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Abstract: The process of transport and trapping of arsenic ions in porous water filters is treated as a
classic mass transport problem which, at the pore scale, is modeled using the traditional convection-
diffusion equation, representing the migration of species present in very small (tracer) amounts in
water. The upscaling, conducted using the volume averaging method, reveals the presence of two
possible forms of the macroscopic equations for predicting arsenic concentrations in the filters. One
is the classic convection-dispersion equation with the total dispersion tensor as its main transport
coefficient, and which is obtained from a closure formulation similar to that of the passive diffusion
problem. The other equation form includes an additional transport coefficient, hitherto ignored in
the literature and identified here as the adsorption-induced vector. These two coefficients in the
latter form are determined from a system of two closure problems that include the effects of both the
passive diffusion as well as the adsorption of arsenic by the solid phase of the filter. This theoretical
effort represents the first serious effort to introduce a detailed micro–macro coupling while modeling
the transport of arsenic species in water filters representing homogeneous porous media.

Keywords: volume averaging; closure formulation; porous media; adsorption; arsenic filtration

1. Introduction

The presence of arsenic in water is gravely injurious to human health. Exposure to
this element leads to many skin-related, gastro-intestinal, neurological, and cardiovascular
problems. Upon its consumption, the carcinogenic nature of arsenic gives rise to several
types of cancers, including skin, lung and bladder cancers [1]. Contamination of water by
arsenic is a problem that afflicts several parts of the world. Countries in the west, including
Argentina, USA and Canada, to countries in the east, including Bangladesh, India and
China, are affected by the presence of arsenic [2].

The bodies of water most affected by the problem of arsenic pollution are aquifers,
which are groundwater sources. The arsenic primarily present in such sources are oxy anions
with primarily two different oxidation states: arsenite (As(III)) and arsenate (As(V)) [2].
Although the arsenic can naturally dissolve into these sources of water due to its presence in
the surrounding bedrock, this arsenic contamination can be exacerbated, especially in areas
of Asia, through numerous human activities such as mining, smelting, using coal for power
generation, and using agricultural pesticides [3].

Several water filters based on a host of separate technologies are available in the
market place. These include reverse osmosis (RO), activated carbon, activated alumina,
anion exchange, and distillation. Except for RO and distillation, all other methods involve
forcing contaminated water to flow through a porous medium made from particles or
beads. As the water comes in contact with the walls of porous media, the dissolved arsenic
ions are captured by the walls through mechanisms such as anion exchange or sorption.
The high surface area of porous media comes in handy for this ‘capture’. This process
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can be modeled with the help of a convection-diffusion equation since the extremely low
concentration of arsenic in water (typically in ppb or parts-per-billion (according to the
WHO guidelines, the acceptable concentration of arsenic in safe drinking water is less than
10 ppb)) allows the tracer-type species transport equations to handle the migration and
absorption of this element. As a result, the modeling of arsenic transport and capture in any
off-the-shelf water filter for arsenic is quite similar to the modeling of arsenic transport and
capture in groundwater. We will be taking our inspiration and methodology for solving this
problem in filters from the rather well-studied problem of contamination of groundwater
by arsenic (or by any other toxic heavy metal such as lead).

In the fields of environmental engineering, soil sciences, geosciences and underground
hydrology, contamination of groundwater flow is a well-researched problem. The large
porous bodies, made of sand or similar particulate matter lodged between layers of rocks,
hold a tremendous amount of groundwater and are called aquifers. The wells are drilled
into these aquifers to extract water for human consumption. These aquifers exchange water
with streams, rivers and ponds and hence the contamination in these water bodies is often
passed on to the aquifers. The aquifers can also be contaminated by the nuclear, chemical
and other type of wastes buried underground. The contaminated water traveling through
the porous aquifer can get filtered due to the ion absorption process by solid particles as
well as the action of bacteria. Hence, the concentration of contaminants may change with
space and time during groundwater flow. Prediction of the contamination of aquifers is a
big challenge that is being addressed by scientists in several countries.

The flow of water inside aquifers is modeled using Darcy’s law, and the transport
of contaminants is modeled using the convection-dispersion equation for predicting
the transport and attenuation of dissolved species due to adsorption and biological
activity [4]. As mentioned earlier, the physics for modeling the transport and adsorption
of contaminants is exactly identical to the transport and adsorption of arsenic in a water
filter. Here we will describe the work that has already been done in this area as well as the
limitation of that work.

Numerous analytical solutions have been developed for modeling solute transport
through fully-saturated aquifers [5–17]. However, there are some shortcomings associated
with them. For example, the dispersion tensor is simplified without any justification—it
is merely presented as a constitutive relation without any correlation with the pore-scale
microstructure and the phenomena occurring therein [4]. Several times, the dispersion
tensor is overly simplified after dropping the molecular diffusivity contribution [5,7,10] or
simply treated as a constant [8,12,14].

On the other hand, several stochastic groundwater modeling techniques have been
proposed to study the transport of solute in natural porous formations like aquifers with
variable permeability [18–20]. Dagan [19] explained that the spatial distribution of solute
in such porous structures is mostly governed by convection and the heterogeneity of
permeability on a large scale. In these cases, the marginal effect of pore-scale dispersion is
generally neglected owing to the smallness of the transverse dispersivity with respect to
the heterogeneity scale. Aldo [20] furthered this study [19] and investigated the influence
of the pore-scale dispersion mechanism in an heterogenous aquifer under both the ergodic
and nonergodic transport conditions. In the same vein, Rubin [21] presented the stochastic
formulations of the advection-dispersion equation to model the transport of tracer species in
heterogeneous porous media. Such mathematical models are often based on the assumptions
of stationarity, ergodicity, and gaussian distribution, and seek geostatistical parameters
for stochastic modeling. These approaches have earned some success in correlating different
length-scales and are able to predict the results of large-scale controlled field
experiments [22,23]. However, they lack the ability to account for the influence of pore-
level microstructural details in the formulation of the total dispersion tensor, which needs
further development. In the proposed research described below, we will develop a more
comprehensive analysis for species transport using a micro–macro coupling that can
remove the above-mentioned shortcomings and lead to an important advance in this area.
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The method of volume averaging is a rigorous method to upscale from the pore scale
to the macroscopic lab or field scale [24–26]. The use of this method in understanding and
predicting mass transport in porous media has had a long history, and a brief synopsis
is presented here. One of the first attempts to understand and model diffusion and
hydrodynamic dispersion in porous media can be attributed to Whitaker [27]. Gray
later [28] suggested an improvement in Whitaker’s formulation by suggesting the estimation
of the deviations from the intrinsic phase-average (instead of the phase-average) for the
concentration of the solute. Attempts were made to understand hydrodynamic dispersion
in capillary tubes representing porous media, which led to the confirmation of the Taylor-
Aries model [29]. Later the same ideas were applied to develop a one-Equation [30] and a
two-Equation [31] model for solute transport accompanied with adsorption in dual length-
scale heterogeneous porous media. The volume averaging method was then adapted to
find the effective dispersion tensor in a heterogeneous medium, the findings of which
were tested using the ensemble averaging process [32]. The two-equation model was later
employed to estimate the macroscopic properties of an ideal heterogenous porous medium
and a parametric study was conducted to study the effect of the Péclet number, permeability
ratio and local-scale dispersitivity on the dispersion coefficient [33].

