrange Equation (9).
Thus, the amplitude and the frequency of the air pressure distribution can be calculated as,

M = e−
1
2 ((k−1)( pR

pa
)

1/k VR
La ), (10)

ϕ =

√√√√4k
1

LaL
pR
ρ

(
pR
pa

)1/k
−
(
(k− 1)

(
pR
pa

)1/k VR

La

)2

, (11)

where ϕ is the frequency and M is the amplitude. Note that the damping behavior can
be realized from the amplitude (M) in Equation (10). As explained, VR denotes the water
column velocity at a time when the air pressure is equal to reservoir pressure. Malekpour
et al. [17] analyzed the energy conversion of a transient flow in a reservoir-pipe system and
derived an equation for the water column velocity in terms of initial air and water column
lengths, reservoir pressure, and the air pressure. However, a simple equation for the cases
with constant water column length assumption is derived here.

Multiplying both sides of Equation (1), in which the friction term is neglected, with
VA and summing up with Equation (4) yields an energy equation as,

d
dt

(
ρLA

V2

2
+

p∀
k− 1

)
= pRAV. (12)

For an initially stationary water column, taking integral of both side of Equation (12)
from initial condition to the time when the pressure is equal to the air pressure, so called
tR, yields,

ρLA
V2

R
2

+
pR∀R

k− 1
−

p0∀0

k− 1
=
∫ tR

0
pRAVdt. (13)

Since the time taken by the air pressure to reach the reservoir pressure is not so long,
for initially stationary flow, the integral on RHS of Equation (13) is negligible. Thus, the
following relation for VR can be derived,

V2
R =

2pRLa

(
p0 −

(
p0/pR

)1/k
)

ρL(k− 1)
. (14)

As can be seen, VR is a function of
√

pRLa/L. Note that a similar function can be
found in [17] (Equation (20)). Therefore, Equations (10) and (11) show that the frequency
and the damping of the air pressure distribution increase as the reservoir pressure increases
and as the product of the air and water lengths (LaL) decreases. Later, these relationships
will be confirmed by explaining the results of some available experiments. Therefore,
Equation (10) shows that the RC model is able to predict the damping behavior of the
air pressure distribution. However, in the next section, it will be shown that this ability
depends on the time integration scheme.
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2.4. Time Integration Scheme

From the literature, it can be realized that commonly the classical fourth order Runge–
Kutta scheme, hereafter called the 4th-RK scheme, has been mostly used in the literature to
integrate the governing equations of the RC model [6,11]. In addition, it is known that the
numerical results are always overestimated, caused by underestimating the physical energy
damping for many reasons including the assumption of lumped air pocket process [5], and
neglecting the heat transfer between the air, water, and pipe wall [7]. Therefore, this paper
proposes using the backward Euler implicit time integration scheme, hereafter called the
BE scheme, which has more dissipative properties compared to 4th-RK scheme. In other
words, numerical dissipation can represent physical dissipation.

The governing equations of the RC model for a frictionless horizontal pipe-reservoir
system are Equation (1), without the last term in its RHS, and Equations (2) and (3). However,
Equation (3) can be further simplified, using the continuity equation in Equation (2), as,

dp
dt

= k
p
∀AV. (15)

By applying the BE scheme to the governing equations, the discretized form of the
equations become,

Vn+1 = Vn + ∆t

(
pR − pn+1)

ρL
, (16)

∀n+1 = ∀n − ∆tAVn+1, (17)

pn+1 = pn + ∆tk
pn

∀n AVn+1, (18)

where superscript n implies the current time step. Note that in Equation (18) the term p/
can also be calculated implicitly. However, it was realized that it does not have significant
effects on the results. The details of the classical fourth order Runge–Kutta scheme can be
found in other references, e.g., [18].

