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Abstract: This study aims to detect non-stationarity of the maximum and minimum streamflow
regime in Tamsui River basin, northern Taiwan. Seven streamflow gauge stations, with at least
27-year daily records, are used to characterize annual maximum 1- and 2-day flows and annual
minimum 1-, 7-, and 30-day flows. The generalized additive models for location, scale, and shape
(GAMLSS) are used to dynamically detect evolution of probability distributions of the maximum and
minimum flow indices with time. Results of time-covariate models indicate that stationarity is only
noted in the 4 maximum flow indices out of 35 indices. This phenomenon indicates that the minimum
flow indices are vulnerable to changing environments. A 16-category distributional-change scheme is
employed to classify distributional changes of flow indices. A probabilistic distribution with complex
variations of mean and variance is prevalent in the Tamsui River basin since approximate one third
of flow indices (34.3%) belong to this category. To evaluate impacts of dams on streamflow regime,
a dimensionless index called the reservoir index (RI) serves as an alternative covariate to model
nonstationary probability distribution. Results of RI-covariate models indicate that 7 out of 15 flow
indices are independent of RI and 80% of the best-fitted RI-covariate models are generally worse
than the time-covariate models. This fact reveals that the dam is not the only factor in altering the
streamflow regime in the Tamsui River, which is a significant alteration, especially the minimum flow
indices. The obtained distributional changes of flow indices clearly indicate changes in probability
distributions with time. Non-stationarity in the Tamsui River is induced by climate change and
complex anthropogenic interferences.

Keywords: non-stationarity; streamflow regime; annual flow index; reservoir index; GAMLSS

1. Introduction

Probabilistic theories have played an essential role in hydraulic facilities planning and
design due to the inherent uncertainties involved in hydro-climatic series. It has become a
standard practice to employ frequency analysis of extreme hydro-climatic variables in the
risk evaluation of hydraulic facilities [1,2]. An important assumption in such frequency
analysis-based approaches is stationarity; that is, the probability distribution used to fit
the variable of interest is time invariant. However, climate change and/or anthropogenic
interference-induced changing environments may lead to alterations in statistical character-
istics of hydro-climatic variables, and thus, result in non-stationarity. Non-stationarity in
hydro-climate series renders estimates of return period and risk used for hydraulic facilities
planning and design ambiguous and questionable [3–7].

Recent studies [8–17] have showed strong evidence of climate change impacts on the
rainfall regime. Alterations in rainfall regime propagate through the hydrologic cycle, and
thus induce changing streamflow regime. Impacts of climate change and anthropogenic
activities on streamflow regime have drawn considerable attention recently [18–23]. A
vast literature has thus been devoted to exploring non-stationarity in streamflow series
worldwide [24–31]. However, most studies focus on extreme streamflow such as flood or
low flow, while few studies have investigated them simultaneously.
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Focusing on Taiwan, evidence of altering rainfall regime induced by climate change
was indicated by several recent studies [32–38]. However, little research has examined
the changes in streamflow regime in Taiwan, with the exception of Yeh et al. [39] who
investigated the long-term streamflow trend in northern Taiwan using the Mann-Kendall
test. Nonstationary modeling of streamflow in Taiwan is rarely addressed in the literature.

The main aim of this work is to detect the presence of non-stationarity in the stream-
flow regime, characterized by the maximum and minimum flow indices at various time
scales, of the Tamsui River located in northern Taiwan. The generalized additive models
for location, scale, and shape (GAMLSS), developed by Rigby and Stasinopoulos [40], are
adopted for detecting non-stationarity in streamflow characteristics by respectively incor-
porating time-dependent parameters and anthropogenic-impact parameters in terms of
reservoir index into probability models. In addition, the 16-category distributional-change
scheme, proposed by Shiau and Wu [41], is also used to classify variations of the obtained
nonstationary distributions of the flow indices for distinguishing spatial variability. The
obtained information may usefully guide future planning and design of water-resources
engineering, adapting to the changing environment.

2. Methodology
2.1. The Generalized Additive Models for Location, Scale, and Shape (GAMLSS)

A widely used approach to model nonstationary hydro-climatic series is the time-
varying moments method, indicated by Khaleq et al. [42], which incorporates time-varying
parameters into probability models with the same form of stationary condition. The
GAMLSS is a popular tool to achieve this purpose in hydrology and dynamically detects
evolution of probability distributions with time or other covariates [43–46].