In this paper, we will employ the volume averaging method to upscale the phenomenon
of solute transport (which include both diffusion and advection) accompanied with
adsorption in homogeneous porous media. Such media are found in commercial water
filters where the cartridges created by packing particles or beads that can be assumed
to be of mono-modal size distribution and thus create single-scale porous media. It may
seem that the solution to this relatively simple problem should exist somewhere in the
volume-averaging literature. However, the authors’ investigation revealed that bits and
pieces of this problem exist piecemeal at different locations. For example, similar problems
on diffusion without advection, and accompanied with adsorption, have been formulated
as practice problems by Whitaker in their monograph (Problems 4 and 25 in chapter 1
of [26]). Later, solving the same problem after including the advection has been presented
in Problem 13 of chapter 3 on dispersion; however, it is presented without any solution.
Similarly, Plumb and Whitaker [34] presented the upscaling theory corresponding to
diffusion, adsorption and advection in porous media composed of porous particles in
Section 5 of [34]. This one-equation model approach was a multi-scale treatment that
involved lower-scale averaging inside what will be our solid phase here.

One can cite some more of the similar developments in the volume averaging method
that are related to the proposed formulation. Whitaker in chapter 1 of [35] illustrated
the use of the volume averaging procedure and the boundary conditions required to
derive the upscaled convective-dispersion equation with nonlinear adsorption for species
transport. Wood et al. [36] developed a volume-averaged macroscale transport equation
for a reactive chemical species and compared the effective reaction rate obtained from
the closure formulation to that from the direct numerical simulation at the microscale.
Similarly, Valdés-Parada et al. [37] carried out upscaling of mass transport equations along
with diffusion and convection based reaction processes in porous media. In the same
vein, the work by Quintard et al. [38,39] had some useful developments for the interfacial
boundary condition for the moving-phase velocity.

Hence, the authors had to gather and develop all the relevant aspects of the upscaling
physics for the considered practical problem of developing for arsenic water filters the
upscaled governing equation and the associated closure problem. A researcher experienced
in the volume average method may find several portions of the manuscript repetitions of
what is available in the literature; however, the authors feel that all the main derivations
should be presented in the paper here in order to improve its readability and bring diverse
aspects into a single presentation.
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2. Model for Solute Transport
2.1. Mathematical Preliminaries and Definitions

The volume averaging method will be used to upscale from the microscopic space to
the macroscopic one. This means that the governing equations and boundary conditions
for the large-scale space will be derived from the governing equations plus boundary
conditions for the small-scale space. We will start with some basic definitions.

2.1.1. Representative Averaging Volume

The representative elementary volume (REV) plays an important conceptual role in
upscaling of porous media processes. As shown in Figure 1, it is often taken to be of a
spherical form. Our problem is classified as the single-phase flow through porous media.
Hence, there is a phase called β phase that flows between the stationary, non-deforming
solid particles made from the σ phase and completely fills the pores. During this flow,
the ions being carried by the flowing β phase (water) are also moving towards the σ phase
particles and are getting adsorbed by them.

For effective volume averaging, the following constraint is required [26]:

Average Particle Size << ro << Size of the upscaled domain (1)

where ro is the size of the REV.
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Figure 1. A Schematic of the Representative Elementary Volume (REV) with ro being the radius of
the sphere-shaped volume.

2.1.2. Phase and Intrinsic Phase Averages

The phase average 〈φβ〉 for any variable φβ associated with the β phase flowing
through the porous medium is defined as

〈φβ〉 =
1
V

∫
Vβ

φβ dV (2)

where V is the volume of the REV. 〈φβ〉 represents the average value of any quantity within
the whole of the REV.

On the other hand, there is an average called the intrinsic phase average, 〈φβ〉β, which
is the average value of any quantity only within the β phase of the REV. Such an average is
defined as

〈φβ〉β =
1

Vβ

∫
Vβ

φβ dV (3)

where Vβ represents the volume of the β phase within the REV.
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As one can easily see, the relation between the two averages is

〈φβ〉 = εβ 〈φβ〉β (4)

such that εβ is the volume fraction of the β phase given by the relation

εβ =
Vβ

V
(5)

Note that for single-phase flow of the β phase through our porous medium, εβ will be
equal to the porosity of the porous medium, since the latter is defined as the ratio of the
total pore volume within REV to the total REV volume.

2.1.3. Averaging Theorems

We will now present two important theorems that are used in the upscaling of
transport and flow equations in porous media. A formal and easy to understand proof
of these theorems can be found in [40], although similar proofs have been presented
elsewhere [24–26,41].

First Averaging Theorem

This theorem relates the phase average of a gradient or a divergence of a physical
quantity to the gradient or divergence of the phase average of the quantity. As before, any
variable φβ associated with the β phase flowing through the porous medium will satisfy
the following relationship:

〈∇φβ〉 = ∇〈φβ〉 +
1
V

∫
Aβσ

φβ nβσ dA (6)

where nβσ is the unit normal directed from β phase to σ phase, and Aβσ is the interfacial
area between the β and σ phases. In case the variable φβ is a vector, then we deal with
divergence of this quantity as shown below.