2.5. Effective Time Step Size

Rokhzadi and Fuamba [14], for problems with small ratios of the reservoir pressure
to the atmospheric pressure, used a shock-fitting approach, which is a combination of the
RC model and the Saint-Venant equations. Rokhzadi and Fuamba proposed using the BE
scheme instead of the 4th-RK scheme. In this shock-fitting approach, the time step size is
controlled by the Courant Friedrichs Lewy (CFL) condition associated with the gravity flow.
Since by using the RC model there is no such criterion to control the time step size, so as
the numerical dissipation, the question is how much numerical dissipation can be allowed
on the calculation to avoid excessively imposing numerical dissipation and to prevent
spoiling the solutions. In this section, a formula will be derived, by which it will be shown
that the time step size is controlled by the physical variables, which affect the damping.

In order to find the numerical dissipation terms imposed by the BE scheme, the modi-
fied equation is needed. The modified equation can be found using Equations (16)–(18) and
by substituting the Taylor series of the variables at the time step n + 1. Note that here, only
those terms with O(∆t) are kept and the terms with the higher order of ∆t are neglected.

dVn

dt
=

pR − pn

ρL
− ∆t

1
ρL

dpn

dt
+ O

(
∆t2
)

, (19)

dpn

dt
= k

pn

∀n AVn + ∆tkA
pn

∀n
dVn

dt
+ O

(
∆t2
)

. (20)

By comparing Equations (19), and (20) to Equation (1), without the friction term,
and Equation (15), it can be realized that the first terms in RHS of Equations (19) and (20)
are the physical terms involved in the governing equations and the second terms are
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the truncation error terms, which are responsible for imposing numerical dissipation.
Substituting Equation (19) into Equation (20) yields,

dpn

dt
= k

pn

∀n AVn + ∆tkA
pn

∀n

(
pR − pn

ρL
− ∆t

1
ρL

dpn

dt
+ . . .

)
. (21)

As mentioned before, the energy equation, in which the effect of heat transfer is
included, has a form as,

dp
dt

= k
p
∀AV + (k− 1)

q
. (22)

By comparing Equation (21) to Equation (22), an equation can be derived for the time
step as,

∆t =
ρL(k− 1)q

kpA(pR − p)
(23)

Note that since Equation (23) was found by equating the heat transfer term to the
numerical dissipation term, thus, these analyses imply that by applying the BE scheme
to the governing equations of the RC model and using the time step size as in Equation
(23), the physical dissipation of the heat transfer can be compensated by the numerical
dissipation of the BE scheme. In addition, later, this compensation will be further explained.
To clarify Equation (23), the heat transfer term needs to be further explained.

Following Lee [7], by neglecting the conduction and radiation heat transfers, the
convection heat transfer can be calculated as,

q = HAq∆T = HAq(T0 − T), (24)

where H is the convection heat transfer coefficient, Aq is the thermal area, T0 is the initial
air pocket temperature, and T is the variable air temperature, both in the Kelvin scale.
Following [7,19], the convection coefficient is calculated as,

H = 3.5|∆T|1/3. (25)

The thermal area for the typical examples depicted in Figure 1 can be calculated as,

Aq = 2A + πDLa, (26)

so that the heat transfer between the air, water, and pipe wall can be taken into account.
The air temperature is calculated using the perfect gas state relationship as,

T =
P∀

Rmg
, (27)

where R is the air constant (R = 287 J/kg·K) and mg is the air mass, which is constant
since there is no air release.

Equation (23) can be further expanded, using Equations (24)–(28), as,

∆t =
ρL(k− 1)HAq∆T

kpA(pR − p)
. (28)

As can be seen in Equation (28), the time step size depends on physical variables
including the air and water initial lengths, the reservoir pressure, and heat transfer.

3. Results

To further discuss the effects of time integration schemes on the air pressure distribu-
tion and to clarify the effects of the reservoir pressure (pR) and the product of the air and
water initial lengths (LaL) as well as to compare the performances of the BE and 4th-RK
schemes, some test cases, for which the experimental data exist, and a hypothetical example
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have been solved by the RC model, for which the governing equations are Equations (1),
(2) and (15).