In GAMLSS, the independent observations yi (i = 1, 2, . . . , n) are assumed to have
a probability density function (PDF) f (yi|θi), where θi =

(
θi

1, . . . , θi
p

)
is a parametric

vector accounting for location, scale, and shape. p denotes the number of parameters
and is usually less than or equal to four. The distribution parameters are related to the
explanatory variables (covariates) by the monotonic link functions gk (k = 1, . . . , p), which
is expressed as

gk(θk) = Xkβk +
m

∑
j=1

hjk (1)

where gk denotes the monotonic link function for the kth parameter (here only the identity
and logarithm link functions are considered); Xk represents an n × m matrix of explanatory
variables (covariates); βT

k = (β1k, β2k, . . . , βmk) is a parameter vector of length m; and
hjk represents the functional dependence of the distribution parameters on explanatory
variables xjk.

In this study, a semi-parametric additive formulation is adopted to model non-
stationarity in flow indices in the Tamsui River basin, Taiwan; that is, functional dependence
is linear or smooth and smooth dependence is based on the cubic spline function in this
study. Further details of GAMLSS can be found in Rigby and Stasinopoulos [40].

A total of five widely used two-parameter distributions, including lognormal (LNO),
logistic (LO), gamma (GA), Gumbel (GU), and Weibull (WEI), are employed to model the
flow indices. The PDFs associated with types of link function of these distributions are
summarized in Table 1. The mean and variance of these distributions in terms of parameters
(θ1 and θ2) are reported in Table 2. The parameters of the probability distributions are
modeled as functions of the time or reservoir index, which is described in the subsequent
subsection. To avoid model over-fitting, the minimum Akaike Information Criterion (AIC)
is adopted in this study to select a parsimonious model. Calculations are implemented by
a free-access R-based package gamlss [47].
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Table 1. Summaries of probability density function (PDF) of five distributions and the link functions used to model
flow indices.

Distribution Probability Density Function Range of Parameters
Types of Link Function

θ1 θ2

Lognormal
(LNO) f (y) = 1√

2πθ2y
exp
[
− (log y−θ1)

2

2θ2
2

]
, y > 0 θ1>0, θ2>0 identity() ln()

Logistic
(LO) f (y) =

exp
(
− y−θ1

θ2

)
θ2

[
1+exp

(
− y−θ1

θ2

)]2 , −∞ < y < ∞ −∞<θ1<∞, θ2>0 identity() ln()

Gamma
(GA) f (y) = 1

(θ2
2θ1)

1/θ2
2

y
1
θ2

2
−1

exp
(
− y

θ2
2θ1

)
Γ(1/θ2

2)
, y > 0

θ1>0, θ2>0 ln() ln()

Gumbel
(GU)

f (y) = 1
θ2

exp
[

y−θ1
θ2
− exp

(
y−θ1
θ2

)]
, −∞ <

y < ∞
−∞<θ1<∞, θ2>0 identity() ln()

Weibull
(WEI) f (y) = θ2yθ2−1

θ
θ2
1

exp
[
−
(

y
θ1

)θ2
]

, y > 0 θ1>0, θ2>0 identity() ln()

Table 2. Summaries of mean and variance of five distributions in terms of distribution parameters.

Distribution Mean Variance Note

Lognormal
(LNO) E(Y) = ω1/2eθ1 Var(Y) = ω(ω− 1)e2θ1 ω = exp

(
θ2

2

)
Logistic

(LO) E(Y) = θ1 Var(Y) = π2θ2
2

3

Gamma
(GA) E(Y) = θ1 Var(Y) = θ2

2θ
2
1

Gumbel
(GU) E(Y) = θ1 + 0.57722θ2 Var(Y) = π2θ2

2
6

Weibull
(WEI) E(Y) = θ1Γ

(
1
θ2

+ 1
)

Var(Y) = θ2
1

{
Γ
(

2
θ2

+ 1
)
−
[
Γ
(

1
θ2

+ 1
)]2
}

2.2. Reservoir Index

To evaluate impacts of dams on the streamflow regime, a dimensionless index called
the reservoir index or check dam index has been proposed in the literature [24,48–50]. The
dimensionless reservoir index developed by Jiang et al. [50] is adopted in this study to
serve as an alternative covariate of nonstationary probabilistic models, which is defined as

RI =
N

∑
i=1

(
Ai
AT

)(
Vi
VT

)
(2)

where N denotes the number of dams upstream of the streamflow gauge station; Ai denotes
the catchment area of each reservoir; AT denotes the catchment area of the gauge station;
Vi denotes the capacity of each reservoir; and VT denotes the total capacity of all dams
upstream of the gauge station.