〈∇ · φβ〉 = ∇ · 〈φβ〉 +
1
V

∫
Aβσ

φβ · nβσ dA (7)

Second Averaging Theorem

This theorem relates the phase average of a time derivative to the time derivative of
the phase average as follows:

〈
∂ φβ

∂t
〉 =

∂〈φβ〉
∂t

− 1
V

∫
Aβσ

φβ w · nβσ dA (8)

where w is the velocity of the β− σ interface.

2.2. Upscaling by Volume Averaging Method

The governing equation for solute transport within the pore space of an REV can be
expressed as

∂cβ

∂t
+ ∇ ·

(
cβvβ

)
= ∇ ·

(
Dβ∇cβ

)
(9)

where cβ is the point concentration in the β phase, vβ is the velocity of the β phase, and Dβ

is the molecular diffusivity of the β phase. Note that it is a tracer equation, i.e., the
concentration of the transported species, cβ , is extremely small. This is a convection-
diffusion type equation where velocity of the fluid β phase is given (see [42] for a rigorous
derivation of this equation).

Let us now specify the boundary conditions needed to solve for cβ within the pore
region of an REV. A flux of solute ions is created onto the β− σ interface, which leads to the
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rate of increase in the surface concentration of the adsorbed ions. This can be expressed as
−nβσ · Dβ∇cβ = ∂cad

∂t , where cad represents the surface concentration on the β− σ interface.
However, our analysis is limited to linear adsorption isotherms and local mass equilibrium
exists at the β− σ interface [29,30], i.e., cad = Keq cβ. Here, Keq is the equilibrium coefficient
(or the distribution coefficient) corresponding to the linear isotherm. On combining these
two relations, the proposed boundary condition reduces to

B.C.1 : − nβσ · Dβ∇cβ = Keq
∂cβ

∂t
, at Aβσ (10)

It is helpful for future analysis to state here the continuity equation for the β phase as well
as the associated no-slip boundary condition at the β− σ interface:

∇ · vβ = 0
B.C.2 : vβ = 0, at Aβσ

(11)

On taking the phase-average of Equation (9), we get

〈
∂cβ

∂t
〉 + 〈∇ ·

(
cβvβ

)
〉 = 〈∇ ·

(
Dβ∇cβ

)
〉 (12)

Let us consider the three terms of this equation one by one. On applying the second
averaging theorem, the first term on the left-hand side of this equation results in

〈
∂cβ

∂t
〉 =

∂〈cβ〉
∂t
− 1

V

∫
Aβσ

cβ w · nβσ dA =
∂〈cβ〉

∂t
(13)

The integral term involving the interface velocity w disappears since we have taken the
porous medium to be rigid (non-deforming) and stationary. On applying the first averaging
theorem, the second term on the left-hand side of Equation (12) develops as

〈∇ · (cβvβ)〉 = ∇ · 〈cβvβ〉 −
1
V

∫
Aβσ

cβ vβ · nβσ dA = ∇ · 〈cβvβ〉 (14)

Here the integral term disappears because of the no-slip condition described in
Equation (11).

Let us now look into the development of the term on the right-hand side of Equation (12).
The application of the first averaging theorem leads to the following unfolding:

〈∇ ·
(
Dβ∇cβ

)
〉 = ∇ · 〈Dβ∇cβ〉 +

1
V

∫
Aβσ

Dβ∇cβ · nβσ dA

= ∇ · 〈Dβ∇cβ〉 −
1
V

∫
Aβσ

Keq
∂cβ

∂t
dA (15)

= ∇ · 〈Dβ∇cβ〉 − Keq
∂

∂t

[
Aβσ

V
1

Aβσ

∫
Aβσ

cβ dA

]

Here we use B.C.1 given in Equation (10) as well as the facts that (a) Keq is taken as a constant
within the REV, and (b) the time derivative can be taken out of the surface integral since we
are dealing with a rigid (non-deforming) porous medium that ensures that the interfacial
area within the REV remains unchanged. Thus, by implementing these transformations
in the interfacial-flux term within the surface integral, we are able to include the effect of
adsorption into the upscaled mass-transport equation.

At this stage, we introduce two definitions:

(I) aβσ =
Aβσ

V
(16)
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where Aβσ is the net β− σ interfacial area contained with the REV volume, and aβσ is equal
to the β− σ interfacial area per unit volume.

(II) 〈cβ〉βσ
=

1
Aβσ

∫
Aβσ

cβ dA (17)

where 〈cβ〉βσ
is the average concentration on the interfacial area.

Through the use of these two definitions, the term on the right-hand side of Equation (11)
can be expressed as

〈∇ ·
(
Dβ∇cβ

)
〉 = ∇ · 〈Dβ∇cβ〉 − Keq aβσ

∂〈cβ〉βσ

∂t
(18)

Further employment of the first averaging theorem to the first term of the right-hand side
leads to

〈∇ ·
(
Dβ∇cβ

)
〉 = ∇ ·

[
Dβ

(
∇〈cβ〉 +

1
V

∫
Aβσ

cβ nβσ dA

)]
− Keq aβσ

∂〈cβ〉βσ

∂t
(19)

Finally, on using Equations (13), (14) and (19) in Equation (12), we get an intermediate form
of the volume-averaged solute transport equation:

∂〈cβ〉
∂t

+ ∇ · 〈cβvβ〉 = ∇ ·
[
Dβ

(
∇〈cβ〉 +

1
V

∫
Aβσ

cβ nβσ dA

)]
− Keq aβσ

∂〈cβ〉βσ

∂t
(20)

We will now transform this equation in terms of the intrinsic phase-average using
the relation

〈cβ〉 = εβ 〈cβ〉β (21)

which is based on Equation (4). This results in

εβ
∂〈cβ〉β

∂t + ∇ · 〈cβvβ〉 = ∇ ·
[
Dβ

(
εβ∇〈cβ〉β + 〈cβ〉β∇εβ + 1

V
∫

Aβσ
cβ nβσ dA

)]
− Keq aβσ

∂〈cβ〉βσ

∂t

(22)

Our aim is to develop an equation in terms of the macroscopic variable 〈cβ〉β entirely.
However, we have some unknown terms in the equation which are preventing us from
reaching this goal. These terms are the dispersion term 〈cβvβ〉, the surface integral term on
the right-hand side, as well as the transient term involving 〈cβ〉βσ

. Hence some more work
lies ahead of us.