3.1. Hypothetical Test Case

A horizontal frictionless pipe-reservoir system with D = 1 m and different air and
water lengths and the reservoir pressure ratio pR/pa = 2.0 has been solved and the results
are shown in Figures 2 and 3. Note that for both BE and 4th-RK schemes, the time step is
set to ∆t = 0.001 s.
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As can be seen in Figure 2, as the product of the air and water lengths decreases, either
by decreasing the air length or the water length, the rate of damping and the frequency
increase. In addition, as indicated in [7] as well, Figure 2 shows that the first maximum
pressure, for a frictionless pipe, is independent of the air and water initial lengths. Note
that in Figure 2, it was attempted to examine large lengths of the air and columns as well
(second row). Figure 3 shows the results of the same test case, in which the 4th-RK scheme
is used instead of the BE scheme. As can be seen, by using the 4th-RK scheme, the RC
model is unable to simulate the relationship between the damping and the product of
the air and water initial lengths. However, the frequency and its relation with LaL are
properly predicted.

Similarly, to illustrate the effect of the reservoir pressure on the damping and the
frequency and to compare the effect of time integration schemes, Figure 4 shows the non-
dimensional air pressure distribution (p/pa) in terms of time for a specific example with
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pipe diameter D = 1.0 m, and the air and water initial lengths La = 2.0, and L = 1.0 m.
The left graph illustrates the results calculated by the BE scheme, and the right graph is
calculated by the 4th-RK scheme. As can be seen, the frequency increases with increasing
the reservoir pressure, the feature that appropriately is predicted by both time integration
schemes. However, from the right graph, it can be seen that the 4th-RK scheme is unable
to appropriately calculate the damping and its direct relation with the reservoir pressure,
while the BE scheme in the left graph effectively calculates the damping behavior. In
addition, as shown in [7], the first maximum pressure, for initially stationary water flows,
is only a function of the reservoir pressure and it increases with increasing the reservoir
pressure, a fact that is calculated by both time integration schemes.
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Therefore, it can be claimed that implicit time integration schemes, represented by the
BE scheme, is more appropriate time integration scheme for using with the RC model.

3.2. Experiment of Zhou

Note that, hereafter, in every test case, the time step is calculated using Equation (28).
One of the test cases is of Zhou [20], which is a reservoir-pipe system, in which D = 0.035 m,
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Lt = 8.96 m, pR/pa = 2.43, and λ = 0.56, and 0.89, in which λ = L/Lt. In addition, the pipe
is horizontal with a friction factor f = 0.035 and a local head loss coefficient Kloss = 0.093.
Figure 5 shows the air pressure distribution calculated by the 4th-RK and BE schemes and
the corresponding experimental data for both λ′s.
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First, it is shown that the physical solution approves the inverse relation between
the damping and the product of the air and water initial lengths. The experimental data
in Figure 5a shows that the first peak with the value of 230 occurs at t = 0.45 s, and the
second peak value of 164 occurs at t = 1.83 s. Thus, the rate of damping in this test case
is around 47.83 s−1. The same calculation in Figure 5b shows that the rate of damping is
102.5 s−1. These values show that when LaL is smaller, as in Figure 5b, the rate of damping
increases. Therefore, it can be claimed that the RC model and the relation derived for the
amplitude of the oscillations in Equation (10) provide appropriate information about the
physical behavior of the air pressurization.

In addition, the numerical solutions in Figure 5 show that the BE scheme outperforms
the 4th-RK scheme. It is worth mentioning that the phase shift between numerical and
experimental data was reported in other references, e.g., [5,6]. As Zhou et al. [5] explained,
this phase shift could be due to the assumption that the air pocket remains intact, while the
air roll ups and splits into several pockets with smaller sizes. However, for the test case
with a smaller initial air length (Figure 5b), in the last period, the BE scheme causes a more
obvious phase shift, compared to the 4th-RK scheme.