3. Data Used
3.1. Overview of the Tamsui River Basin

Tamsui River, located in northern Taiwan, has a total length of 159 km and a catchment
area of 2726 km2. Originating in Pintain Mountain, the Dahan River (main tributary)
wanders northward and northwestward and receives streamflow from the Xindian River
and the Jilong River before emptying into the Taiwan Strait (Figure 1). The Tamsui River,
flowing through dense population areas in northern Taiwan (Taipei City and New Taipei
City), led to the construction of hydraulic facilities, initiated in the early twentieth century.
Currently there are 12 dams within this basin offering domestic water-supply, flood-
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mitigation, and hydropower-generation purposes. Figure 1 shows the spatial locations of
these 12 dams and seven selected streamflow gauge stations to reflect natural and dam-
altered sites. Figure 2 shows the schematic layout of the Tamsui River system including
tributaries, streamflow gauge stations, and dams, which clearly demonstrates the upstream
and downstream locations of dams and stations.

Figure 1. Spatial locations of selected seven streamflow gauge stations (H1 to H7) and 12 dams (D1
to D12) in the Tamsui River basin, Taiwan.

Figure 2. Schematic layout of the Tamsui River system including tributaries, streamflow gauge
stations, and dams (not to scale).

According to Shiau and Wu [41], the mean annual total rainfall at Taipei station,
with the longest records in the Tamsui River basin, is 2169 mm for the period 1897−2017.
Greater temporal variations are noted in the total annual rainfall series at Taipei station.
For example, the maximum total annual rainfall is 4392 mm (1992) and the minimum is
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1184 mm (2003). The mean and variance of total annual rainfall at Taipei station exhibit
an increasing trend [41]. The altered rainfall regime at the Taipei station located in the
Tamsui River basin is associated with complex anthropogenic interferences such as urban
development and hydraulic-facility operation, leading to changes in streamflow regime.

3.2. Streamflow Data

Basic information on the seven selected streamflow gauge stations in the Tamsui River
basin are summarized in Table 3. The daily streamflow of these stations, measured by the
Water Resources Agency (Taiwan), are used to evaluate potential streamflow regime alter-
ations within this basin. Due to the fact that parts of the streamflow data are unavailable
(missing or unrecorded), the daily streamflow records are not continuous. At least 27-year
daily streamflow records are used in this study. The longest streamflow data for 61 years
are recorded at H4. It is worth noting that most stations have streamflow records for recent
years (after 2014) except that H5 ends its records in 2000.

Table 3. Basic information of seven selected streamflow gauge stations in Tamsui River basin, Taiwan.

Code Station
Name

Station
Number

Catchment Area
(km2) Record Years Data Length

(Years)

H1 Xiuluan 1140H041 115.93
1957–2002,
2009–2011,
2013–2014

51

H2 Xiayun 1140H054 622.80 1963–2002,
2010–2015 46

H3 Sanxia 1140H048 125.34 1957–2002,
2015–2018 49

H4 Fushan 1140H010 160.40
1953–2003,
2005–2008,
2010–2015

61

H5 Xiulang 1140H066 750.76 1970–1971,
1973–2000 32

H6 Baobridge 1140H082 109.22 1987–2002,
2008–2018 27

H7 Wudu 1140H058 204.41

1963–1964,
1966–1999,
2005–2013,
2017–2018

47

The streamflow regime is characterized by the annual maximum and minimum flow
indices with various time scales, which include the annual maximum 1-day and 2-day
flow (denoted as 1DMAX and 2DMAX) and the annual minimum 1-day, 7-day, and 30-day
flow (denoted as 1DMIN, 7DMIN, and 30DMIN), since these annual flow indices evidently
relate to flooding and water-supply problems in Taiwan. The annual mean and standard
deviation of these flow indices for all selected stations are reported in Table 4. Among these
stations, three stations (H2, H5, and H7) have upstream dams that potentially affect the
streamflow regime, while the remaining four stations are free of dam impacts.