In order to proceed further, we will take the help of the following well-known
decompositions

cβ = 〈cβ〉β + c̃β and vβ = 〈vβ〉β + ṽβ (23)

where 〈cβ〉β is the intrinsic phase-average concentration in the β phase and c̃β is the spatial
deviation in concentration of the β phase. Similarly, 〈vβ〉β is the intrinsic phase-average
velocity in the β phase and ṽβ is the spatial deviation in velocity of the β phase.

This is essentially a splitting of length scales with 〈cβ〉β varying over a much larger
length-scale, say l〈cβ〉β while c̃β varying over the characteristic length lc̃β

. Here the constraint
associated with this splitting [26] is

lc̃β
<< ro << l〈cβ〉β (24)

with ro being the size of the REV. This constraint allows one to treat the average 〈cβ〉β as a
constant in the volume and area integrals within the REV. A similar set of constraints and
conclusions can be associated with the decomposition associated with velocity given in
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Equation (23). Using the property of these averages to be constant within the REV, it is easy
to prove the following corollary associated with the decomposition, i.e.,

〈c̃β〉 = 0 and 〈ṽβ〉 = 0 (25)

Through the use of Equations (23) and (25), the dispersion term of Equation (22) can
be transformed as

〈cβvβ〉 = 〈〈cβ〉β〈vβ〉β〉 + 〈〈cβ〉βṽβ〉 + 〈c̃β〈vβ〉β〉 + 〈c̃βṽβ〉
= 〈cβ〉β〈vβ〉βεβ + 0 + 0 + 〈c̃βṽβ〉 (26)

= εβ〈cβ〉β〈vβ〉β + εβ〈c̃βṽβ〉β

In these derivations, we have also used the relation between the phase-average and the
intrinsic phase-average as given by Equation (21), as well as the fact that 〈1〉 = εβ which
follows from the basic definitions given earlier in Equations (2) and (5). Using the continuity
equation given in Equation (11), the divergence of the dispersion term can be expressed as

∇ · 〈cβvβ〉 = εβ〈vβ〉β · ∇〈cβ〉β + ∇ ·
(

εβ〈c̃βṽβ〉β
)

(27)

Let us now consider the surface integral term on the right-hand side of Equation (22).
If we use the result

(
∇εβ

)
= − 1

V
∫

Aβσ
nβσ c̃β dA, which is obtained after substituting φβ = 1

in the first averaging theorem (Equation (6)), in conjunction with the decomposition given
in Equation (23), we get the following result:

1
V
∫

Aβσ
nβσ cβ dA =

(
1
V
∫

Aβσ
nβσ dA

)
〈cβ〉β + 1

V
∫

Aβσ
nβσ c̃β dA

= −
(
∇εβ

)
〈cβ〉β + 1

V
∫

Aβσ
nβσ c̃β dA

(28)

Let us now try to exploit the developments in these last two equations in order to get
closer to our goal of developing a macroscopic governing equation only in terms of the
macroscopic average terms. On using the results of Equations (27) and (28) in Equation (22),
we get

εβ
∂〈cβ〉β

∂t + εβ〈vβ〉β · ∇〈cβ〉β + ∇ ·
(
εβ〈c̃βṽβ〉β

)
= ∇ ·

[
Dβ

(
εβ∇〈cβ〉β + 1

V
∫

Aβσ
nβσ c̃β dA

)]
− Keq aβσ

∂〈cβ〉βσ

∂t

(29)

In this equation, we can notice the mathematical representations of the different transport
mechanisms involved. On the left-hand side of Equation (29), the first term accounts for
accumulation of the tracer species, the second term corresponds to the convective flux,
and the third term captures the hydrodynamic dispersion phenomenon, which, as widely
accepted [43], is the result of spatial deviations in the pore-level velocity field. Similarly,
on the right-hand side of the equation, the first term represents the diffusive flux originating
due to spatial gradient of the average concentration, and the macrodiffusive or non-local
diffusive flux based on perturbations in the concentration field, whereas the last term
accounts for the adsorptive flux onto the β− σ interfacial surface. It should be noted that
porous media have significantly high specific interfacial area (i.e., large Aβσ within the
REV) which makes them highly effective for adsorption-based applications, and in this
case, may also make the adsorptive-flux term significant even in the cases with small rates
of change of average concentration.

Let us now work on the transient term on the left-hand side of Equation (29). In view
of the constraints expressed by Equation (24), and according to [34], it is acceptable to use
the following approximations:

〈〈cβ〉β〉βσ
= 〈cβ〉β and 〈c̃β〉βσ

= 0 (30)
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The use of Equation (23) in the transient term along with these approximations allows one
to rewrite Equation (29) in a simplified form:

εβ

(
1 +

Keqaβσ

εβ

)
∂〈cβ〉β

∂t + εβ〈vβ〉β · ∇〈cβ〉β

= ∇ ·
[
εβDβ

(
∇〈cβ〉β + 1

Vβ

∫
Aβσ

nβσ c̃β dA
)]

−∇ ·
(
εβ〈c̃βṽβ〉β

) (31)

2.3. Seeking Closure

In order to estimate the unknown terms in Equation (31) involving c̃β, we plan to
propose a set of equations for the same. Later, those equations will be transformed in order
to obtain what is called the closure formulation.