Here, it is shown that the numerical dissipation is imposed in proportion to physical
conditions so that the performance of the RC model is improved. As demonstrated in [7],
the dimensional analysis shows that the governing equations of the RC model have a
similarity form with a scale factor fLa/D, which appears as a coefficient of the friction loss
term. The details of the non-dimensional variables can be found in Equations (3)–(85) in
reference [7]. Thus, since the only differences between the test cases of Zhou [13], as in
Figure 5, are the initial air and water lengths, if the coefficient fLa/D set equal for both
cases, then the relation between the numerical dissipation imposed on the solutions and
the product of the air and water initial lengths can be analyzed quantitatively. Therefore,
the friction factor in the test case with λ = 0.56 is changed to f = 0.035/4.0, and the result
of this test case along with Figure 5b, are shown in Figure 6.
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Zhou [20], pR/pa = 2.43 and (a) λ = 0.56, and (b) λ = 0.89, both with the same value of fLa/D.

The first peak calculated by the 4th-RK and BE schemes, for the test with λ = 0.56,
shown in Figure 6a, are approximately 440, and 331, with a difference of around 109. The
same calculation for the case with λ = 0.89, in Figure 6b, shows that the first peak calculated
by the 4th-RK and BE schemes are approximately 445 and 362, with a difference around 83.
These values show that the numerical dissipation imposed on the solutions of the test case
with λ = 0.56, in which LaL is larger, is larger than the test case with λ = 0.89, in which LaL
is smaller. Referring to Equation (15), it can be claimed that the BE scheme can improve the
performance of the RC model because, according to Equation (15), when LaL is large the
damping of the RC model is small and the overestimation is large and, as seen in Figure 6a,
the BE scheme imposes more dissipation to improve the overestimation.

3.3. Experiment of Zhou and Liu

Another experiment presented in this paper was carried out in [21], in which the
air pressurization in a horizontal reservoir-pipe system was experimentally analyzed for
different tailwater depths including the initially dry-bed condition. The experiment setup is
similar to the schematic provided in Figure 1, with D = 0.04 m, Lt = 8.824 m, La = 3.25 m,
and pR = pa + 120 kPa. The friction factor was calculated as f = 0.075, and, in the present
paper, an additional factor representing the local head loss is considered as Kloss = 0.093.
The air pressure distribution of this test case, calculated by both BE and 4th-RK schemes,
are shown in Figure 7a. Note that for this test case, k = 1.2 was used since it provides more
accurate results than k = 1.4.

The experimental data in Figure 7a shows that the first peak with the value of 172
occurs at t = 0.8 s, and the second peak value of 142 occurs at t = 2.0 s. Thus, the rate
of damping in this test case is around 25.0 s−1. Note that the product of air and water
initial lengths in the test case is almost the same as the test case of Zhou [20], in which
λ = 0.56 and the rate of damping was calculated as 47.83 s−1. Comparing the rate of
damping in these two test cases shows that when the reservoir pressure is large, as in the
test case of Zhou [20], the rate of damping is large as well. Therefore, the physical solution
proves a direct relation between the damping and the reservoir pressure. In addition,
it can be claimed that the RC model and the relation derived for the amplitude of the
oscillations in Equation (10) provide appropriate information about the physical behavior
of the air pressurization.
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of [21], pR = pa + 120 kPa and (b) pR = pa + 200 kPa.

Moreover, it can be seen that the BE scheme improves the overestimated peak values
compared to the 4th-RK scheme and no obvious phase shift is seen.