3.3. Reservoir Index

Basic information on 12 dams located within the Tamsui River basin, including dam
height, capacity, catchment area, and finished year, are reported in Table 5. The dam-
affected stations (H2, H5, and H7) have different impacts due to the various numbers of
upstream dams. Streamflow regime at H2 is influenced by D1 and D2. Streamflow regime
at H5 is affected by D4, D5, D6, D7, D8, D9, and D10. Streamflow regime at H7 is influenced
by D11 and D12. Figure 3 illustrates the time evolution of RIs, defined by equation (2), of
these three stations within the streamflow records. It is worth noting that D1 was removed
in 2007 due to dam failure. Evident high-impact RIs are observed at H2 and H5 since the
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maximum RI exceeds the threshold of 0.25, which is suggested by López and Francés [48].
Low-impact RI noted at H7 is attributed to smaller catchment areas.

Table 4. Annual mean and standard deviation of the maximum and minimum flow indices for the
selected stations in Tamsui River basin, Taiwan.

Code

1DMAX 2DMAX 1DMIN 7DMIN 30DMIN

Mean
(m3/s)

STD
(m3/s)

Mean
(m3/s)

STD
(m3/s)

Mean
(m3/s)

STD
(m3/s)

Mean
(m3/s)

STD
(m3/s)

Mean
(m3/s)

STD
(m3/s)

H1 202.7 253.9 138.8 157.9 0.80 0.32 0.85 0.33 1.04 0.37

H2 1201.4 1092.5 845.5 747.4 6.07 4.79 7.27 4.48 8.72 4.99

H3 230.9 169.0 161.1 114.7 0.74 0.43 0.97 0.50 1.58 0.66

H4 378.8 255.5 279.0 174.1 4.20 1.20 4.53 1.27 5.54 1.52

H5 1366.6 829.6 972.7 535.1 3.34 4.16 4.92 5.76 9.10 9.44

H6 234.5 134.8 171.9 92.2 0.75 0.49 0.94 0.49 1.66 0.79

H7 428.5 208.6 334.1 187.3 0.56 0.47 0.69 0.54 1.55 1.05

Table 5. Basic information on dams in Tamsui River basin, Taiwan.

Code Dams Dam Height
(m)

Total Capacity
(×104 m3)

Catchment
Area
(km2)

Finished
Year

D1 Baling Dam 38.0 1047 499.5 1977
D2 Ronghua Dam 82.0 1240 561.6 1984
D3 Shimen Reservoir 133.1 39120 763.4 1964
D4 Luohao Dam 16.0 30.8 210.0 1954
D5 Ayu Dam 9.5 10.5 72.8 1947
D6 GuiShan Dam 10.0 42.3 312.7 1941
D7 Feitsui Reservoir 122.5 40600 303.0 1987
D8 CuKeng Dam 3.6 24.0 645.7 1909
D9 Zhitan Dam 40.0 417.7 679.8 1978
D10 Qingtan Weir 3.0 83.2 716.8 1975
D11 Xishi Reservoir 29.6 45.0 6.7 1926
D12 Xinshan Reservoir 66.0 1000 1.6 1980

Figure 3. Evolution of reservoir index with time at H2, H5, and H7 in Tamsui River basin, Taiwan.

4. Results and Discussion
4.1. Time-Covariate Nonstationary Models of the Maximum and Minimum Flow Indices

Table 6 summaries the best-fitted probability distributions and the corresponding
parameter types of the maximum and minimum flow indices for all stations in Tamsui River
basin. Variations of mean and variance of the obtained distributions are also summarized
in Table 6.
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Table 6. Results of the generalized additive models for location, scale and shape (GAMLSS) using
time as covariate, corresponding mean and variance variations, and the variation category.