We start with Equation (9), where, after using the decomposition given in Equation (23),
we obtain:

∂〈cβ〉β

∂t
+

∂c̃β

∂t
+ ∇ · (〈cβ〉β〈vβ〉β) + ∇ · (〈cβ〉βṽβ) + ∇ · (c̃β〈vβ〉β) + ∇ · (c̃βṽβ)

= ∇ · (Dβ∇〈cβ〉β) + ∇ · (Dβ∇c̃β) (32)

On dividing Equation (31) with εβ and rearranging the terms, we get

(
1 +

Keq aβσ

εβ

)
∂〈cβ〉β

∂t + 〈vβ〉β · ∇〈cβ〉β + ε−1
β ∇ · 〈c̃βṽβ〉

= ε−1
β ∇ · (εβ Dβ∇〈cβ〉β) + ε−1

β ∇ ·
[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)] (33)

Let us look at the term ε−1
β ∇ · (εβDβ∇〈cβ〉β) of this equation. It is clear that this

term reduces to ∇ · (Dβ∇〈cβ〉β) of Equation (32) if the porous medium is assumed to be
perfectly homogeneous and hence the porosity εβ is constant everywhere. However, real
porous media always have some little inhomogeneity associated with them. Hence, it
is advisable if one develops some constraint for the applicability of this assumption of
homogeneity. The expansion of the concerned term yields

ε−1
β ∇ · (εβDβ∇〈cβ〉β) = ∇ · (Dβ∇〈cβ〉β) + ε−1

β ∇εβ · Dβ∇〈cβ〉β (34)

Our aim will be to show that the second term on the right-hand side is much smaller than
the first one. After a little scaling analysis, it is easy to show that

O
(

ε−1
β ∇εβ · Dβ∇〈cβ〉β

)
O
(
∇ · (Dβ∇〈cβ〉β)

) = O

(
l〈cβ〉β

lεβ

)
(35)

Hence, if
l〈cβ〉β << lεβ

(36)

then ε−1
β ∇εβ · Dβ∇〈cβ〉β << ∇ · (Dβ∇〈cβ〉β). Equation (36) implies that the length-

scale over which the porosity εβ is changing is much larger than the length-scale over
which the intrinsic phase-average concentration 〈cβ〉β is changing. In such a situation,
the porous medium can be said to be homogeneous in terms of the porosity, and hence
Equation (33) reduces to(

1 +
Keqaβσ

εβ

)
∂〈cβ〉β

∂t + 〈vβ〉β · ∇〈cβ〉β + ε−1
β ∇ · 〈c̃βṽβ〉

= ∇ · (Dβ∇〈cβ〉β) + ε−1
β ∇ ·

[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)] (37)
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We will now subtract Equation (37) from Equation (32) to get an equation of the form:

∂c̃β

∂t
−

Keqaβσ

εβ

∂〈cβ〉β

∂t
+ ∇ · (〈cβ〉β〈vβ〉β) − 〈vβ〉β · ∇〈cβ〉β + ∇ · (〈cβ〉βṽβ)

+∇ · (c̃β〈vβ〉β) + ∇ · (c̃βṽβ)− ε−1
β ∇ · 〈c̃βṽβ〉 (38)

= ∇ · (Dβ∇c̃β)− ε−1
β ∇ ·

[
Dβ

(
1
V

∫
Aβσ

nβσ c̃β dA

)]

Let us take the help of the point-wise continuity equation given in Equation (11) to simplify
this equation further. On applying the first averaging theorem to this continuity equation
and applying the no-slip boundary condition on the fluid–solid interface, one obtains the
macroscopic equation of continuity:

∇ · 〈vβ〉 = 0 (39)

Noting the fact that 〈vβ〉 = εβ 〈vβ〉β, one can manipulate the macroscopic continuity
equation to obtain

∇ · 〈vβ〉β = − 1
εβ
〈vβ〉β · ∇εβ ≈ 0 (40)

Using a simple scaling analysis, one can convince oneself that the right-hand side of this
equation will indeed tend to zero if the constraint

l〈vβ〉β << lεβ
(41)

is valid. Note the similarity of this relation with the one given in Equation (36), thus
emphasizing the fact that the length-scale of variation of macroscopic quantities should be
much smaller than the length-scale of variation of porosity. We can apply Equation (40) to
obtain the following result:

∇ · (〈cβ〉β〈vβ〉β) = 〈vβ〉β · ∇〈cβ〉β + 〈cβ〉β∇ · 〈vβ〉β ≈ 〈vβ〉β · ∇〈cβ〉β (42)

Similarly, by using Equation (40), one obtains the following simplification:

∇ · (c̃β〈vβ〉β) ≈ 〈vβ〉β · ∇c̃β (43)

Through the use of Equations (42) and (43), Equation (39) can be rewritten as

∂c̃β

∂t +∇ · (c̃βṽβ) − ε−1
β ∇ · 〈c̃βṽβ〉 + ∇ · (ṽβ〈cβ〉β) + 〈vβ〉β · ∇c̃β

= ∇ · (Dβ∇c̃β) − ε−1
β ∇ ·

[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)]
+

Keqaβσ

εβ

∂〈cβ〉β
∂t

(44)

From Equations (11) and (40), while using the decomposition given in Equation (23), one
can easily show that

∇ · ṽβ = 0 (45)

Expanding some terms and cancelling some others on the left-hand side, while using
Equation (45) at one place, Equation (44) can be transformed to this final form as a
governing differential equation for c̃β:

∂c̃β

∂t + vβ · ∇c̃β + ṽβ · ∇〈cβ〉β − ε−1
β ∇ · 〈ṽβ c̃β〉

= ∇ · (Dβ∇c̃β) − ε−1
β ∇ ·

[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)]
+

Keq aβσ

εβ

∂〈cβ〉β
∂t

(46)
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Here there are two terms, one ṽβ · ∇〈cβ〉β and the other
Keq aβσ

εβ

∂〈cβ〉β
∂t , which act as source

terms for the creation of non-zero c̃β in the liquid (β) phase within the REV. Using the
decomposition given in Equation (23) in Equation (10), one can generate the following
boundary condition

B.C.1 : − nβσ · Dβ∇c̃β − Keq
∂c̃β

∂t
= −nβσ · Dβ∇〈cβ〉β − Keq

∂〈cβ〉β

∂t
, at Aβσ (47)

where the two terms on the right-hand side are the source terms.
We will now present a simplification of Equation (46) based on an order-of-magnitude

analysis. We will compare pairs of terms in order to discard the insignificant terms.
Note that