In order to further analyze the relation between numerical dissipation and the reservoir
pressure, in Figure 7b, the reservoir pressure is increased to pR = pa + 200 kPa. The
difference between the first peak value calculated by BE and 4th-RK schemes in Figure 7a,
in which the reservoir relative pressure is 120 kPa, is around seven. In Figure 7b, in
which the reservoir relative pressure is around 200 kPa, the difference between numerical
peak values is around 18. As the only difference between Figure 7a,b, is the reservoir
pressure, it can be claimed that for cases with larger reservoir pressure, in which the
overestimation of the RC model is larger, the BE scheme imposes more dissipation to
improve the overestimation.

Therefore, considering the results of both test cases, it can be expected that implicit
time integration schemes, represented by the BE scheme, are more helpful in using with the
RC model. In addition, by using the derived formula for the time step, it can be ensured
that excessive numerical dissipation is avoided.

3.4. Test Case of Lee

In this section, to show that the BE scheme by using the time step derived in Equation (28)
can compensate for the effect of heat transfer, one of the test cases solved in [7] by 4th-RK
scheme, in which the effect of heat transfer is included is compared to the result calculated
by BE without the heat transfer. The test case is a frictionless horizontal reservoir-pipe
system with D = 1.0 m, the initial water length L = 40.0 m and the initial air length
La = 10.0 m. The ratio of the reservoir absolute pressure to the atmospheric pressure is
pr/pa = 2.0. Note that following Lee [7], the variable water column length is considered in
the RC model. As can be seen in Figure 8, the result calculated by BE scheme is almost the
same as the result calculated in [7]. Thus, it can be claimed that the numerical dissipation
of the BE scheme, by using the time step in Equation (28), can compensate for the effect of
heat transfer.
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4. Conclusions

This study analyzes the rigid column model to further explain that this model is
able to produce the fundamental features of the physics of the problem, in particular, the
damping behavior of the surge pressure distribution. However, this model underestimates
the damping behavior and overestimates the peak values. The reasons are linked to
simplified approximations associated with the rigid column model and the complexity of
the transient flow, which cause this model to underestimate the prediction of the physical
energy dissipation. To address this poor behavior of the rigid column model, using
implicit schemes has been proposed, by which the numerical dissipation can represent the
physical dissipation. In this regard, a criterion has been provided to control the amount of
numerical dissipation to ensure that the solutions are not spoiled and, in the meantime, the
performance of the rigid column model is improved.

The contribution of the friction loss term to the damping behavior of the surge pressure
is known and discussed in the literature. Therefore, to provide an analytic formula by
which the relation between the frequency and damping and physical parameters can be
shown, the governing equations, applied to a frictionless horizontal reservoir-pipe system,
were linearized around the point where the air pressure is equal to the reservoir pressure.
This linearization implies that the air pressure does not deviate significantly from the
reservoir pressure. Although this assumption is not valid for every example, it was shown
that it can provide insightful information about the air pocket behavior. It should be noted
that the linearized governing equations were just used to analyze the influential factors
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on the damping and frequency, while for solving the test cases, the nonlinear governing
equations were used.

It was found that the damping and frequency of the air pressure, calculated by the
RC model, has a direct relation with the reservoir pressure and inverse relation with the
product of the air and water initial lengths. The same relationship was found in some
available experimental data, meaning that it confirms that the RC model is able to predict
the physical behavior of the air pressure distribution. In addition, it was shown that,
despite the abilities of the RC model, the performance of this model depends on the type
of the temporal scheme used for time integration, which is because of many simplified
approximations associated with the RC model, including neglecting the heat transfer and
lumped assumption of the air pocket. In this regard, it was shown that implicit schemes,
represented by the backward Euler scheme, are more effective than explicit schemes,
represented by the classical fourth order Runge–Kutta scheme. The reason is that the
numerical dissipation associated with implicit schemes can compensate for the physical
dissipation associated with the neglected factors in the RC model. Moreover, to avoid
imposing excessive numerical dissipation on the solutions, a formula for calculating the
time step size was derived, which is a function of the effective parameters on the physical
damping and frequency. It was shown that, by using this time step, the backward Euler
scheme can help the RC model to more effectively predict the air pressure distribution.
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