Index Parameter H1 H2 H3 H4 H5 H6 H7

1DMAX

Dist. Lognormal
(LNO)

Gamma
(GA) LNO GA GA Weibull

(WEI) GA

θ1 c c c c c c t
θ2 cs(t) c c cs(t) cs(t) c cs(t)

E(Y) nt c c c c c T↓
VAR(Y) nt c c nt nt↑ c nt↓
Catgry. XVI VI VI VIII V VI XI

2DMAX

Dist. LNO GA LNO GA GA WEI LNO
θ1 c c c c c cs(t) t
θ2 cs(t) cs(t) c cs(t) cs(t) c cs(t)

E(Y) nt c c c c nt nt↓
VAR(Y) nt nt c nt nt↑ nt nt↓
Catgry. XVI VIII VI VIII V XVI XI

1DMIN

Dist. LO WEI WEI WEI GA WEI GA
θ1 cs(t) cs(t) cs(t) cs(t) cs(t) cs(t) cs(t)
θ2 c t cs(t) c cs(t) c cs(t)

E(Y) nt↑ nt↑ nt nt nt nt nt↑
VAR(Y) c nt↑ nt↑ nt nt nt nt
Catgry. II I XIII XVI XVI XVI IV

7DMIN

Dist. LO GA WEI GA GA LNO GA
θ1 cs(t) cs(t) cs(t) cs(t) cs(t) cs(t) cs(t)
θ2 c cs(t) cs(t) c cs(t) cs(t) c

E(Y) nt↑ nt↑ nt nt nt nt nt↑
VAR(Y) c nt↑ nt nt nt nt nt↑
Catgry. II I XVI XVI XVI XVI I

30DMIN

Dist. LO GA WEI GA LNO GA GA
θ1 cs(t) cs(t) cs(t) cs(t) cs(t) cs(t) c
θ2 c cs(t) c t t cs(t) cs(t)

E(Y) nt↑ nt↑ nt↓ nt nt↓ nt c
VAR(Y) c nt↑ nt↓ nt nt↓ nt nt↓
Catgry. II I XI XVI XI XVI VII

Note: c: constant; t: linearly time varying; cs(t): cubic spline; nt: nonlinearly time varying; ↑: increasing trend; ↓:
decreasing trend.

Stationary 1DMAX is observed at H2, H3, and H6 due to their constant distribution
parameters. However, different distributional changes (i.e., different time-variation pat-
terns of parameter) of 1DMAX are noted for the other stations. For example, H7 clearly has
nonlinearly declined mean and variance, H5 has nonlinearly increasing variance, H1 and
H4 have nonlinearly varying variance, and H4 and H5 have constant mean. Figure 4a–d
illustrate curves of various quantiles (0.95, 0.75, 0.5, 0.25, and 0.05 from top to bottom) of
1DMAX at H1, H4, H5, and H7, respectively. Evidently different distributional changes are
observed in these stations. For instance, H1 illustrates that the range of 1DMAX changes
from wider to narrower and then becomes wider due to nonlinear variance. H7 clearly
shows a declined range of 1DMAX caused by declined variance.

Stationary 2DMAX is only observed at H3. The time-varying patterns of 2DMAX at the
remaining stations are similar to those of 1DMAX with the exception of the nonstationary
distribution parameters noted at H2 and H6. For example, a wider range of 2DMAX is
observed at H1 in 1957, the narrowest 2DMAX is noted around 1975 and then gradually
increases. The distributional change of 2DMAX at H1 is similar to that of 1DMAX shown
in Figure 4a. A gradually reducing range of 2DMAX is noted at H7, which is also similar to
the distributional change of 1DMAX shown in Figure 4d.

Non-stationarity is dominant in the minimum flow indices since none of these are
categorized as stationarity. This phenomenon implies that the minimum flow is vulnerable
to changing environments when compared with the results of the maximum flow indices.
Figure 5a–d illustrate variations of quantile curves (0.95, 0.75, 0.5, 0.25, and 0.05 from top
to bottom) of 1DMIN at H2, H3, H5, and H7, respectively. Different variation patterns are
clearly noted in 1DMIN for various stations. For example, H1 (not shown in Figure 5), H2,
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and H7 exhibit an increasing trend of mean, while H2 and H3 have an increasing trend of
variance. However, these trends, as well as the variation pattern of mean and variance of
other stations, are nonlinear variations, except for the constant variance observed at H1.
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Figure 4. Variations of quantile curves (0.95, 0.75, 0.5, 0.25, and 0.05 from top to bottom) of 1DMAX
(annual maximum 1-day streamflow) at (a) H1 (Xiuluan), (b) H4 (Fushan), (c) H5 (Xiulang), and (d)
H7 (Wudu).