O
(
vβ · ∇c̃β

)
O
(

ε−1
β ∇ · 〈ṽβ c̃β〉

) = O

(
L

lc̃β

)

and since L >> lc̃β

=⇒ vβ · ∇c̃β (Convective Transport) >> ε−1
β ∇ · 〈ṽβ c̃β〉 (Dispersive Transport) (48)

Similarly

O
(
∇ · (Dβ∇c̃β)

)
O
(

ε−1
β ∇ ·

[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)]) = O

(
L

lc̃β

)

and since L >> lc̃β

=⇒ ∇ · (Dβ∇c̃β) (Local Diffusive Transport)

>> ε−1
β ∇ ·

[
Dβ

(
1
V
∫

Aβσ
nβσ c̃β dA

)]
(Non-Local Diffusive Transport)

(49)

Using Equations (48) and (49) to discard the insignificant terms in Equation (46), the governing
differential equation reduces to

∂c̃β

∂t
+ vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2 c̃β +

Keq aβσ

εβ

∂〈cβ〉β

∂t
(50)

after ignoring the variation in Dβ within the REV. Here, ṽβ · ∇〈cβ〉β will be termed as the

convective source while
Keq aβσ

εβ

∂〈cβ〉β
∂t is designated as the adsorptive source.

While the volume-averaged species transport problem described by Equation (31) has
to be transient in order to handle realistic ion-transport problems through porous media,
the fate of the transient term in the governing equation at the closure level, Equation (50),
has to be decided. We will decide this by comparing the order-of-magnitudes of the
transient and the diffusive-transport terms as follows.

O
(

∂c̃β

∂t

)
O
(
Dβ∇2 c̃β

) =
1
Dβ t∗

lc̃β
2

(51)

where t∗ is the characteristic time for changes in c̃β. If

Dβ t∗

lc̃β
2 >> 1 , (52)
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then Dβ∇2 c̃β >>
∂c̃β

∂t , and hence the transient term can be dropped.
Let us examine what it means in real practical terms. A typical value of Dβ is

10−9 m2/s in water-based systems while lc̃β
∼ 10µm = 10−5 m as it matches the width of

the channel between particles in a typical (particulate) porous medium. In such a situation,
the condition given in Equation (52) enforces that t∗ >> 0.1 s. Since this condition is easily
satisfied in real systems, we can be sure that the governing equations at the closure level will
almost always be quasi-steady. Hence, the final form of the governing differential equation
for c̃β is

vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2 c̃β +
Keq aβσ

εβ

∂〈cβ〉β

∂t
(53)

Since the governing differential equations have been rendered quasi-steady, it is reasonable
to expect the same for the associated boundary conditions given in Equation (47). Let us
compare the strong diffusive-transport term with the transient term and find the associated
constraint through the following order-of-magnitude analysis:

nβσ · Dβ∇c̃β >> Keq
∂c̃β

∂t

⇒ Dβ t∗

Keq lc̃β
>> 1

(54)

Since this constraint is very likely to be enforced because of Equation (52), Equation (47)
reduces to the final form of the closure-level boundary condition:

B.C.1 : − nβσ · Dβ∇c̃β = −nβσ · Dβ∇〈cβ〉β − Keq
∂〈cβ〉β

∂t
, at Aβσ (55)

Note that aside from this boundary condition, one also needs a global average
constraint defined as

〈c̃β〉β = 0 (56)

which arises from Equation (25). Thus, we collect Equations (53) and (55), and include
the standard periodicity condition in order to propose the final set of equations needed to
solve for the distribution of c̃β in the pore region of the REV, which is now in the form of a
unit cell.

Local Closure Problem:

vβ · ∇c̃β + ṽβ · ∇〈cβ〉β = Dβ∇2 c̃β +
Keq aβσ

εβ

∂〈cβ〉β

∂t
(57)

B.C.1 : − nβσ · Dβ∇c̃β = −nβσ · Dβ∇〈cβ〉β − Keq
∂〈cβ〉β

∂t
, at Aβσ (58)

Periodicity B.C. : c̃β(r + li) = c̃β(r), i = 1, 2, 3 (59)

Constraint : 〈c̃β〉β = 0 (60)

Note that we have invoked the periodicity boundary condition here that is in line with
the closure formulations proposed for other mass and momentum transfer problems [26,34].
When this boundary condition is applied on the boundaries of a unit cell, it imposes the
assumption that the porous medium is periodic in nature and can be recreated by the
translation of the unit cell along the x-, y- and z-directions. However, as has been pointed
by Whitaker [26], the influence of such a boundary condition is confined to a narrow
region close to the boundary, and the accuracy of the predicted deviation field is not
significantly affected.

2.4. Solving the Closure Problem Using Closure Variables

We will now aim to solve for the deviation in solute concentration, c̃β, in terms
of variables that link this deviation with its sources. Note that there are two sources
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present in our problem: one as ∇〈cβ〉β and the other as Keq
∂〈cβ〉β

∂t . These derivatives of the
macroscopic solute concentration give rise to the local deviations within in the REV. Hence,
it is quite logical that we propose a representation for c̃β in terms of these sources:

c̃β = bβ · ∇〈cβ〉β + sβ Keq
∂〈cβ〉β

∂t
(61)

where bβ and sβ are called the closure variables that are functions of position, and hence
can be thought of ‘distributing’ the contributions of the two sources within the β region of

the unit cell. The bβ maps ∇〈cβ〉β onto c̃β, while the sβ maps Keq
∂〈cβ〉β

∂t onto c̃β.

We now use Equation (61) with Equation (57) and treat∇〈cβ〉β and
∂〈cβ〉β

∂t as constants
while doing the spacial derivatives. On collecting the coefficients of these terms, we get

[
vβ · ∇bβ + ṽβ − Dβ∇2bβ

]
· ∇〈cβ〉β +

[
vβ · ∇sβ − Dβ∇2 sβ −

aβσ

εβ

]
Keq

∂〈cβ〉β

∂t
= 0 (62)

Since the terms ∇〈cβ〉β and Keq
∂〈cβ〉β

∂t are independent of each other, their coefficients have
to be individually set to zero in order to satisfy Equation (62). Hence, we get the governing
differential equations for two different problems:

Problem I for bβ : vβ · ∇bβ + ṽβ = Dβ∇2bβ (63)

Problem II for sβ : vβ · ∇sβ = Dβ∇2 sβ +
aβσ

εβ
(64)

Using this same approach, one can split the B.C.1 (Equation (58)), the periodicity B.C.
(Equation (59)), and the global constraint (Equation (60)) into two parts each–one for bβ

and the other for sβ. Hence, we can generate two sets of governing equations and boundary
conditions for solving the closure problem.