Similar distributional changes between 1DMIN and 7DMIN are observed at most
stations. An exception is noted at H7 due to the nonlinear-varying variance of 1DMIN
becoming a nonlinearly increasing variance of 7DMIN. Distributional changes of 30DMIN
are close to those of 7DMIN at H1, H2, H4, and H6. Significantly decreasing variance
of 30DMIN are observed at H3, H5, and H7. In summary, variation patterns among
1DMIN, 7DMIN, and 30DMIN are similar. The most distinct distributional changes among
minimum flow indices are that the increasing means of 1DMIN and 7DMIN become a
constant mean of 30DMIN, and increasing variance of 7DMIN becomes decreasing variance
of 30DMIN at H7.

To gain a consistent description of distributional changes of the maximum and min-
imum flow indices for various stations, the 16-category distributional-change scheme
proposed by Shiau and Wu [41] is adopted in this study. This scheme categorizes distri-
butional changes in terms of variation of mean and variance of probability. Four types
of variation in mean and variance (linear or nonlinear increasing, no-change, linear or
nonlinear decreasing, and complex variation not belonging to previous types) are adopted
in this scheme and lead to 16 categories of distributional change, which are defined in
Table 7. Categories of the maximum and minimum inflow indices of all stations are also
reported in Table 6. The numbers of indices classified in each category are reported in
Table 7.
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Figure 5. Variations of quantile curves (0.95, 0.75, 0.5, 0.25, and 0.05 from top to bottom) of 1DMIN
(annual minimum 1-day streamflow) at (a) H2 (Xiayun), (b) H3 (Sanxia), (c) H5 (Xiulang), and (d)
H7 (Wudu).

Table 7. Definition of the 16-category distributional changes and the corresponding number of flow
indices belonging to each category.

Variation
in mean

Variation in Variance

Increasing No-Change Decreasing Complex
Variation

Increasing I (4) II (3) III (0) IV (1)
No-change V (2) VI (4) VII (1) VIII (2)
Decreasing IX (0) X (0) XI (4) XII (0)

Complex variation XIII (2) XIV (0) XV (0) XVI (12)

Stationarity is not significant in the Tamsui River basin since only four indices (11.4%)
are classified as Category VI (time-invariant mean and variance). The most prevalent
category is XVI (complex variations of mean and variance), which has 12 indices and
occupies 34.3% of all indices. The other indices are classified as Categories I, II, IV, V,
VI, VII, VIII, XI, and XIII. Diverse categories of flow indices implies that no consistent
streamflow alterations are observed in the Tamsui River basin. However, distributional
changes between the maximum and minimum flow indices are different. The maximum
inflow indices are classified only in Categories V, VI, VIII, XI, and XIII, where Categories
VI, VIII, and XVI occupy 78.6%. Distributional changes of the minimum inflow indices are
classified in 7 categories (I, II, IV, VII, XI, XIII, and XVI). The dominant categories include
Categories XVI (42.9%), I (19.0%), and II (14.3%). Different distributional-change categories
between the maximum and minimum flow indices reveal that different flow indices exhibit
different alterations. For example, increasing mean does not exist in the minimum flow
indices, and stationary mean and variance exist only in the maximum flow indices.
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4.2. RI-Covariate Nonstationary Models of Maximum and Minimum Flow Indices

Effects of dams on streamflow regime alterations are evaluated in terms of the reservoir
index, which is used as the covariate in the models of the maximum and minimum flow
indices for various time scales. Table 8 reports the best-fitted probability distributions of
the maximum and minimum flow indices using the reservoir index as the covariate at H2,
H5, and H7, since these stations are located downstream of dams.

Table 8. Results of GAMLSS using RI as covariate.

Index Parameter H2 H5 H7

1DMAX
Dist. GA WEI GA
θ1 c c ri
θ2 c ri c

2DMAX
Dist. GA WEI LNO
θ1 c c ri
θ2 c ri ri

1DMIN
Dist. GA LNO GA
θ1 ri ri c
θ2 ri ri c

7DMIN
Dist. LNO GA LNO
θ1 c c c
θ2 c ri c

30DMIN
Dist. LNO LNO GA
θ1 c c c
θ2 c ri c

Note: c: constant; ri: linearly varying with RI.

The results indicate that stationary distributions (constant parameters with RI) are
observed at H2 (1DMAX, 2DMAX, 7DMIN, and 30DMIN) and H7 (1DMIN, 7DMIN, and
30DMIN). Streamflow regime at H2 is influenced by D1 and D2, which are check dams
used to counteract erosion. Since D1 and D2 are not used for regulating streamflow, the
maximum and minimum flow indices at H2 are related less to RIs, although high RIs are
noted at H2. Low RIs observed at H7 leads to the minimum flow indices at H7, independent
of RIs. All the maximum and minimum flow indices at H5 depend on RI because there
are seven upstream dams for the purpose of water supply and hydropower generation.
Heavily regulating of the streamflow of upstream tributaries of H5 induces the highly
altered streamflow regime at H5. That is, the distribution parameters of the maximum and
minimum flow indices at H5 are related to RIs.

Figure 6a–d illustrate variations of quantile curves (0.95, 0.75, 0.5, 0.25, and 0.05 from
top to bottom) of 1DMAX and 1DMIN at H5 and H7, respectively. The abrupt changes of
various quantile curves are observed in 1987 at H5, which is induced by the construction of
D7, with the maximum capacity in this basin.

4.3. Discussion

The results of time-covariate modelling indicate that the streamflow regime of the
Tamsui River basin is characterized by non-stationarity, since 31 out of 35 flow indices are
best-fitted by the probabilistic models with time-dependent parameters. This phenomenon
is prevalent in the minimum flow indices due to 100% of the flow indices belonging to
nonstationary condition. This fact reveals that the minimum streamflow regime in the
Tamsui River basin is highly vulnerable to climate change and anthropogenic activities.
However, the effects of damming on streamflow characteristics of downstream stations (H2,
H5, and H7) in terms of RI are insignificant since approximately half the indices (46.7%) do
not relate to RIs.
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Figure 6. Variations of quantile curves (0.95, 0.75, 0.5, 0.25, and 0.05 from top to bottom) of 1DMAX
(annual maximum 1-day streamflow) at (a) H5 (Xiulang) and (b) H7 (Wudu), and 1DMIN (annual
minimum 1-day streamflow) at (c) H5 (Xiulang) and (d) H7 (Wudu).

Table 9 reports the AICs of the best-fitted distributions for the time-covariate and
RI-covariate models. The lower-AIC model denotes the better model which is closer to
the observed data. At H2, lower-AIC time-covariate models are observed in 2DMAX and
all the minimum flow indices, except that an identical AIC is noted for the time-covariate
and RI-covariate 1DMAXs, because both are fitted as stationary models. Lower-AICs
RI-covariate models are observed in 1DMAX and 2DMAX and lower-AIC time-covariate
models are observed in the minimum flow indices at H5. All the lower-AICs are noted
for the time-covariate models at H7. The results indicate that the time-covariate models
generally outperform the RI-covariate models.

Better time-covariate models are attributed to several factors. One of the reasons is that
dams are not the most dominant factor in altering streamflow regime. Other anthropogenic
factors including catchment development, population growth, and urban drainage, alter
the streamflow regime. Besides, the low-RI such as 0.009 noted at H7 is also a factor
leading to an insignificant covariate of RI. The purposes and operation of dams may cause
different effects on streamflow changes. For instance, check dams such as D1 and D2
located upstream of H2 are used to reduce erosion, not to store and regulate streamflow,
and have less effects on streamflow alterations. These factors, not involved in RI, make RI
less related to streamflow alterations in Tamsui River basin.

Yeh et al. [39] indicated that the annual high flow (Q0.9, daily discharge exceeded by
10% of days in a year) at H1 exhibited an insignificant increasing trend and an approximate
null trend at H4 based on the Mann-Kendall test. Yeh et al. [39] also indicated that annual
low flow (Q0.1, daily discharge exceeded by 90% of days in a year) had insignificant decline
and increasing trends at H1 and H4, respectively. Due to different definition and data
length of flow indices, the results obtained by Yeh et al. [39] are not exactly identical to the
results of this study, but parts of the results are consistent. For example, constant mean
of 1DMAX at H4 and increasing mean of 1DMIN at H1 noted in this study are similar
to the Mann-Kendall test results obtained by Yeh et al. [39]. Shiau and Wu [41] revealed
that clearly increasing variance of the maximum 1-day rainfall is noted after 2000 at Taipei
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station in the Tamsui River basin. This result is similar to the increasing variance observed
at 1DMAX at H1, H4, and H5, but contradicts the decreasing variance of 1DMAX at H7.
This fact implies that alterations in streamflow regime are not affected only by rainfall, but
also by other complex factors such as watershed development, hydraulic-facility operation,
the relationship between rainfall and streamflow, and others.