Problem I:

vβ · ∇bβ + ṽβ = Dβ∇2bβ (65)

B.C.1 : − nβσ · ∇bβ = nβσ, at Aβσ (66)

Periodicity B.C.: bβ(r + li) = bβ(r), i = 1, 2, 3 (67)

Constraint : 〈bβ〉β = 0 (68)

Problem II:

vβ · ∇sβ = Dβ∇2sβ +
aβσ

εβ
(69)

B.C.1 : − nβσ · Dβ∇sβ = 1, at Aβσ (70)

Periodicity B.C.: sβ(r + li) = sβ(r), i = 1, 2, 3 (71)

Constraint : 〈sβ〉β = 0 (72)
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Note that in order to solve the above sets of equations, we need the distribution of vβ

within the unit cell, which will require solving the Stokes-Flow equations in the pore-region
corresponding to the β phase.

2.5. Developing a Conventional Form for the Macroscopic Solute Transport Equation

Now that the closure formulation can be solved in principle using any multiphysics
software, we can take back the results obtained using Equation (61) to Equation (31) in
order to solve for the distribution of 〈cβ〉β in the macroscopic domain. However, since
the governing equation for such a distribution is of the form of a convection-dispersion
equation, we will first attempt to transform Equation (31) into such a form.

By employing Equation (61) in the first term on the right-hand side of Equation (31),
we get, after some manipulation, the following result:

∇ ·
[
εβDβ

(
∇〈cβ〉β + 1

Vβ

∫
Aβσ

nβσ c̃β dA
)]

= ∇ ·
[
εβDβ

(
I + 1

Vβ

∫
Aβσ

nβσ bβ dA
)
· ∇〈cβ〉β

]
+∇ ·

[Dβ

V

(∫
Aβσ

nβσ sβ dA
)]

Keq
∂〈cβ〉β

∂t

+
Dβ

V

(∫
Aβσ

nβσ sβ dA
)
· ∇
[

Keq
∂〈cβ〉β

∂t

] (73)

Similarly, we can transform the second term on the right-hand side of Equation (31) as

−∇ ·
(
εβ〈c̃βṽβ〉β

)
= ∇ ·

[(
−εβ〈ṽβbβ〉

)
· ∇〈cβ〉β

]
+
[
∇ ·

(
−εβ〈sβṽβ〉

)]
Keq

∂〈cβ〉β
∂t − εβ〈sβṽβ〉 · ∇

[
Keq

∂〈cβ〉β
∂t

]
(74)

On using Equations (73) and (74) on the right-hand side of Equation (31) and on
manipulating the terms, one can get this penultimate form:

εβ
∂〈cβ〉β

∂t + εβ〈vβ〉β · ∇〈cβ〉β + εβuβ · ∇
(

Keq
∂〈cβ〉β

∂t

)
= ∇ ·

(
εβD∗β · ∇〈cβ〉β

)
− aβσKeq

∂〈cβ〉β
∂t

(75)

The new terms used in this equation are as follows:

uβ = 〈sβṽβ〉β −
Dβ

Vβ

∫
Aβσ

nβσ sβ dA (76)

D∗β = Dβ

[
I +

1
Vβ

∫
Aβσ

nβσ bβ dA

]
− 〈ṽβbβ〉β (77)

Note that 〈ṽβbβ〉β term essentially comes to existence because of the spacial fluctuations
in the velocity and the 〈cβ〉β induced concentration fields, and hence it is often called the
hydrodynamic dispersion tensor, Dβ (page 139 of [26]). Similarly the first part of the right-
hand side of Equation (77), borrowing on the traditional terminology, can be christened as
the effective diffusivity tensor, De f f . As a result, the equation can be represented as

D∗β = De f f + Dβ (78)

where

De f f = Dβ

[
I +

1
Vβ

∫
Aβσ

nβσ bβ dA

]
(79)

and

Dβ = − 〈ṽβbβ〉β (80)
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The term 〈sβṽβ〉β of Equation (76) is similar to the hydrodynamic dispersion tensor

and becomes ’alive’ because of the spacial fluctuations in the velocity and the Keq
∂〈cβ〉β

∂t
induced concentration fields. Hence, we can call it the adsorption-induced hydrodynamic
dispersion vector. Furthermore, the second term on the right-hand side of Equation (76)
is similar to the diffusivity tensor, and therefore can be called the adsorption-induced
diffusivity vector.

If we assume that (a) the porosity, εβ, is almost a constant following the constraint
given in Equation (36), (b) the total dispersion tensor, D∗β, is unchanging, (c) the equilibrium
coefficient, Keq, is a constant, then Equation (75) can be presented in a much simpler form:

(
1 +

aβσ Keq
εβ

)
∂〈cβ〉β

∂t + 〈vβ〉β · ∇〈cβ〉β + Keq uβ · ∇
(

∂〈cβ〉β
∂t

)
= D∗β : ∇∇〈cβ〉β (81)

A study of this equation reveals that the third term in the left-hand side (to be called
the mixed derivative term) is preventing us from attaining the form of the traditional
convection-dispersion equation. Here we develop a constraint that will allow us to neglect
this mixed derivative term. For this to happen, it is obvious that the following restriction
is observed:

Keq uβ · ∇
(

∂〈cβ〉β

∂t

)
<<

(
1 +

aβσ Keq

εβ

)
∂〈cβ〉β

∂t
(82)

Use of the estimate given by

∇
(

∂〈cβ〉β

∂t

)
∼ 1

l
∂〈cβ〉

β

∂t

∂〈cβ〉β

∂t
(83)

leads to
Keq uβ

l
∂〈cβ〉

β

∂t

<<

(
1 +

aβσ Keq

εβ

)
(84)

where l
∂〈cβ〉

β

∂t

is the length-scale associated with the spatial variation of
∂〈cβ〉β

∂t . At this point,

we need an estimate of uβ, and one possibility is given by Equation (76):

uβ ∼ 〈sβṽβ〉β =⇒ uβ ∼ sβvβ (85)

It would appear that the dominant source for sβ is given by Equation (69). This assumption
leads to

sβ ∼
lsβ

Dβ
(86)

which, in turn, leads to

uβ ∼ sβ vβ =⇒ uβ ∼
vβ lsβ

Dβ
(87)

Use of this result in Equation (84) provides the restriction

Keq vβ

Dβ

lsβ

l
∂〈cβ〉

β

∂t

<<

(
1 +

aβσ Keq

εβ

)
(88)

In case this restriction is satisfied, the mixed derivative term in Equation (81) can be
discarded (as it is done for several applications), and the macroscopic species-transport
equation acquires the form of the classical convection-dispersion equation:
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(
1 +

aβσ Keq
εβ

)
∂〈cβ〉β

∂t + 〈vβ〉β · ∇〈cβ〉β = D∗β : ∇∇〈cβ〉β (89)

3. Some Thoughts and Future Possibilities

We finally have the macroscopic equation for predicting arsenic concentrations in
homogeneous, single-scale porous media. Using the rigorous volume averaging method,
we have managed to derive for this purpose two versions of the final convection-dispersion
equation, Equations (81) and (89). The important point is that the important macroscopic
coefficients, the total dispersion tensor, D∗β, and the adsorption-induced vector, uβ, can now
be estimated using the closure formulation as described by the problems I and II listed
through Equations (65)–(72). Since this closure formulation is to be solved in a unit cell
which is created from the microstructure of a porous medium, a mechanism is now in place
for ensuring a proper micro–macro coupling.

It would be interesting to study differences in the predictions by the two macroscopic
equations, Equations (81) and (89). Note that the former equation employs the two macroscopic
coefficients, D∗β and uβ, and hence, one will need to solve both the closure problems, i.e., the
problems I and II as listed by Equations (65)–(72). The former equation studies the effect of
both passive solute transport and surface adsorption. However, the latter equation employs
only D∗β as the macroscopic coefficient, which accounts for the effect of passive solute transport,
and hence, only closure problem I, as listed by Equations (65)–(68), needs to be solved in
this case. The sequel of the current work, part II [44] of this two-part paper series, would
numerically investigate both the macroscopic equations, Equations (81) and (89), and include
validation studies on the effective transfer coefficients.

The arsenic filtration research recognizes that a critical design parameter of any filter
is the ‘hydraulic detention time’ of the polluted water in the filter [45]. This means that the
ratio of the adsorption rate to the macroscopic ‘flow-through’ rate, as captured by Damköhler
number, is important. One can vary the macroscopic mass-transport rate by changing the
pressure differential imposed over the filter, thereby altering the Darcy velocity and hence,
changing the Damköhler number. This is also likely to impact Péclet number, which is
the ratio of the advection and diffusion mass transports [46]. As suggested by previous
studies [39,47,48], the effect of these two numbers on the crucial macroscopic coefficients,
D∗β and uβ, needs to be studied.

Once we have determined the most effective macroscopic equation, whether Equation (81)
or Equation (89), we will aim to use that equation to predict the distribution of the intrinsic
phase-averaged concentration of arsenic, 〈cβ〉β, within the porous regions of a commercial or
lab-developed arsenic filter. Later we plan to predict the life of iron-based arsenic filters by
comparing the predictions of the breakthrough times in long-term studies with the experimental
data [45,49]. Here, probably for the first time, the microstructure of the porous filters and
the adsorption reactions going on at the microscopic scale will have a say in the macroscopic
processes through the micro–macro coupling as captured by the closure formulation proposed in
this paper. We plan to use our experience in solving similar problems in the past [50–52].
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Nomenclature

Aβσ interfacial area between the β and σ phases in the REV, m2

aβσ the β− σ interfacial area per unit volume, m−1

bβ a closure variable (vector) used to describe the distribution of c̃β, m
cad surface concentration on the β− σ interface, kg mol/m2

cβ point concentration in the β phase, kg mol/m3

c̃β spatial deviation in concentration of the β phase (= cβ − 〈cβ〉β), kg mol/m3

〈cβ〉β intrinsic phase-average concentration in the β phase, kg mol/m3

〈cβ〉βσ
area-averaged concentration at the β− σ interface, kg mol/m3

Dβ molecular diffusivity of the β phase, m2/s
D∗β total dispersion tensor, m2/s
De f f effective diffusivity tensor tensor, m2/s
Dβ hydrodynamic dispersion tensor, m2/s
I identity tensor, dimensionless
Keq equilibrium coefficient for the linear isotherm (or the distribution coefficient), m
lc̃β

characteristic length-scale for variation in c̃β, m
l〈cβ〉β characteristic length-scale for variation in 〈cβ〉β, m

l
∂〈cβ〉

β

∂t

characteristic length-scale for variation in
∂〈cβ〉β

∂t , m

lsβ
characteristic length-scale for variation in sβ, m

l〈vβ〉β characteristic length-scale for variation in 〈vβ〉β, m

lεβ
characteristic length-scale for variation in εβ, m

li lattice vector corresponding to direction i for the repetition of unit cells, m
L characteristic length scale for variation a generic macroscopic quantity, m
nβσ unit normal directed from β phase to σ phase
ro size of the REV, m
r position vector, m
sβ a closure (scalar) variable used to describe the distribution of c̃β , s/m
t∗ characteristic time for changes in c̃β within the REV, s
uβ adsorption-induced vector in the β phase, dimensionless
vβ point velocity of the β phase, m/s
〈vβ〉β intrinsic phase-average velocity of the β phase, m/s
ṽβ spatial deviation in velocity of the β phase (= vβ − 〈vβ〉β), m/s
V volume of the REV, m3

Vβ volume of the β phase within an REV, m3

w velocity of the β− σ interface, m/s
εβ volume fraction of the β phase, dimensionless
φβ a generic variable of the β phase
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