Table 9. Comparison of Akaike Information Criterion (AICs) for the time-covariate and Reservoir
Index (RI)-covariate best-fitted models.

Index Station Time-Covariate RI-Covariate

1DMAX
H2 744.60 744.60
H5 478.72 477.75
H7 617.12 624.26

2DMAX
H2 709.21 710.39
H5 456.06 455.39
H7 594.85 600.60

1DMIN
H2 198.29 237.73
H5 95.84 111.85
H7 17.35 39.02

7DMIN
H2 198.44 235.51
H5 120.31 135.32
H7 32.42 48.53

30DMIN
H2 225.70 249.64
H5 176.10 184.60
H7 123.95 125.58

Note: boldfaced numbers denote lower AIC.

The obtained nonstationary probability distributions of the flow indices offer more
comprehensive information than the monotonic increasing or decreasing trends. For
example, 1DMIN at H2 exhibits increasing mean and increasing variance (Category I and
shown in Figure 5a), which is insufficiently described by increasing trend. However, the
obtained best-fitted distributions are limited to the data periods used in the study; that is,
the obtained time-varying models are not properly able to predict far-future streamflow
conditions, indicated by Villarini et al. [51].

5. Conclusions

The main aim of this study is to explore non-stationarity of the maximum and mini-
mum flow indices in terms of distributional changes for seven streamflow gauge stations
in the Tamsui River located in northern Taiwan using the GAMLSS (generalized additive
models for location, scale, and shape).

Results of time-covariate models indicate that stationarity is only noted in the max-
imum flow index, i.e., 1DMAX at H2, H3, and H6, and 2DMAX at H3. The streamflow
regime in the tributaries (H3 and H6) is less influenced than those in the main rivers.
Non-stationarity is prevalent in the minimum flow indices since all minimum flow indices
are classified as nonstationary distributions. Clearly different distributional changes are
observed among the flow indices. Streamflow regime in the Tamsui River generally ex-
hibits non-stationarity because that 31 out of 35 (88.6%) flow indices have time-dependent
distribution parameters. Category XVI (complex variations of mean and variance) is the
dominant category since 34.3% of flow indices are classified in this category.

Results of RI-covariate models at H2, H5, and H7 indicate that constant parameters
are observed at H2 (1DMAX, 2DMAX, 7DMIN, and 30DMIN) and H7 (1DMIN, 7DMIN,
and 30DMIN). The reasons that these flow indices do not relate to RI are attributed to the
dams located upstream of H2 used for counteracting erosion and the low RI (0.009) noted
at H7. The RI-covariate models are generally worse than the time-covariate models. Only
the RI-covariate 1DMAX and 2DMAX at H5 outperform the time-covariate models. This
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fact indicates that construction of dams is not the only factor altering streamflow regime in
the Tamsui River.

Based on the streamflow records used in this study, the results reveal that the stream-
flow regime in the Tamsui River is significantly altered except for 1DMAX and 2DMAX at
some stations. Alterations in streamflow regime are attributed to climate change as well as
to anthropogenic interferences. Prevalent non-stationarity in streamflow regime (88.6 % of
flow indices) leads to approximate one third of flow indices (34.3%) exhibiting complex
variation patterns instead of monotonic increasing or decreasing trends. RI is insufficient
to describe dam-altered streamflow regime in the Tamsui River due to time-covariate mod-
eling of 80% flow indices outperforming RI-covariate modeling. Complex anthropogenic
interferences other than dam-construction need to be considered in the Tamsui River basin
to evaluate spatially diverse alterations in streamflow regime.

Identification of non-stationarity in streamflow series gives an insight into streamflow
regime alterations. This information can usefully guide future design and current operation
of water-resources engineering, adapting to the changing environment. This study analyzes
the non-stationarity in the maximum and minimum flow indices in the Tamsui River basin
located in northern Taiwan. Construction of dams is not the unique factor influencing
streamflow regime. Modification of the reservoir index to include purpose or operation
types and other anthropogenic effects such as population or urban drainage remain as
topics for further extending of this study.
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